跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林賜福
研究生(外文):Shih-Fu Lin
論文名稱:一般水泥混凝土孔隙率對氯離子擴散性與導電性關係之探討
論文名稱(外文):Investigate Relationship of Porosity with Chloride Ions Diffusivity and Electrical Conductivity in Ordinary Portland Cement Concrete
指導教授:楊仲家
指導教授(外文):Chung-Chia Yang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:195
中文關鍵詞:孔隙率連通性擴散性導電性
外文關鍵詞:PorosityConnectivityDiffusivityElectrical-conductivity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
本論文在探討混凝土孔隙率對氯離子擴散性與電導性之影響。在固定骨材使用量與無添加礦物掺料條件之下,一般水泥(OPC)混凝土與砂漿試體配比各採用八組不同之水灰比(w/c)。壓汞試驗的結果顯示出水灰比對於水泥基材料的孔隙率與孔隙結構扮演著重要的影響因素。同時水灰比對於混凝土的各種性質也有明顯的影響。毛細孔隙率、孔隙的分布與孔隙連通性等孔隙結構因素對控制氯離子的擴散性扮演著主要的角色,研究中同時建立了氯離子擴散性與毛細孔隙率間之函數關係式,利用此函數關係式可以得到氯離子擴散與孔徑範圍在10-500 nm的孔隙率存在著最佳對應關係。藉由水泥基材料的電阻性與孔隙率之關聯性,研究結果也得到RCPT試驗的總電荷量與總孔隙率的函數關係式,而此兩者之間也存在著一個良好的對應關係。對一般水泥混凝土,RCPT試驗得到的總電荷量與90天浸漬試驗得到的氯離子擴散係數之間亦存在著非常良好之線性關係。最後,應用四個一般常用之抗壓強度與孔隙率之關係式,研究結果顯示四個關係式均具有良好之真確性。
The purpose of this thesis presents the results of an investigation on the relationship of porosity with chloride ions diffusivity and electrical-conductivity of concrete. Eight different water/cement (w/c) ratios ordinary Portland cement (OPC) concrete and mortar specimens with constant aggregates and free mineral additives were used. The MIP measurements showed that water/cement ratio was an important factor in determining the porosity and microstructure of cement-based materials. Water/cement ratio was also significantly to control concrete various properties. The capillary porosity, pore size distribution, and connectivity of pores exerted major control factors on the chloride ions diffusivity of concrete. Correlation between the diffusion coefficient and capillary porosity was found and the best fit of diffusion coefficient with porosity at pore size distribution between 10 and 500 nm was obtained. Based on the porosity-electrical resistivity relation, fit to the experimental results of total porosity as a function of charge passed was addressed, meanwhile, a well correlation between total porosity and charge passed was also obtained. The total charge passed from RCPT has fair well corresponding to the diffusion coefficient from salt ponding test was observed for ordinary Portland cement concrete. Four common porosity-strength equations: Balshin’s, Ryshkewitch’s, Schiller’s, and Hassellman’s fit the experimental results of mineral-free OPC concretes with sufficient accuracy.
摘要…………………………………………………………………… Ⅰ
Abstract……………………………………………………………… Ⅱ
Content………………………………………………………………… Ⅲ
Tables………………………………………………………………… Ⅵ
Figures………………………………………………………………… Ⅶ
1. Introduction……………………………………………… 1
2. Literature Review……………………………………… 3
2.1 Microstructure of hydrated cement paste………… 3
2.1.1 Hydration of cement past……………………………… 3
2.1.2 Pore system in hydrated cement paste……………… 3
2.1.3 Effect of water/cement ratio………………………… 5
2.1.4 Effect of mineral admixture………………………… 7
2.1.5 Effect of superplasticizer…………………………… 9
2.2 Mechanism of ionic transportation in concrete… 10
2.3 Test methods of chloride penetration of concrete……… 14
2.3.1 AASHTO T259 salt ponding test……………………… 14
2.3.2 Rapid chloride permeability test (RCPT)……… 16
2.3.3 Acceleration Chloride Migration Test (ACMT)…… 19
2.3.4 Mercury intrusion porosimetric test (MIP)……… 21
3. Experimental Details………………………………… 24
3.1 Mixture details………………………………………… 24
3.2 Material details……………………………………… 26
3.3 Test details…………………………………………… 29
3.3.1 90-day Salt ponding test…………………………… 29
3.3.2 Rapid chloride permeability test (RCPT)………… 31
3.3.3 Mercury intrusion porosimetric test (MIP)……… 34
3.3.4 Compressive strength test…………………………… 36
4. Results and Discussion……………………………… 37
4.1 Mercury intrusion porosimetric test (MIP)……… 37
4.1.1 Total intrusion pore volume and porosity……… 37
4.1.2 Critical pore diameter……………………………… 44
4.1.3 Pore size distribution……………………………… 47
4.2 90-day salt ponding test…………………………… 50
4.2.1 Relationship between diffusion coefficient and w/c ratio… 56
4.3 Rapid chloride permeability test (RCPT) ……… 58

4.3.1 Relationship between charge passed and w/c ratio……… 60
4.3.2 Relationship between total charge passed and initial current…………………………………………………… 61
4.4 Compressive strength test…………………………… 62
4.5 Relationship between pore structure and chloride ions diffusivity…………………………………………………… 64
4.5.1 Porosity and diffusivity relationship…………… 64
4.5.2 Connectivity and diffusivity relationship……… 69
4.6 Porosity and electric-conductivity relationship…… 71
4.7 Relationship between 90-day salt ponding test and RCPT…… 75
4.8 Relationship between compressive strength and porosity…… 77
5. Conclusion……………………………………………… 81
6. Suggestion……………………………………………… 82
Reference……………………………………………………………… 83
Appendix……………………………………………………………… 90
1. R. Kumar, and B. Bhattacharjee, “Assessment of permeation quality of concrete through mercury intrusion porosimetry”, Cement and Concrete Research, Vol. 34, (2004), pp. 321-328.
2. D. M. Roy, “Relationships between permeability, porosity, diffusion and microstructure of cement pastes, mortar, and concrete at different temperatures”, Materials Research Society Symposium Proceedings, Vol. 137, (1988), p.p. 179-189.
3. AASHTO T277-86, “Rapid Determination to The Chloride Permeability of Concrete”, American Association of States Highway and Transportation Officials, Standard Specifications–Part II, Tests, Washington, DC, 1990.
4. ASTM 1202, “Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration”, Annual Book of American Society for Testing Materials Standard, Vol. C04.02, 1997.
5. C. Andrade, “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements”, Cement and Concrete Research, Vol. 23, (1993), pp.724-742.
6. C. Shi, “Strength, pore structure and permeability of alkali-activated slag mortars”, Cement and Concrete Research, Vol. 26, (1996), pp. 1789-1799.
7. P. F. McGrath, R. D. Hooton, “Re-evalution of the AASHTO T259 90-day salt ponding test”, Cement and Concrete Research, Vol. 29, (1999), pp. 1239-1248.
8. A. M. Brandt, “Cement-based Composites: Materials, Mechanical Properties and Performance”, E & FN SPON, (1995), pp.116-119
9. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, (1993), pp. 26-29
10. S. Mindess, J. F. Young, D. Darwin, “Concrete” Second Edition, Prentice Hall, (2003), pp. 75-77.
11. A. M. Neville, “Properties of Concrete” Fourth and Final Condition, Prentice Hall, (1995), pp. 26-34.
12. S. Mindess, J. F. Young, D. Darwin, “Concrete” Second Edition, Prentice Hall, (2003), pp. 477-482
13. A. H. Memon, S. S. Radin, M. F. M. Zain, and J. F. Trottier, “Effects of mineral and chemical admixtures on high-strength concrete in seawater”, Cement and Concrete Research, Vol. 32, (2002), pp. 373-377.
14. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, (1993), pp. 209-211.
15. S. Mindess, J. F. Young, D. Darwin, “Concrete” Second Edition, Prentice Hall, (2003), pp. 95-96.
16. J. M. Khatib, and P. S. Mangat, “Influence of superplasticizer and curing on porosity and pore structure of cement paste”, Cement and Concrete Composites, Vol. 21, (1999), pp. 431-437.
17. A. M. Neville, “Properties of Concrete” Fourth and Final Edition, Prentice Hall, (1995), pp. 257-258.
18. B. F. Johannesson, “Diffusion of a mixture of cations and anions dissolved in water”, Cement and Concrete Research, Vol. 29, (1999), pp.1261-1270.
19. AASHTO T259-80, “Resistance of Concrete to Chloride Ion Penetration”, American Association of States Highway and Transportation Officials, Standard Specifications–Part II, Tests, Washington, DC, 1990.
20. AASHTO T260-97, “Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials”, American Association of States Highway and Transportation Officials, Standard Specifications–Part II, Tests, Washington, DC, 1997.
21. R. F. Feldman, G. W. Chan, R. J. Brousseau, and P. J. Tumidajski, “Investigate of the rapid chloride permeability test”, ACI Materials Journal, Vol. 91, (1994), pp. 246-255.
22. R. F. Feldman, L. R. Prudencio and Jr. G. Chan, “Rapid chloride permeability test on blended cement and other concretes: correlations between charge, initial current and conductivity”, Construction and Building Materials, Vol. 13, (1999), pp. 149-154.
23. C. C. Yang, S. W. Cho, and R. Huang, “The relationship between charge passed and the chloride-ion concentration in concrete using steady state chloride migration test”, Cement and Concrete Research, Vol. 32, (2002), pp. 217-222.
24. G. A. Julio-Betancourt, and R. D. Hooton, “Study on the Joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes”, Cement and Concrete Research, Vol. 34, (2004), pp. 1007-1015.
25. W. Prince, R. Perami, and M. Espagne, “ Mechanisms involved in the accelerated test of chloride permeability”, Cement and Concrete Research, Vol. 29, (1999), pp. 687-694
26. M. Castellote, C. Andrade, and C. Alonso, “Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber Comparison with natural diffusion tests”, Cement and Concrete Research, Vol. 31, (2001), pp. 1411-1420.
27. M. Castellote, C. Andrade, C. Alonso, and G. A. Chadbourn, and G. L. Page, “Oxygen and chloride diffusion in cement pastes as a validation of chloride diffusion coefficients obtained by steady-state migration tests”, Cement and Concrete Research, Vol. 31, (2001), pp. 621-625.
28. C. C. Yang, and L. C. Wang, “The diffusion characteristics of concrete with mineral admixture between salt ponding test and accelerated chloride migration test”, Materials Chemistry and Physics, Vol. 85, (2004), pp. 266-272.
29. C. C. Yang, “Relationship between migration coefficient of chloride ions and charge passed in steady state”, ACI Materials Journal, Vol. 101, (2004), pp. 124-130.
30. S. Diamond “Mercury porosimetry, an inappropriate method for the measurement of pore size distributions in cement-based materials”, Cement and Concrete Research, Vol. 30, (2000), pp.1517-1525.
31. R. Kumar, and B. Bhattacharjee, “ Study on some actors affecting the results in the use of MIP method in concrete research”, Cement and Concrete Research, Vol. 33, (2003), pp.417-424.
32. R. A. Cook, and K. C. Hover, “Mercury porosimetry of cement-based materials and associated correction factors”, ACI Materials Journal, Vol. 90, (1993), pp. 152-161.
33. Md. A. I. Laskar, R. Kumar, and B. Bhattacharjee, “Some aspects of evaluation of concrete through mercury intrusion porosimetry”, Cement and Concrete Research, Vol. 27, (1997), pp. 93-105.
34. ASTM 39, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, Annual Book of American Society for Testing Materials Standard, (1999).
35. P. Halamickova, R. J. Detwiler, D. P. Bentz, and E. J. Garboczi, “Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter”, Cement and Concrete Research, Vol. 25, (1995), pp. 790-802.
36. R. F. Feldman, and J. J. Beaudoin, “Pretreatment of hardened hydrated cement pastes for mercury intrusion measurement”, Cement and Concrete Research, Vol. 21, (1991), pp. 297-308.
37. C. Galle, “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry A comparative study between oven-, vacuum-, and freeze-drying”, Cement and Concrete Research, Vol. 31, (2001), pp. 1467-1477.
38. R. A. Cook, and K. C. Hover, “Mercury porosimetry of hardened cement pastes”, Cement and Concrete Research, Vol. 29, (1999), pp. 933-943.
39. M. A. Climent, G. de Vera, J. F. Lopez, E Viqueira, and C. Andrade, “A test method for measuring chloride diffusion coefficients through nonsaturated concrete Part I. The instantaneous plane source diffusion case”, Cement and Concrete Research, Vol. 32, (2002), pp. 1113-1123.
40. H. Hornain, J. Marchand, V. Duhot, and M. Moranville-Regourd, “Diffusion of chloride ions in limestone filler blended cement pastes and mortars”, Cement and Concrete Research, Vol. 25, (1995), pp. 1667-1678.
41. T. C. Powers, L. E. Copeland, and H. M. Mann, “Capillary continuity or discontinuity in cement paste”, Journal of the PCA Research And Development Lab., Vol. 1, No. 2, (1959), pp. 38-48.
42. D. P. Bentz and E. J. Garboczi, “Percolation of phase in a three-dimensional cement paste microstructure model”, Cement and Concrete Research, Vol. 21, (1991), pp. 325-344.
43. E. J. Garboczi and D. P. Bentz, “Computer simulation of the diffusivity of cement-based materials “, Journal of Materials Science, Vol. 27, (1992), pp. 2083-2092.
44. T. C. Powers, L. E. Copeland, and H. M. Mann, “Capillary continuity or discontinuity in cement paste”, PCA Bull, Vol. 1, (1955), pp. 2-12.
45. G. Ye, “Percolation of capillary pore in hardening cement pastes”, Cement and Concrete Research, Vol. 35, (2005), pp. 167-176.
46. E. J. Garboczi and D. P. Bentz, “Multiscale analytical/numerical theory of the diffusivity of concrete“, Advanced Cement Based Materials, Vol. 8, (1998), pp. 77-88.
47. P. J. Tumidajski, A. S. Schumacher, S. Perron, P. Gu, and J. J. Beaudoin, “On the relationship between porosity and electrical resistivity in cementitious systems”, Cement and Concrete Research, Vol. 26, (1996), pp. 539-544.
48. J. Hoogschagen, “Diffusion in porous catalysts and adsorbents”, Industrial Engineering Chemistry, Vol. 47, (1995), pp. 906-913.
49. P. J. Tumidajski, and A. S. Schumacher, “On the relationship between the formation factor and propan-2-ol diffusivity in mortars”, Cement and Concrete Research, Vol. 26, (1996), pp. 1301-1306.
50. T. W. Wee, A. K. Suryavanshi, and S. S. Tin, “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures”, ACI Materials Journal, Vol. 97, (2000), pp. 221-232.
51. J. D. Shane, C. M. Aldea, N. F. Bouxsein, T. O. Mason, H. M. Jenning, and S. P. Shaw, “Microstructural and pore solution changes induced by rapid chloride permeability test measured by impedance spectroscopy”, Concrete Science and Engineering, Vol. 1, (1999), pp. 110-119.
52. C. Shi, J. A. Stegemann, and R. J. Caldwell, “Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test (AASHTO T277 and ASTM C1202) results”, ACI Materials Journal, Vol. 95, (1998), pp. 389-394.
53. C. Shi, “Effect of Mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSTO T277) results”, Cement and Concrete Research, Vol. 34, (2004), pp. 537-545.
54. T. Matusinovic, J. Sipusic, and N. Vrbos, “Porosity-strength relation in calcium aluminate cement pates”, Cement and Concrete Research, Vol. 33, (2003), pp. 1801-1806.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top