跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信宏
研究生(外文):Hsin-Hung Chen
論文名稱:PH13-8Mo析出硬化型不�袗�之缺口拉伸與疲勞性質
論文名稱(外文):Notch Tensile Properties and Fatigue Crack Growth of PH 13-8 Mo Precipitation Hardening Stainless Steel
指導教授:蔡履文
指導教授(外文):Leu-Wen Tsay
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:86
中文關鍵詞:穿晶破裂殘留沃斯田鐵
外文關鍵詞:sulfide stress corrosion cracking (SSCC)retained austenite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為探討PH 13-8 Mo固溶母材( Solution Annealing,SA )與427℃/4hr ( 800℉)、482℃/4hr ( 900℉)、593℃/4hr ( 1100℉)三組時效溫度處理後,在氣態氫的環境下,對缺口拉伸與疲勞裂縫成長的影響,以及PH 13-8 Mo經CO2二氧化碳氣體雷射銲接後,將銲件( As Welded,AW )施以427℃/4hr ( 800℉ ),482℃/4hr ( 900℉ ),538℃/4hr ( 1000℉ ),593℃/4hr ( 1100℉)四組時效溫度處理,觀察微觀組織與硬度變化,和針對銲道取缺口拉伸試片,並比較在大氣環境與飽和硫化氫水溶液作用下的銲件缺口拉伸性質。
缺口拉伸試驗結果顯示,母材在氣態氫的環境下並不會造成太大強度上的改變,但在氣態氫的疲勞試驗,母材受氫的影響都明顯有加速的現象。銲件缺口拉伸結果顯示,銲件在飽和硫化氫水溶液的作用下,強度皆明顯的下降,尤其以時效強度最高的W900影響最大,而在過時效條件下,對硫化氫的扺抗性則會開始提高,但W試件則保有最高的抗氫脆性。
缺口拉伸破斷面,母材在大氣與氣態氫中以延性的窩穴狀( Dimple )為主,只有在B900試片中,可觀察到脆性的破斷區;而在疲勞試驗中,大氣環境下的疲勞破斷面呈現穿晶為主的破裂模式,氫態氫環境的疲勞破斷面也是穿晶為主,且伴隨大量受氫影響的quasi-cleavage脆性破斷面。銲件大氣環境下的缺口拉伸破斷面,以平坦面破斷( Flat Fracture )和傾斜面( Slant Fracture )破斷為主;在飽和硫化氫水溶中的破斷面則呈現較多受硫化氫影響的平坦面破斷區,且是quasi-cleavage的脆性破斷面。
針對銲件的TEM顯微組織觀察,可明顯看到應是凝固偏析而在銲道內形成大量殘留沃斯田鐵。整體沃斯田鐵含量隨時效溫度提高有先下降再上升趨勢,且沃斯田鐵形貌也會有明顯變化。
The influence of aging treatment on the fatigue crack growth behavior and sulfide stress corrosion cracking (SSCC) of PH 13-8 Mo alloy was investigated in this work. Microstructural observations showed that both the solution-treated alloy and as-welded laser weld revealed lath martensite with a high dislocation density as well as little plate-like retained austenite present at lath boundaries. The obvious increase in specimen’s hardness was associated with the precipitation of ultra-fine precipitates within lath martensite matrix after aging at the temperature range between 426 to 538 ℃. Significant change in austenite quantity and morphology for the specimen aged at the temperature above 593 ℃accounted for the obvious decrease in hardness. Generally, the hardness of the fusion zone was always slightly lower than that of the base metal. Such consequences could be attributed to the segregation of strengthening elements to columnar boundaries during solidification. Regardless of specimens, 482 ℃ aged samples had the highest hardness, whereas the solution-treated alloy or as-welded laser weld had the lowest hardness among the samples.
All aged welds were susceptible to SSCC to various degrees. The high notch tensile strength (NTS) of variously welds aged in the temperature range between 426 ℃ to 538 ℃ was expected to show high susceptibility to SSCC, especially for W900. The extra amount of austenite in the W and W1100 specimens was associated with the resistance to hydrogen embrittlement. Under the same testing condition, the laser weld behaved higher susceptibility to SSCC than that of the counterpart alloy aged at the same temperature.
The FCGR (da/dN) vs. the stress intensity factor range (△K) curves for the PH 13-8 Mo SS after various aging treatments in air showed 426 ℃ and 482 ℃ aged alloy had similar FCGR in air. Moreover, it was apparent that over-aged specimens, especially 593 ℃ aged alloy, showed a higher resistance to crack growth than others. The decrease in FCGR with increasing aging temperature could be attributed to the decline in strength/ brittleness and increase in ductility/fracture toughness of the alloy after aging at high temperature. In case of the alloy tested in gaseous hydrogen, the FCGR was clearly enhanced as compared to the counterpart tested in air. As a whole, the over-aged specimen still showed a higher resistance to hydrogen-accelerated crack growth. Tensile and fatigue fracture appearance for those specimens suffered from hydrogen embrittlement all revealed quasi-cleavage fracture.
第一章 簡介 1
第二章 文獻回顧 2
2-1 PH 13-8 Mo析出硬化型不�袗�之材料性質 2
2-2 雷射銲接原理 3
2-2-1 雷射銲接參數 6
2-3疲勞裂縫成長理論簡介 8
2-3-1 疲勞裂縫成長特性 11
2-3-2 顯微結構對 之影響 11
2-4 氫脆理論簡介 13
2-4-1 氫脆機構 13
2-4-2 氫脆對材料機械性質之影響 17
第三章 實驗方法 32
3-1 實驗材料 32
3-2 雷射銲接 32
3-3 熱處理程序 33
3-4 顯微組織分析及硬度量測 33
3-5 拉伸試驗 34
3-6 疲勞試驗 35
3-7 SEM破斷面分析 38
3-8 TEM 觀察 38
3-9 Ferrite Scope鐵磁性量測 38
3-10 示差式熱量分析儀( DSC ) 39
第四章 結果與討論 47
4-1 顯微組織觀察 47
4-2 硬度試驗 48
4-3-1 PH 13-8 Mo 母材氣態氫環境下之缺口拉伸性質 49
4-3-2 PH 13-8 Mo銲件缺口拉伸性質 49
4-3-3 PH 13-8 Mo 缺口拉伸破斷面觀察 52
4-4-1 PH 13-8 Mo疲勞裂縫成長特性 54
4-4-2 PH 13-8 Mo疲勞裂縫破斷面觀察 55
第五章 結論 81
第六章 文獻回顧 82
1. W.D. Klopp, “Ferrous Alloys PH 13-8 Mo”, Code 1510, 1988, pp.1-33.
2. V. Seetharaman, “Precipitation Hardening in a PH 13-8 Mo Stainless Steel”, Materials Science and Engineering, 47, 1981, pp.1-11.
3. D.H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, K. Hono, “Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al Martensite Precipitation-Hardened Stainless Steel”, Materials Science and Engineering A, 394, 2005, pp.285-295.
4. P.W. Hochanadel, C.V. Robino, G.R. Edwards, M.J. Cieslak, “Heat Treatment of Investment Cast PH 13-8 Mo Stainless Steel: Part1. Mechanical Properties and Microstructure”, Metallurgical And Materials Transactions A, 25A, April, 1994, pp.789-798.
5. P. Munn, B. Andersson, “Hydrogen Embrittlement of PH 13-8Mo Steel in Simulated Real-Life Test and Slow Strain Rate Tests”, Corrosion, 46, 4, April, 1990, pp.286-295.
6. R.R. Gaugh, Armco Steel Corporation, Baltimore, Maryland, “Sulfide Stress Cracking of Precipitation Hardening Stainless Steels”, Material Performance, September, 1977, pp.24-29.
7. B. Pollard ,“Selection of Wrought Precipitation-Hardening Stainless Steels”, In: ASM handbook, 6. ASM International; 1990(3), p482-494.
8. C.E. Albright, “Pulsed CO2 Laser Welding” Proceeding of the ASM, Trends in Welding Research, New Orleans, Louisiana, 1981, pp.653-665.
9. G. Herziger, “The Influence of Laser-Induced Plasma on Laser Material Processing”, Industrial Laser Annual Handbook, PennWell pub., 1986, pp.108-115.
10. R.D. Dixon ,G.K. Lewis, Welding Journal, Vol 64, no3, 1985, pp.71-78.
11. Y. Arata, N. ABE, T. ODA, “Beam Hole Behavior During Laser Beam Welding”, ICALEO’83, pp.59-66.
12. R.S. Arnot, “Plasma Plume Effect in Pulsed Carbon Dixoide Laser Spot Welding”, ICALEO’83, P.51.
13. Y. Arata, T. ODA, R. Nishio, “Effect of Assist Gas on Bead Formartion in High Power Laser Welding”, Transactions of Japan Welding Research Institute, Vol.12, No.2, 1983, P.1.
14. P. J. Oakley, “2 and 5kw Fast Axial Flow Carbon Dioxide Laser Material Processing”, ICALEO‘82, P.120.
15. D.W. Moon, “Some Factor Affecting Penetration in Laser Welding”, ICALEO‘84, P.53.
16. Y. Arata, “Laser Advanced Materials Processing”, Transactions Japan Welding Research Institute, Vol.16, No.2, 1987, P.181.
17. W.B. Estill, “Porosity Decrease in Laser Welds of Stainless Steel Using Plasma Control”, ICALEO‘83, P.67.
18. E. Beyer, W. Gatzweiler, W. Sokolowski, “Plasma Fluctuation in Laser Welding with CW-CO2 Laser”, ICALEO‘87, P.17.
19. K. Minamida, S. Yamaguchi, H., Sakurai, H., Takafuji, “CO2 Laser Welding with Plasma Utilization”, ICALEO‘82, P.65.
20. H.G. Rosen, “InFluence of System Parameters on Laser Materials Processing”, ICALEO’86, p.201.
21. J.M. Darchuk, “The Aspect of Laser Welding”, Spectra-Physics Inc
22. Laser Beam Welding, Metal Handbook, 9th ed, ASM Metal Park, Ohio, 1981,Vol.6, P.647.
23. M.N. Waston, P.J. Oakley, C.J. Dawes, “Laser Welding Techniques and Testing”, Proceeding of the 1st International Conference on Laser in Manufacturing, 1983, IFS pub, P.133.
24. K.W. Carlson, “The Role of Heat Input in Deep Penetration Laser Welding”
25. “Basics of Laser Material Processing”, Electrico-Optical Systems Design, 1976, Nov., pp.69-72.
26. J. Mazumder, “Laser Welding : State of the Art Review”, Journal of Metals, July, 1982, P.16.
27. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚 “工程材料學”,
全華科技圖書股份有限公司
28. C. Laird, in “Fatigue Crack Propagation,” ASTM Spec, Tech, Publ. 415, 1967 pp.131-168.
29. A.A. Griffith Philos. Trans. R. Soc. London, A221, 1920, p.163.
30. G.R. Irwin “ Fracturing of Metal ” American Society for Metals, Clereland, Ohio, 1949, p.147.
31. G.R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate”, ASME, J. Appl. Mech., Vol.24, 1957, P.361.
32. V.J. Colangelo and F.A. Heiser “Analysis of Metallurgical Failure”, 1987.
33. P. Paris and F. Edrogan “ A Critical Analysis of Crack Propagation Laws ” ASME Journal of Basic Engineering, vol.85, No.4, 1963, pp.528-534.
34. “Failure Analysis and Prevention” Metal Handbook, ASM, Vol.10, 1975, pp.110-111.
35. M. Hashimoto and R.M. Latanision, Metallurgical Trans., Vol.19, 1988, pp.2789-2798.
36. C. Zapffe and C. Sims, Trans, AIME, Vol.145, 1941, p.225.
37. A.R. Troianion, Trans. ASM, Vol.52, 1960, p.54.
38. N.J. Petch and Q. Stables, Nature, Vol.169, 1952, p.842.
39. C.D. Beachem, Metall. Trans., Vol.3, 1972, p.437.
40. J.K. Tien, A.W. Thompson, I.M. Bernstein and R.J. Richards, Metall, Trans., Vol.7A, 1976, P.821.
41. G.M. Pressouyre, PHD Thesis, Carnegie-Mellon University, 1972.
42. J.D. Fast, “Interaction of Metals and Gases”, philips Tech. Library, Vol.1, 1965, P.128.
43. A.W. Thompson, “Environment Sensitive Fracture of Engineering Materials”, TMS-AIME, 1979, P.379.
44. N.R. Quick and H.H. Johnson, Acta. Metall, Vol.26, 1978, P.903.
45. T. Toh and W.M. Baldwin, Stress Corrosion Cracking and Embrittlement, edit by W.D. Robertson, John Wiley and Sons, New York, 1956, p.326.
46. R.P. Gangloff, PHD Dissertation, Lehigh University, 1974.
47. V.R. Sawicki, PHD Dissertation, Cornell University, 1971.
48. D.P. Williams and H. G. Nelson, Metallurgical Trans., 1970, Vol.1, p.63.
49. J. D. Frandsen and H. L. Marcus, “Effect of Hydrogen on Behavior of Materials”, A. W. Thompson and I. M. Bernstein, eds., 1976, P.233, TMS-AIME, New York, N.Y.
50. R.A. Oriani, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys”, J.Hochmann, J. Slater and R.W. Staehle. Eds., in press, NACE, Houston, Texas.
51. W.W. Gerberich, Y.T. Chen and C.St. John, “A Short Time Diffusion Correlation for Hydrogen-Induced Crack Growth Kinetics”, Metal. Tran., Vol.6A, No.8, 1975, P.1485.
52. A.W. Thompson, I.M. Bernstein, Adv. Corros. Sci. Tech., Vol.7, 1980, pp.53-175.
53. NACE TM-01-77-86, “Testing of Metals for Resistance to Sulfide Stress Cracking at Ambient Temperature”.
54. A. Saxena and S.J. Hudak, “Review and Extension of Complain Information for Common Crack Growth Specimen”, Internation Journal of Fracture, Vol.4, No.5, Oct. 1978. P.167.
55. L.W. Tsay, W.C. Lee, R.K. Shiue, J.K. Wu, “Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related environments”, Corrosion Science, Vol.44, 9, Sep, 2002, pp. 2101-2118.
56. L.W. Tsay, W.C. Lee, W.C. Luu, J.K. Wu, “Effect of hydrogen environment on the notched tensile properties of T-250 maraging steel annealed by laser treatment”, Corrosion Science, Vol.44, 6, pp. 1311-1327.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top