跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江世哲
研究生(外文):Shih-Che Chiang
論文名稱:混凝土加速氯離子傳輸試驗中非穩態傳輸性質與孔隙結構之關係
論文名稱(外文):Relationships Between Non-steady State Chloride Transport Properties from ACMT and Pore Structure of Concrete
指導教授:楊仲家
指導教授(外文):Chung-Chia Yang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:112
中文關鍵詞:加速氯離子傳輸試驗氯離子傳輸係數電流孔隙率關鍵孔徑
外文關鍵詞:Accelerated chloride migration testChloride migration coefficientElectrical currentPorosityCritical pore diameter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用電化學法於混凝土內加速離子傳輸試驗(ACMT)與壓汞試驗(MIP),探討非穩態氯離子傳輸特性與孔隙結構之關係。一般水泥混凝土與水泥砂漿試體配比設計於固定骨材用量下,分別採用八組不同之水灰比(0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65),因為水灰比對於水泥質材料之孔隙結構以及離子傳輸特性扮演重要性之角色。研究結果顯示,ACMT試驗中穩態氯離子傳輸係數(Ms)與非穩態氯離子傳輸係數(Mnc)間存有良好之線性關係,且利用電流所求得之非穩態氯離子傳輸係數(Mni)與Mnc亦有相同之結果,此結果代表氯離子穿透試體時,將會影響系統內部電流之變化。MIP試驗結果中顯示,毛細孔隙率(εc)或關鍵孔隙尺寸與非穩態離子傳輸係數與存在著良好之對應關係。本研究結果指出水泥質材料之毛細孔隙率與孔隙的連通性皆對於離子傳輸特性扮演重要之角色。
In this study, the electrochemical technique is applied to accelerate the chloride ion migration in concrete to determine the chloride migration coefficient. Concrete and mortar with eight w/c ratios (0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.65) and with constant aggregates were used. The steady-state migration coefficient was calculated on the basis of the Nernst-Planck’s equation and non-steady-state migration coefficient was calculated from the modified Fick’s second law. The electrical current also used to estimate the chloride migration coefficient by modified Fick’s second law. The results for all mixtures show that the non-steady-state chloride migration coefficient obtained from the electrical current and the chloride concentration with the ACMT are linearly correlated. The capillary porosity and critical pore diameter obtained from mercury intrusion porosimetry (MIP) also have a good correlation with the chloride migration coefficient from ACMT. The results indicated that the capillary pores and the interconnectivity are the crucial parameter affecting the chloride migration.
摘要 I
Abstract II
Contents III
List of Tables V
List of Figures VII
Charpter 1 Introduction 1
Charpter 2 Background 4
2.1 Structure of cement composites 4
2.1.1 Elements and types of cement-based material structure 4
2.1.2 Micro-structure of cement paste 4
2.1.3 Superplasticizers 7
2.2 Structure of pores and voids in cement paste 7
2.3 Mercury intrusion porosimetry (MIP) 11
2.3.1 The basis of mercury intrusion measurements 11
2.3.2 The factor affecting the results of MIP method 15
2.4 Mechanisms of chloride ion transport 16
2.5 Penetrability of concrete 18
2.6 The factors affect the conductivity 20
2.7 Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration 21
2.7.1 Rapid chloride permeability test (RCPT) 22
2.7.2 Accelerated chloride migration test (ACMT) 24
Chapter 3 Experimental procedure 25
3.1. Materials and specimen preparation 25
3.2 Testing conditions and measurements 29
3.2.1 Accelerated chloride migration test (ACMT) 29
3.2.2 Potentiometric titration 31
3.2.3 Mercury intrusion porosimetry test (MIP) 32
3.2.3.1 Specimen preparation for MIP 32
3.2.3.2 Test procedure 33
3.2.4 Compressive strength 35
Chapter 4 Results and discussion 36
4.1 The transport properties of the chloride ions 36
4.1.1 Four distinct phases in ACMT results 37
4.2 Non-steady-state migration coefficient (Mn) from ACMT 38
4.2.1 Theoretical approach 38
4.2.2 The chloride ion profile 40
4.2.3 The non-steady-state chloride migration coefficient (Mnc) 42
4.2.4 The non-steady-state chloride migration coefficient (Mni) obtained from the electrical current 50
4.3 Steady-state chloride migration coefficient (Ms) from ACMT 64
4.3.1 Rate of chloride migration (K) 64
4.3.2 The measurement used to determine steady-state chloride migration coefficient (Ms) 69
4.3.3 Steady-state chloride migration coefficient (Ms) 72
4.4 Comparison of the different test methods 76
4.5 Mercury intrusion porosimetry measurements (MIP) 79
4.5.1 Total intrusion pore volume of mercury 80
4.5.2 Measured porosity and critical pore diameter 87
4.5.3 The proportion of pore size distribution 94
4.5.4 Porosity and chloride migration coefficient 99
4.5.5 Critical pore diameter and non-steady-state chloride migration coefficient 103
4.6 Effect of compressive strength on the non-steady-state chloride migration coefficient 105
Chapter 5 Conclusions 107
Chapter 6 Future work 109
Reference 110
1. D. Whiting, “Rapid measurements of chloride permeability of concrete,” Public Roads 45(3) (1981) 101-112.

2. ASTM. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, ASTM C1202-97. American Society for Testing and Materials, 1994.

3. R. Feldman, L. R. Prudencio Jr., G. Chan, “Rapid chloride permeability test on blended cement and other concrete: correlations between charge, initial current and conductivity,” Constr. Build. Mater. 13 (1999) 149-154.

4. C. Andrade, “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements,” Cem. Concr. Res. 23 (1993) 724-742.

5. C. C. Yang, S. W. Cho, R. Huang, “The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test,” Cem. Concr. Res. 32 (2002) 217-222.

6. C. C. Yang, S. W. Cho, “An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials,” Mater. Chem. Phys. 81 (2003) 116-125.

7. C. C. Yang, T. L. Weng, “Using charge passed to determine the chloride diffusion coefficient in mortar from accelerated chloride migration test,” Constr. Build. Mater. 17 (2003) 231-238.

8. L. Tang, L. O. Nilsson, “Rapid determination of the chloride diffusivity in concrete by applying an electrical field,” ACI Mater. J. 89(1992) 49 -53.

9. L. Tong, O. E. Gjorv, “Chloride diffusivity based on migration testing,” Cem. Concr. Res. 31 (2001) 973-982.

10. P. Halamickova, R. J. Detwiler, “Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter,” Cem. Concr. Res. 25 (1995) 790-802.
11. P. K. Mehta, P. J. M. Monteiro, “Concrete structure, properties, and materials,” Prentice-Hall, Inc., New Jersey, (1993).

12. R. Kumar, B. Bhattacharjee, “Porosity, pore size distribution and in situ strength of concrete,” Cem. Concr. Res. 33 (2003) 155-164.

13. T. C. Power, J. Am. Ceram. Soc., 61 (1) (1958) 1-5.; and S. Brunauer, American Scientist, 50 (1) (1962) 210-29.

14. R. F. Feldman, P. J. Sereda, Engineering Journal (Canada), 53 (1970) 53-59.

15. L. Cui, J. H. Cahyadi, “Permeability and pore structure of OPC paste,” Cem. Concr. Res. 31 (2001) 277-282.

16. V. T. Ngala, C. L. Page, L. J. Parrott and S. W. Yu, “Diffusion in cementitious materials: ilfurther investigations of chloride and oxygen diffusion in well-cured OPC and OPC 30% PFA pastes,” Cem. Concr. Res, 25 (1995) 819-826.

17. C. L. Page, N. R. Short, A. EL Tarros, “Diffusion of chloride ions in hardened cement pastes,” Cem. Concr. Res. 11 (3) (1981) 395– 406.

18. S. Mindness, J. F. Young, D. Darwin, Concrete, Prentice Hall, New Jersey, 2003

19. S. Diamond, “Mercury porosimetry: An inappropriate method for the measurement of pore size distribution in cement-based materials,” Cem. Concr. Res. 30 (2000) 1517-1525.

20. B. Zhang, “Relationship between pore structure and mechanicl properties of ordinary concrete under binding fatigue,” Cem. Concr. Res. 28 (1998) 699-711.

21. ASTM. Standard test method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, ASTM C 127-04. American Society for Testing and Materials, 2005.
22. R. A. Cook, K. C. Hover, “Mercury porosimetry of hardened cement pastes,” Cem. Concr. Res. 29 (1999) 933-943.

23. A. Delagrave, J. Marchand, M. Pigeon, “Influence of microstructure on the tritiated water diffusivity of mortars,” Advn. Cem. Bas. Mat. 7 (1998) 60-65.

24. A. A. Ramezanianpour, “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concrete incorporating slag, fly ash or silica fume,” Cem. Concr. Res. 17 (1995) 125-133.

25. D. M. Roy, S. Li, “Investigation of relations between porosity, pore structure, and C1− diffusion of fly ash and blended cement pastes,” Cem. Concr. Res. 16 (1986) 749-759.

26. R. Kumar, B. Bhattacharjee, “Study on some factors affecting the results in the use of MIP method in concrete research,” Cem. Concr. Res. 33 (2003) 417-424.

27. R. Kumar, B. Bhattacharjee, “Assessment of permeation quality of concrete through mercury intrusion porosimetry,” Cem. Concr. Res. 34 (2004) 321-328.

28. B. F. Johannesson, “Diffusion of a mixture of cations and anions dissolved in water,” Cem. Concr. Res. 29 (1999) 1261-1270,

29. R. K. Dhir, E. A. Byars, “PFA concrete: Chloride diffusion rates,” Mag. Concr. Res. 45 (162) (1993) 1 – 9.

30. Z. Li, J. Peng, B. Ma, “Investigation of chloride diffusion for high performance concrete containing fly ash, microsilica and chemical admixtures,”ACI Mater. J. 96 (3) (1999) 391– 396.

31. C. L. Page, N.R. Short, A. EL Tarros, Diffusion of chloride ions in hardened cement pastes, Cem. Concr. Res. 11 (3) (1981) 395– 406.

32. H. Friedmann, O. Amiri, A. Mokhtar, P. Dumargue, “A direct method for determining chloride diffusion coefficient by using migration test,” Cem. Concr. Res. 34 (2004) 1967-1973.

33. C. Andrade, M. A. Sanjuan, “Experimental procedure for the calculation of chloride diffusion coefficients in concrete from migration test,” Adv. Cem. Res. 6 (23) (1994) 127-134.

34. AASHTO Designation: T259-80 (Resistance of concrete to chloride ion penetration,) Washington, DC, 1983.

35. W. Prince, R. Gagne, “The effects of types of solutions used in accelerated chloride migration tests for concrete,” Cem. Concr. Res. 31 (2001) 775-780.

36. C. C. Yang, L. C. Wang, “The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test,” Mater. Chem. Phys. 85 (2004) 266-272.

37. W. Prince, R. Perami, M. Espagen, “Mechanisms involved in the accelerated test of chloride permeability,” Cem. Concr. Res. 29 (1999) 687-694.

38. D. Whiting, “Rapid measurements of chloride permeability of concrete,” Public Roads 45(3) (1981) 101-112.

39. R. Feldman, L. R. Prudencio Jr., G. Chan, “Rapid chloride permeability test on blended cement and other concrete: correlations between charge, initial current and conductivity,” Constr. Build. Mater. 13 (1999) 149-154.

40. J. G. Cabrera, P.A. Claisse, “Measurement of chloride penetration into silica fume concrete,” Cem. Concr. Compos. 12 (1990) 157–161.

41. P. F. McGrath, R. D. Hooton, “Influence of voltage on chloride diffusion coefficients from chloride migration tests,” Cem. Concr. Res. 26 (1996) 1239-1244.

42. R. J. Detwiler, C. A. Fapohunda, A comparison of two methods for measuring the chloride ion permeability of concrete, Cem. Concr. Aggre. 15 (1) (1993) 70– 73.

43. A. M. Brandt, “Cement-based Composites: Materials, Mechanical Properties and Performance,” Chapman & Hall, London, 1995.

44. I. Odler, M. Röβler. “Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration,” Cem. Concr. Res. 15 (1985) 401-410.

45. C. Atzeni, L. Massidda, U. Sanna, Proc. Of 1st Inter. “Con. On Pore Structure and Materials Properties,” Campman and Hall, (1987) 195.

46. R. G. Jenkins, M. B. Rao, “Effect of elliptical pores on mercury porosimetry results,” Powder Technol. 38 (1984) 177– 180.

47. R. A. Cook, K. C. Hover, “Mercury porosimetry of cement-based materials and associated correction factors,” ACI Mater. J. 90 (2) (1993) 152– 161.

48. J. M. Khatib, P. S. Mangat, “Influence of superplasticizer and curing on porosity and pore structure of cement paste,” Cem. Concr. Com. 21 (1999) 431-437.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊