跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉玉峰
研究生(外文):Yu-Feng Liu
論文名稱:敏化對沃斯田鐵系不�袗�疲勞裂縫成長特性影響研究
論文名稱(外文):The Influence of Sensitization on the Fatigue Crack Growth of Austenitic Stainless Steel
指導教授:蔡履文
指導教授(外文):Leu Wen Tsay
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:77
中文關鍵詞:沃斯田鐵系不�袗�敏化疲勞裂縫成長麻田散鐵
外文關鍵詞:Austenitic stainless steelsensitizationfatigue crack growthmartensite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究為探討304、316及316L不�袗�經敏化前後,在大氣環境及氣態氫環境下疲勞裂縫成長特性。實驗結果顯示,敏化熱處理造成晶界析出物與鉻乏區域對空氣中疲勞裂縫成長速度沒有顯著的影響。在氣態氫試驗環境中,疲勞裂縫成長速度會有不同程度的上升,經由敏化後304不�袗�最為顯著。
大氣條件測試下疲勞裂縫成長破壞特徵皆顯示出穿晶破裂夾雜部分沿晶與沿雙晶界面劈裂。經敏化處理後304 SS及316 SS在氣態氫環境下,沿晶破壞區域會有明顯上升。在氫環境中,由於裂縫尖端應力誘發麻田散鐵變態,將導致未經敏化沃斯田鐵不�袗�產生大量準劈裂破壞特徵致使疲勞裂縫成長加速。經敏化後304 SS及316 SS在氣態氫環境中疲勞裂縫成長,在低強度因子範圍會由於沿晶破壞而導致裂縫成長加速。而316L SS在疲勞裂縫成長過程中,沒有顯著沿晶破壞特徵,沒有顯著加速行為。
The fatigue crack growth test was performed to evaluate the fatigue behavior of AISI 304, 316 and 316L stainless steels (SSs.) specimens with or without sensitization treatment in air or gaseous hydrogen. For the air-tested specimens, the influence of sensitization treatment on the fatigue crack growth rates (FCGR) was found to be minor regardless of test alloys. Hydrogen-enhanced crack growth occurred for all the specimens but to different degrees. With the specimens subjected to sensitization treatment, the remarkable acceleration of crack growth rates had been found in sensitized 304 SS, but reverse results in 316L SS.
For all the specimens tested in air, fatigue fracture appearance of various specimens exhibited mainly transgranular fatigue fracture feature dotted with few intergranular and twin boundary separation. Meanwhile, the extent of intergranular fracture increased obviously for the sensitized 304 SS and 316 SS specimens tested in gaseous hydrogen. Extensive quasi-cleavage fracture related to the formation of stress-induced martensite accounted for the increased FCGR for the un-sensitized austenitic SSs in hydrogen. Accelerated crack growth for the sensitized 304 SS and 316 SS in hydrogen was associated with the intergranular fracture in the low ΔK range.
總 目 錄

摘要
第一章 緒論……………………………………………………………1
1-1 簡介……………………………………………………1
1-2 研究目的………………………………………………1
第二章 文獻回顧………………………………………………………3
2-1 沃斯田鐵系不�袗�熱敏化……………………………3
2-2 沿晶腐蝕理論…………………………………………4
2-3 麻田散鐵相變態………………………………………5
2-3.1 麻田散鐵晶體結構…………………………………6
2-3.2 麻田散鐵剪切變形…………………………………6
2-3.3 麻田散鐵結晶學……………………………………7
2-3.4 麻田散鐵變態溫度…………………………………7
2-3.5 麻田散鐵的型態學…………………………………8
2-4 應變誘發麻田散鐵變態………………………………8
2-5 麻田散鐵變態對疲勞裂縫影響………………………9
2-6 沃斯田鐵系不�袗�材料性質…………………………10
2-7 金屬疲勞………………………………………………12
2-7.1 沃斯田鐵系不�袗�之疲勞裂縫成長………………13
2-8 裂縫閉合效應…………………………………………15
2-9 氫脆理論………………………………………………17
2-9.1 氫對機械性質的影響………………………………18
第三章 實驗設備與方法………………………………………………29
3-1 實驗材料………………………………………………29
3-2 應力消除及敏化熱處理………………………………29
3-3 草酸電解試驗及金相組織觀察………………………29
3-4 疲勞裂縫成長試驗……………………………………30
3-5 破斷面觀察……………………………………………31
3-6 磁性量測與X-Ray繞射………………………………32
第四章 結果與討論……………………………………………………35
4-1.1 沃斯田鐵系不�袗�金相顯微組織及硬度…………35
4-1.2 疲勞裂縫成長試驗…………………………………35
304母材之疲勞裂縫成長特性……………………35
304敏化試片之疲勞裂縫成長特性………………38
316母材之疲勞裂縫成長特性……………………39
316 敏化試片之疲勞裂縫成長特…性……………40
316L 母材之疲勞裂縫成長特性…………………42
316L 敏化試片之疲勞裂縫成長特性……………43
第五章 結論……………………………………………………………72
第六章 文獻回顧………………………………………………………73



圖 目 錄

圖 2.1 Fe-18Cr-8Ni相圖,碳原子固溶線…………………………20
圖 2.2 麻田散鐵體心正方晶體的三組八面格隙示意圖……………21
圖 2.3 碳含量對沃斯田鐵及麻田散鐵晶格常數之影響……………21
圖 2.4 沃斯田鐵轉變成麻田散鐵的晶格對應(a)沃斯田鐵內的正方單位細胞(b)形成麻田散鐵晶格形變(Bain應變)產生的c/a 比……21
圖 2.5 形成麻田散鐵葉片之剪切變形與表面傾斜示意……………22
圖 2-6 鐵碳合金中碳含量對麻田散鐵起始溫度(Ms)形式相對量及殘留沃斯田鐵量之影響……………………………………………………22
圖 2-7 碳含量對Ms 及Mf 之影響示意圖……………………………22
圖 2-8 應變誘發麻田散鐵之自由能圖………………………………23
圖 2-9 鐵碳平衡相圖…………………………………………………24
圖 2-10 含5%Cr 時的Fe-C-Cr 相圖…………………………………25
圖 2-11 含13%Cr 時的Fe-C-Cr 相圖………………………………25圖 2-12 裂縫尖端之應力場…………………………………………26圖 2-13 裂縫成長曲線………………………………………………26圖 2-14 氫脆破壞的過程中,氫的來源與傳遞方式以及可能聚集地方和所造成的破壞形式…………………………………………………27
圖 2-15 裂縫尖端之氫脆過程………………………………………28
圖 3-1 ASTM A262 Practice A 草酸電解之三種基本表面構造…33
圖 3-2 疲勞裂縫成長試驗試片詳細尺寸圖…………………………34
圖 4-1 沃斯田鐵系不�袗�母材與敏化熱處理試片金相組織………46
圖 4-2 沃斯田鐵系不�袗�母材與敏化熱處理試片SEM微觀金相組織…………………………………………………………………………47
圖 4-3 沃斯田鐵系不�袗�母材於大氣(BM-Air)、氣態氫(BM-H2)疲勞裂縫成長特性曲線圖…………………………………………………48
圖 4-4 304 SS經敏化後鄰近疲勞裂縫破壞表面TEM微結構(a)明視野(b)暗視野……………………………………………………………
圖 4-5 304不�袗�母材大氣與氣態氫環境中疲勞斷面X-ray繞射圖…………………………………………………………………………49
圖 4-6 大氣環境中304不�袗�母材疲勞裂縫破斷面………………50
圖 4-7 304不�袗�母材於氣態氫環境疲勞裂縫破斷面……………52
圖 4-8 304不�袗�母材(BM)及敏化處理後試片(BMA)於大氣、氣態氫疲勞裂縫成長特性曲線圖………………………………………………53
圖 4-9 大氣環境下304不�袗�經敏化處理試片疲勞裂縫破斷面…55
圖 4-10 304不�袗�母材及敏化處理後試片疲勞裂縫壞面巨觀……56
圖 4-11 304 SS敏化處理試片在氫環境中疲勞裂縫破斷面………57
圖 4-12 316不�袗�母材於大氣下疲勞裂縫破斷面…………………58
圖 4-13 316不�袗�母材於氣態氫下疲勞裂縫破斷面………………59
圖 4-14 316不�袗�母材(a)於大氣環境下疲勞裂縫行進路線, (b)氫環境試驗下試片…………………………………………………………60
圖 4-15 316不�袗�母材於大氣環境下及氣態氫環境試驗下表面粗糙度量測……………………………………………………………………61
圖 4-16 316不�袗�母材(BM)及敏化處理後試片(BMA)於大氣、氣態氫疲勞裂縫成長特性曲線圖……………………………………………62
圖 4-17 316不�袗�敏化後試片於氣態氫環境下疲勞破斷面………63
圖 4-18 316不�袗�母材及敏化處理後試片於疲勞裂縫壞面巨觀…64
圖 4-19 316L不�袗�母材於(a)大氣環境及(b)氣態氫環境疲勞裂縫破斷面……………………………………………………………………65
圖 4-20 316L不�袗�母材疲勞裂縫壞面巨觀………………………66
圖 4-21 316L不�袗�母材及敏化處理後試片於大氣(BM-Air)、氣態氫(BM-H2)疲勞裂縫成長特性曲線圖…………………………………67
圖 4-22 316L不�袗�疲勞裂縫行進路線(a)母材於氫環境下, (b)敏化試片氫環境試驗下……………………………………………………68
圖 4-23 316L不�袗�於氫環境下母材與敏化試片表面粗糙度量測…………………………………………………………………………69
圖 4-24 316L不�袗�經敏化後於(a)大氣環境及(b)氣態氫環境疲勞裂縫破斷面………………………………………………………………70
圖 4-25 316L不�袗�母材及敏化處理後試片於疲勞裂縫壞面巨觀
……………………………………………………………………………71


表 目 錄

表 3-1 沃斯田鐵系不�袗�化學成分表………………………………33
表 4-1 沃斯田鐵系不�袗�平均硬度值(Hv)…………………………45
表 4-2 Ferrite-scope量測疲勞破斷面鐵磁性相含量……………49
表 4-3 X-ray量測疲勞破壞表面麻田散鐵含量(α/γ)……………54
表 4-4 沃斯田鐵系不�袗�依化學經驗式計算出的Md30溫度………54
1.W.Lin, J.C. Lippold and W.Baeslck III, “Welding research suppement”, 1993, P.135-153.
2.F.G. Wilson, “Mechanism of intergranular corrosion of austeniticstainless steels--literature review”, British Corrosion Journal, Vol.6, 1971, p.100.
3.V. Cihal, “Intergranular corrosion of steels and alloys”, Elsevier, New York, 1983, p.79.
4.E. C. Brain, R. H. Abron and T. J. M. Rutherford,Trans. Am. Soc. Steel Treat., Vol.21, 1933, p.481.
5.K. Oszawa and H. J. Engell, “The anodic polarization curves of Iron-Nickel-Chromium alloys“, Corrosion Science, Vol.6, 1966 p.389.
6.P. Chung and Z. Szklarska-Smialowski,Corrosion, Vol.37, 1981, P.39.
7.A. B. Kinzell, J. Metals, N. Y., Vol.4, 1952, p.469.
8.A. B. Kinzell, Trans. Met. Soc. AIME, Vol.194, 1952, p.469.
9.R. F. Hanneman, and K. T. Anst, Scr. Inotall., Vol.2, 1968, p.235.
10.J. S. Armijo, “Impurity adsorption and intergranular corrosion of austenitic stainless steel in boiling HNO3- K2Cr2O7 solutions, Corrosion Science, Vol.7,1967, p.143.
11.J. S. Armijo, “Intergranular corrosion of nonsensitizized austenitic stainless steels”, Corrosion. Science., Vol.24, 1968, p.24.
12.K. Mills et al. (editors), Metals Handbook 9th, Vol. 9, American Society for Metals, Metals Park, Ohio, 1985, p.668.
13.G. Krauss, STEELS:Heat Treatment and Processing Principles, 1990, p.351 and p.43.
14.W K Honeycombe & H K D H Bhadeshia STEELS, Microstructure and Properties 2nd edition, 1995, p.38.
15.M. Cohen, The Strengthening of Steel, Trans TSM-AIME, Vol 224, 1962, p.638.
16.R.H. Aborn, Low Carbon Martensites, Trans ASM, Vol 48, 1956, p.51.
17.J.W. Christian, in Martensite Fundamentals and Technology, E.R. Petty(Ed.), Longman, London, 1970, p.13.
18.G. Krauss, Principles of Heat treatment of Steels, American Society for Metals, 1980, p.43.
19.G. R. Speich, Met. Trans. Vol 3, 1972, p.1045.
20.G. R. Speich, Trans. TMS-AIME, Vol.245, 1969, P.2553.
21.Young Won Chang, Tae Kwon Ha, and Hong Chul Shin, Vol.45, 2001, P.823-829.
22.T. Angel, “J. Iron Steel Inst.”, Vol.177, 1954, P.165-174.
23.J. H. Huang and C. J. Altstetter, Metall. Trans. A, Vol.22, 1991, P.2605-2618.
24.J. Stolarz, N. Baffie, and T. Magnin, Mater. Sci. Eng., Vol.A319, 2001, P.512-526.
25.Mei Z. and Morris J. W., Metall. Trans. A, Vol.21, 1990, P.3137.
26.K. Rajanna, Eng. Fract. Mech., Vol.54, 1996, P.166.
27.A.G. Pineau and R. M. Pelloux, Metall. Trans., Vol.5, 1974, P.1103-1112.
28.Robert E. Reed-Hill, Physical Metallurgy Principles, 3rd ed., 1994, p.590.
29.R.W. Cahn, P.Haasen, E.J. Kramer, Materials Science and Technology A, Comprehensive Treatment, Vol 7, 1991, p.615.
30.島田鐵也, 山本章夫, 阿部征三郎, The Effect of Nitrogen Content on Material Properties of High Carbon Stainless Steel SUS 440A, Vol 82, 1996, p.49.
31.A.A Griffith, Philos. Trans. R. Soc. London, Vol.A221, 1920, P.163 (This article has been republished with additional commentary in Trans. Am. Soc. Metals, Vol.61, 1968, P.871.)
32.G. R. Irwin, “Fracturing of Metals”, American Society for Metals, Cleveland, Ohio, 1949, P.147.
33.G. R. Irwin, ASME, J. Appl. Mech., Vol.E24, 1957, P.361.
34.R. O. Ritchie, International Metals Reviews, Vol.24, No.5&6, 1979, P.205.
35.P. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws”, ASME Journal of Basic Engineering, Vol.85, No.2, 1963, P.528.
36.Schuster G. and Altstetter C., Metall. Trans. A, Vol.14, 1983, P.2077-2084.
37.Singh S. and Altstetter C., Metall. Transa. A, Vol.13A, 1982, P.1799-1808.
38.C. L. Briant, Metall. Trans. A, Vol.10, 1979, P.181-189.
39.Rozenak P., J. of Mats. Sci. letters, Vol.9, 1990, P.177-180.
40.G. Han, J. He, S. Fukuyama and K. Yokogawa, Acta Metall., Vol.46, 1998, P.4559-4570.
41.Narita N. and Birnbaum H. K., Scripta Metall., Vol.14, 1980, P.1355-1358.
42.S. Suresh, R. O. Ritchie, “Propagation of Short Fatigue Crack”, International Metallurgical Reviews, Vol. 29, 1983, p.445-476.
43.W. Elber, “Fatigue Crack Propagation”, Ph. D. Thesis, University of New South Wales, Australia, 1968.
44.W. Elber, “Fatigue Crack Closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, p.37-45.
45.W. Elber, “In Damage Tolerance in Aircraft Structure”, ASTM STP 486, American Society for Testing and Materials, Philadelphia, PA, 1971, p.230-242.
46.C. Zapffe and C. Sims, Trans. AIME, Vol.145, 1941, P.225.
47.A. R. Troianio, Trans.ASM, Vol.52, 1980, P.54.
48.N. J. Petch and P. Stables, Nature, Vol.169, 1952, P.842.
49.P. Batien and P. Azou, Proc. Of World Met. Cong., 1st., ASM, 1951, P.535.
50.J. K. Tien, A. W. Thompson, I. M. Bernstein and R. J. Richards, Metall, Trans., Vol.7A, 1976, P.821.
51.G. M. Pressouyre, PhD Thesis, Carnegie-Mellon University, 1972.
52.A. W. Thompson, “Environment Sensitive Fracture of Engineering Materials”, TMS-AIME, 1979, P.379.
53.R. P. Gangloff and R. P. Wei, “Gases Hydrogen Embrittlement of High Strength steels”, Metal. Trans., Vol.8A, 1977, P.1043.
54.R. P. Gangloff, PhD Dissertation, Lehigh University 1974.
55.R. A. Oriani, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys”, J.Hochmann, J. Slater and R. W. Staehle. Eds., in press, NACE, Houston, Texas.
56.W. Gerberich, Y. T. Chen and C. St. John, “A Short Time Diffusion Correlation for Hydrogen-Induced Crack Growth Kinetics”, Metal. Tran., Vol.6A, No.8, 1975, P.1485.
57.Bungardt, K., Kunze, E., and Horn, E., Investigation of the Structure of the Iron-Chromium-Carbon System, Archiv fur das Eisenhwn, Vol 29, 1958, p.193.
58.ASTM A262-93a Practice A Oxalic Acid Etch Test
59.L. W. Tsay, M. C. Young and C. Chen, “Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen”, Corr. Sci.
60.C.Pan, Y.J. Su,W.Y. Chu,Z.B. Li, D.T. Liang and L.J. Qiao, Hydrogen embrittlement of weld metal of austenitic stainless steels, Corrosion Science, 2002, 1983-1993
61.A. J. Mcevily and J. L. Gonzalez Velazquez, Metall. Trans. A, Vol.23, 1992, P.2211-2221.
62.W.C Cheng, C.F Liu, Y.F Lai, Scripta Mat., vol. 48, 2003, p.295-300.
63.L.W. Tsay, Y.C. Liu, D.-Y Lin and M.C. Young, The use of laser surface-annealed treatment to retard fatigue crack growth of austenitic stainless steel, Materials science and engineering A, 2004, P.177-183.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top