跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林柏安
研究生(外文):Bo-An Lin
論文名稱:抑制DNA錯誤配對辨識蛋白MSH6對斑馬魚胚胎發育的影響
論文名稱(外文):Effects of MSH6 Knock Down on the Embryonic Development of Zebrafish(Danio rerio)
指導教授:許濤許濤引用關係
指導教授(外文):Todd, Hsu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:77
中文關鍵詞:錯誤配對辨識蛋白斑馬魚
外文關鍵詞:MSH6NeuroD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
當細胞在進行DNA複製及基因重組時偶而會有錯誤配對的情形產生,此時DNA配對錯誤修補系統會進行錯誤配對的修補以維持細胞遺傳基因的穩定性。MutS homolog 6蛋白質,簡稱MSH6,為真核生物之DNA錯誤配對辨識蛋白,其可針對單一鹼基配對錯誤及嵌入或刪除之未配對寡核酸環進行結合並與其他蛋白質形成複合體進行修補工作。目前於斑馬魚中已經選殖出MSH2及MSH6之基因,原位雜合實驗結果發現MSH2基因於受精後12小時至36小時會集中表現在眼睛及周圍腦室區域,並且60小時後其mRNA的表現明顯減弱,顯示MSH蛋白質在胚胎發育時期除參與配對錯誤辨識外也可能與神經發育有關。
本篇論文利用全覆式mRNA定位雜合實驗觀察MSH6於斑馬於胚胎發育早期之基因表現位置情形以及北方轉漬法mRNA表現定量分析,發現MSH6基因於受精後尚未進行細胞分裂之胚胎 ( one cell stage )即可偵測到其表現,而在6小時後卻無表現直至9小時後才又再度表現,是屬於母系之基因,並且MSH6 mRNA在授精後24小時明顯地出現在眼睛及周圍腦室的神經管區域,36及48小時則只集中表現在midbrain- hindbrain boundary ( MHB )位置,往後到了60小時基因表現的情形卻明顯的減弱;而在西方轉漬法的實驗結果發現 MSH6蛋白質在不同時期的斑馬魚胚胎當中含量穩定,並未隨mRNA變動而有起伏的情形,而MSH6 mRNA之表現與MSH2 mRNA表現相似,集中在眼睛、周圍腦室之神經管及MHB的位置。
爾後利用顯微注射的方式將MSH6 morphlino反意寡核酸以12ng的劑量送入斑馬魚one –cell stage 胚胎當中,發現MSH6蛋白質的產生明顯受抑制,觀察其神經發育相關基因之活性,結果發現在48小時之胚胎NeuroD表現開始出現異常增多的情形,而施打劑量達到20ng時,36小時之胚胎,NeuroD開始有表現異常的情形產生;而48小時之胚胎,其NeuroD在頭部的表現情形有明顯異常增強的情形產生,表現增強的區域集中在視網膜以及後方的神經節區域,由此顯示MSH6 可能直接或間接的抑制NeuroD的基因表現,但是屬於NeuroD所調控的pax6b基因卻沒有受到影響;另外在抑制MSH6蛋白質的表現後,與NeuroD 調控機制功能相似參與肌肉細胞分化的MyoD基因並未受到影響,顯示MSH6在參與基因調控的工作上具有其專一性,然而MSH6參與NeuroD詳細的調控機制仍然有待進一步證實與深入探討。
As replication or homologous recombination errors generated during cell division of living organisms, the mismatch repair system should be efficiently corrected to maintain the integrity of genetic materials. MutS homolog 6 (MSH6) is an eukaryotic DNA mismatch recognition protein binds simple mispairs and small insertion-deletion loops and associated with other mismatch repair proteins to repair DNA damage. The msh2 and msh6 genes in zebrafish have previously been cloned and recombinant MSH2 or MSH6 was shown to bind preferentially to G-T mispair.
In this study, we used whole-mount in situ hybridization to detect the msh6 gene expression during development in early zebrafish embryos and preformed Northern blot assays to quantify the msh6 mRNA transcription. msh6 mRNA was observed between one cell stage and 3.7 hpf. and disappeared at 6 hpf. Following 9 hpf, msh6 mRNA expression was again observed and by 24 hpf. , msh6 expression was expressed strongly in eye and brain. The expression region of msh6 in 36 hours embryos was mainly at midbrain-hindbrain boundary. It suggested that the expression of msh6 mRNA was maternally derived mRNA and maybe had an another function besides the mismatch repair.
The MSH6 expression in embryos was significantly inhibited by microinjection of 12 ng MSH6 morphlino antisense oligonucleotide. The expressions of neural growth related genes were also monitored. The dosages of MSH6 morphlino was increased to 20 ng, NeuroD started to express abnormally in 36 hours embryos. The ectopic expression of NeuroD at head was observed in 48 hours embryos. The ectopic expression region was restricted on retina and its backward ganglions. As the result, NeuroD gene expression could be directly or indirectly inhibited my MSH6. However, pax6b ‚The NeuroD down-stream regulatory gene , was not affected by msh6 knock down. After the inhibition of MSH6, the gene expression of MyoD, which is an important regulatory protein of muscle differentiation and its mechanism is similar to NeuroD, was not affected. It revealed that MSH6 maybe has a specificity to NeuroD gene expression. The detailed NeuroD regulation mechanism regarding MSH6 was still waiting for proof and further investigation.
中文摘要 …………………………………………………………………1
英文摘要 …………………………………………………………………3

壹、前言 …………………………………………………………………5
貳、實驗材料與方法……………………………………………………11
一、材料…………………………………………………………………11
二、方法…………………………………………………………………23
參、結果…………………………………………………………………45
一、斑馬魚早期胚胎發育msh6 基因表現位置分佈 …………………45
二、msh6 mRNA表現及蛋白質表現的定量分析 ………………………46
三、利用msh6 morpholino抑制MSH6蛋白質表現 ……………………47
四、Msh6 knock down對於pax6b表現的影響…………………………48
五、Msh6 knock down對於NeuroD表現的影響 ………………………49
六、Msh6 knock down對於myoD表現的影響 …………………………50
肆、討論…………………………………………………………………52
伍、參考文獻……………………………………………………………57
陸、實驗圖表及附圖……………………………………………………64
1. Grunwald D.J. and Eisen J.S.(2002) Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet. (9),717-24.
2. Bennett C.M., Kanki J.P., Rhodes J., Liu T.X., Paw B.H., Kieran M.W., Langenau D.M., Delahaye-Brown A., Zon L.I., Fleming M.D., and Look A.T. (2001) Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651.
3. Brownlie A., Donovan A., Pratt S.J., Paw B.H., Oates A.C., Brugnara C., Witkowska H.E., Sassa S., and Zon L.I. (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anemia. Nat. Genet. 20, 244–250.
4. Jackson S.P.(1996) The recognition of DNA damage. Cur. Opin. Genet. Dev. 6,19-25.
5. Wheeler JM.(2005) Epigenetics, mismatch repair genes and colorectal cancer. Ann R Coll Surg Engl. 87(1),15-20.
6. Wu X., Khalpey Z. and Cascalho M.(2004) Cellular physiology of mismatch repair. Curr Pharm Des.10(32),4121-6.
7. Igoucheva O., Alexeev V. and Yoon K.(2004) Mechanism of gene repair open for discussion. Oligonucleotides. 14(4),311-21.
8. Schofield M.J. and Hsieh P.(2003) DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol. 57:579-608.
9. Yang W., Junop M.S., Ban C., Obmolova G. and Hsieh P. (2000) DNA mismatch repair: from structure to mechanism. Cold Spring Harb Symp Quant Biol. 65,225-32.
10. Santucci-Darmanin S. and Paquis-Flucklinger V.(2003) Homolog of MutS and MutL during mammalian meiosis. Med Sci (Paris). 19(1),85-91.
11. Kolodner R.D. and Marsischky G.T.(1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 9(1),89-96.
12. Fishel R. and Wilson T.(1997) MutS homolog in mammalian cells. Curr Opin Genet. Dev.7(1),105-113.
13. Sixma T.K.(2001) DNA mismatch repair: MutS structures bound to mismatches. Curr Opin Struct Biol.;11(1),47-52.
14. Yeh F.L., Wang S.Y., Hsu L.Y., Wang D.Y. and Hsu T. (2004) Cloning of the mismatch recognition protein MSH2 from zebrafish (Danio rerio) and its developmental stage-dependent mRNA expression. Biochim Biophys Acta. 1680(2),129-36.
15. Chen D., Lucey M.J., Phoenix F., Lopez-Garcia J., Hart S.M., Losson R., Buluwela L., Coombes R.C., Chambon P., Schar P. and Ali S.(2003) T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha. J Biol Chem. 278(40),38586-92.
16. Yeh F.L., Yan H.L., Wang S.Y., Jung T.Y., and Hsu T.(2003) Molecular cloning of zebrafish (Danio rerio) MutS homolog 6(MSH6) and noncoordinate expression of MSH6 gene activity and G-T mismatch binding proteins in zebrafish larvae. J Exp Zoolog A Comp Exp Biol.;297(2), 118-129.
17. Borgdorff V., van Hees-Stuivenberg S., Meijers C.M. and de Wind N. (2005) Spontaneous and mutagen-induced loss of DNA mismatch repair in Msh2-heterozygous mammalian cells. Mutation Research.574(1-2),50-57.
18. Niessen R.C., Sijmons R.H., Berends M.J., Ou J., Hofstra R.M. and Kleibeuker J.H. (2004) Hereditary non-polyposis colorectal cancer: identification of mutation carriers and assessing pathogenicity of mutations. Scand J Gastroenterol Suppl. (241),70-77.
19. Matsubara N.(2004) Diagnostic application of hMLH1 methylation in hereditary non-polyposis colorectal cancer. Dis Markers. 20(4-5),277-282
20. Robert K.V. and Barbara F.H.(2002) DNA repair during organogenesis. Mutation Research 509,79–91.
21. Mendillo M.L., Mazur D.J. and Kolodner R.D.(2005) Analysis of the Interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 Complexes with DNA Using a Reversible DNA End-blocking System. J Biol Chem.280(23),22245-57
22. Quiring R., Walldorf U., Kloter U. and Gehring W. J. (1994) Homology of the eyeless gene of Drosophila to Small eye gene in mice and Aniridia in humans. Science 265, 785-789
23. Kurusu M., Nagao T., Walldorf U., Flister S., Gehring W. J. and Furukubo-Tokunaga K. (2000) Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and dachshund genes. Proc. Natl. Acad. Sci. USA 97, 2140-2144.
24. Pratt T., Vitalis T., Warren N., Edgar J.M., Mason J.O. and Price D.J. (2000) A role of Pax6 in the normal development of dorsal thalamus and its cortical connections. Development 127, 5167-5178.
25. Pineda D., Rossi L., Batistoni R., Salvetti A., Marsal M., Gremigni V., Falleni A., Gonzalez-Linares J., Deri P. and Salo E.(2002) The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development. 129(6),1423-34.
26. Gehring W.J. and Ikeo K. (1999) Pax-6 mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371-377.
27. Chow R.L., Altmann C.R., Lang R.A. and Hemmati-brivanlou A. (1999). Pax6 induces ectopic eyes in a vertebrate. Development 126, 4213- 4222.
28. Nornes S., Clarkson M., Mikkola I., Pedersen M., Bardsley A., Martinez J.T., Krauss S. and Johansen T. (1998) Zebrafish contains two pax6 genes involved in eye development. Mech. Dev. 77, 185-196.
29. Haubst N., Berger J., Radjendirane V., Graw J., Favor J., Saunders G.F., Stoykova A. and Gotz M. (2004) Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development.131(24),6131-40.
30. Kawaguchi A., Ogawa M., Saito K., Matsuzaki F., Okano H. and Miyata T. (2004). Differential expression of Pax6 and Ngn2 between pair-generated cortical neurons. J Neurosci Res.78(6),784-95.
31. Lee J.E., Hollenberg S.M., Snider L., Turner D.L., Lipnick N. and Weintraub, H. (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836−844.
32. Fritzsch B. (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res. Bull. 60, 423−433.
33. Lee J.K., Cho J.H., Hwang W.S., Lee Y.D., Reu D.S., and Suh-Kim H. (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Dev. Dyn. 217, 361−367.
34. Liu M., Pleasure S.J., Collins, A.E., Noebels J.L., Naya F.J., Tsai M.J., and Lowenstein D.H. (2000) Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl. Acad. Sci. USA 97, 865−870.
35. Loosli F., Winkler S., and Wittbrodt J. (1999) Six3 overexpression initiates the formation of ectopic retina. Genes Dev.13, 649−654.
36. Kim W.Y., Fritzsch B., Serls A., Bakel L.A., Huang E.J., Reichardt L.F., Barth D.S. and Lee J.E. (2001) NeuroD null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128, 417−426.
37. Pennesi M.E., Cho J.H., Yang Z., Wu S.H., Zhang J., Wu S.M., and Tsai M.J. (2003) BETA2/NeuroD1 null mice: a new model for transcription factor-dependent photoreceptor degeneration. J. Neurosci. 23, 453−461.
38. Akagi T., Inoue T., Miyoshi G., Bessho Y., Takahashi M., Lee J. E., Guillemot F., and Kageyama R. (2004) Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J. Biol. Chem. 279, 28492−28498.
39. Miner J.H., and Wold B. (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87,1089–93
40. Montarras D., Lindon C., Pinset C., and Domeyne P. (2000) Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects. Biol. Cell 92,565–72
41. Nabeshima Y., Hanaoka K., Hayasaka M., Esumi E. and Li S. (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364,532–35
42. de la Serna I.L., Ohkawa Y., Berkes C.A., Bergstrom D.A., Dacwag C.S., Tapscott S.J. and Imbalzano A.N. (2005) MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol. 25(10), 3997-4009.
43. Liu C., McFarland D.C. and Velleman S.G. (2005) Effect of genetic selection on MyoD and myogenin expression in turkeys with different growth rates. Poult Sci. 2005 84(3),376-84.
44. Kane D.A. and Kimmel C.B. (1993) The zebrafish midblastula
transition. Development 119, 447–456.
45. Ma Q., Anderson D. J., and Fritzsch B. (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J.Assoc. Res. Otolaryngol. 1, 129−143.
46. Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J. L. and Anderson D.J. (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469−482.
47. Huang H.P., Liu M., El-Hodiri H.M., Chu K., Jamrich M. and Tsai, M.J. (2000) Regulation of the pancreatic isletspecific gene BETA2 (neuroD) by neurogenin 3. Mol. Cell. Biol. 20, 3292−3307.
48. Cau E. and Wilson SW. (2003) Ash1a and Neurogenin1 function downstream of Floating head to regulate epiphysial neurogenesis. Development. 130(11), 2455-2466.
49. Marsich E., Vetere A., Di Piazza M., Tell G. and Paoletti S. (2003) The PAX6 gene is activated by the basic helix-loop-helix transcription factor NeuroD/BETA2. Biochem. J. 376, 707−715.
50. Ji H.C., Gretchen H.S. and Jacqueline E.L. (2003) NeuroD: The Predicted and the Surprising. Mol. Cells. 18-3, 271-288
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top