跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳振欣
研究生(外文):Cheng-Hsin Cnen
論文名稱:高分子應用對於水泥質材料性質影響之研究
論文名稱(外文):Effect of Polymer Utilization on the Properpies of Cement-based Materials
指導教授:黃然黃然引用關係吳建國吳建國引用關係
指導教授(外文):R.HuangJ.K. Wu
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:180
中文關鍵詞:高分子注膠混凝土高分子改質混凝土起始劑浸漬時間聚合溫度單體配比環氧樹脂/玻纖粉
外文關鍵詞:PICPMCinitiatorsoaking timepolymerization temperaturemonomer mixtureE/G particle
相關次數:
  • 被引用被引用:7
  • 點閱點閱:529
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:1
摘 要

本研究旨在利用材料性質試驗探討高分子注膠混凝土、高分子改質混凝土及樹脂/玻纖粉混凝土的製程與特性。試驗變數包括高分子浸漬溶液配比、注膠溫度與時間、單體添加比例、及樹脂/玻纖粉使用量。試驗項目包括SEM微觀觀察、MIP孔隙系統量測、力學性質試驗、吸水率與吸水速率試驗、及氯離子穿透試驗等。
SEM觀察結果顯示 PMMA聚合體連結成線型,PEGDMA聚合體連結成片型,PTMPTMA聚合體連結成塊型;混合單體的聚合體仍維持原連結型態;添加30%EGDMA及TMPTMA的試體,其聚合體片狀與塊狀結構較添加15% 試體明顯。水灰比0.45及0.65的試體在常溫下,浸漬混合溶液中12小時後,單體以 70~80℃的水浴聚合6小時,PIC試體的抗壓強度、劈裂抗拉強度、彈性模數及表面電阻率皆比控制組為高;而表面吸水率明顯下降。MIP量測結果顯示高水灰比試體的注膠填充效益較高;注膠試體的臨界孔徑約為50nm,未注膠試體的臨界孔徑約為10nm。添加量5% MMA 的PMC試體,其抗壓強度提高較為明顯; PMC試體的6-hour累積電量及氯離子擴散係數均較控制組低,此顯示適當添加高分子材料能有效提高混凝土的抗壓強度及抵抗氯離子在孔隙中傳輸速率; SEM微觀照片亦顯示聚合體填充混凝土孔隙或形成薄膜與水化生成物C-S-H粘結的現象。由於E/G particle粒徑較小,取代細粒料20% 的配比,必須添加強塑劑,而取代細粒料30% 的配比,即使添加強塑劑亦無法獲致適當的工作性。取代細粒料20%試體其抗壓強度、劈裂抗拉強度及彈性模數均較控制組高,其中又以水膠比0.8的試體較為明顯;此因E/G particle中含有相當比例的二氧化矽,且粒徑多小於150μm,添加於混凝土中可產生類似卜作嵐反應之粘結效能或可作為超微細的填充粉料。另外,E/G particle試體與控制組試體比較,其超音波速、表面電阻率及抵抗硫酸鹽侵蝕能力均提高,而表面吸水率則降低。

關鍵字:高分子注膠混凝土、高分子改質混凝土、起始劑、浸漬時間、聚合溫度、單體配比、環氧樹脂/玻纖粉
Abstract

This study is aimed to investigate the effect of polymer application on the properties of cement-based materials using material testing method. Testing variables include monomer mixture, impregnation temperature and duration, dosage of MMA monomer, and the application amount of E/G particles. Testing program includes SEM observation, MIP measurements, strength tests, absorption and sorptivity tests, and chloride ion penetration test, etc.
SEM microscopy indicates PMMA connects as a linear structure, PEGDMA as a planar structure, and PTMPTMA as a block structure. Specimens with 30% EGAMA or TMPTMA have higher planar or block structures than the specimens with 15% addition. PIC specimens immersed in monomer mixture for 12 hours and polymerized in 70~80℃ water for 6 hours have higher compressive strength, splitting tensile strength, elastic modulus, and resistivity than the control specimens.
MIP results reflect that the filling effect of polymer is more prominent in higher water/ratio specimens and the critical pore diameter for PIC specimens is about 50 nm, which is much larger than that of the control specimen (10 nm). The 6-hour accumulated total charge passed and chloride diffusion coefficient of PMC specimens is much lower than those of normal concrete specimens. Polymer modification appears to be effectively to reduce the porosity and minimize the pore size of cement-based composites. The workability of E/G particle concretes are adversely affected by the fine particle size and suitable super-plasticizer should be added in E/G1 and E/G2 mixes. Specimens with 20% E/G particle addition have better quality in comparison with normal specimens, which may result from the filling effect of fine particle or reaction of SiO2 from E/G particle. In general, E/G particle concrete specimens have higher ultrasonic velocity, resistivity, sulfate resistance, and lower absorption than the specimens without E/G particle addition.

Keywords:PIC, PMC, soaking time, polymerization temperature, monomer mixture, initiator, E/G particle
第一章 緒 論 1
1.1 研究緣起與背景 1
1.2 研究目的 4
1.3 研究方法及流程 5
1.4論文架構 6
第二章 文獻回顧 7
2.1高分子應用於混凝土方式 7
2.1.1高分子注膠混凝土 7
2.1.2高分子改質混凝土 11
2.1.3高分子混凝土 13
2.2高分子應用在混凝土沿革 14
2.2.1高分子注膠混凝土 14
2.2.2高分子改質混凝土 16
2.2.3高分子混凝土 17
2.3高分子應用於混凝土的製程 18
2.3.1高分子注膠混凝土 18
2.3.2高分子改質混凝土 20
2.3.3高分子混凝土 21
2.4高分子應用於混凝土的性質 22
2.4.1高分子注膠混凝土 22
2.4.2高分子改質混凝土 24
2.4.3高分子混凝土 26
2.5 高分子注膠混凝土應用例 28
2.6廢棄塑料再利用於混凝土 30
第三章 試驗計畫 32
3.1 試驗變數 34
3.2組成材料性質與配比設計 35
3.3試驗設備 54
3.4 試驗方法 60
第四章 結果與討論 68
4.1浸漬溶液組合的注膠試體SEM觀測結果 68
4.1.1浸漬溶液組合與注膠量關係 76
4.1.2單體組合與注膠深度關係 78
4.1.3單體組合與抗壓強度關係 79
4.2高分子注膠混凝土製程試驗結果 82
4.2.1 高分子注膠混凝土聚合時間、注膠量及注膠深度 82
4.2.2高分子注膠混凝土力學性質 88
4.2.3高分子注膠混凝土表面吸水率與表面電阻率 98
4.2.4高分子注膠混凝土孔隙結構觀測 102
4.3添加高分子水泥質材料試驗結果 108
4.3.1添加高分子水泥質材料抗壓強度 108
4.3.2添加高分子水泥質材料表面吸水率及吸水速率 109
4.3.3添加高分子水泥質材料氯離子傳輸性質試驗 111
4.3.4添加高分子水泥質材料SEM觀測 116
4.3.4添加高分子於水泥質材料反應機理影響 120
4.4廢棄塑料再利用於混凝土試驗結果 124
4.4.1廢棄塑料再利用於混凝土力學性質 125
4.4.2廢棄塑料再利用於混凝土其它特性 135
第五章結論與建議 141
5.1結論 141
5.2建議 143
參考文獻 145
附 錄 161
參考文獻
1. P. K. Mehta, P. J. M. Monteiro,“Concrete”, 2nd edition, Prentice Hall, pp. 1 (1983)
2. P. C. Aitcin, N. Adam, “High Performance Concrete Demystified,” ACI. Journal: Concrete International Vol. 15, No.1, (1993).
3. A. Kmita, “A new generation of concrete in civil engineering”, Journal of Materials Processing Technology, Vol.106, pp.80-86 (2000)
4. K. Flagaq, “Advances in materials applied in civil engineering”, Journal of Materials Processing Technology, Vol.106, pp.173-183 (2000)
5. W. Z. Zhu, C. Gibbs. John, J. M. Bartos. Peter, “Uniformity of in situated properties of self-compacting concrete in full-scale structure elements”, Cement and Concrete Composites, Vol. 23, pp. 57-64 (2001)
6. B. Mather, “Concrete durability”, Cement and Concrete Composites, Vol. 26, pp. 3-4 (2004)
7. C. C. Yang, R. Huang, “Double Inclusion Model for Approximate Elastic Moduli of Concrete Material”, Cement and Concrete Research, Vo1.26, No. 1, pp. 83-91 (1996)
8. Y. Ohama, “Recent Progress in Concrete-Polymer Composites”, Advanced Cement Based Material, Vol.5, pp. 31-40 (1997)
9. D. W. Fowler, “Polymers in concrete: a vision for the 21st century”, Cement and Concrete Composites, Vol.21, pp. 449-452 (1999)
10. Y. Ohama, “Polymer-based admixtures”, Cement and Concrete Composites, Vol.20, pp. 189-212 (1998)
11. P. S. Mangat, M. K. Limbachiya, “Repair material properties which influence long-term performance of concrete structures”, Construction and Building Materials, Vol.9, pp.81-90 (1995)
12. “Polymer in Concrete”, American Concrete Institute Committee 548, 1R-1 Report (1992)
13. M. Steinberg, L. E. Kukachka, P. Colombo, J. K. Kelsch, B. Manowitz, J. Dikeou, J. Backstrom, Rubenstein, “Concrete Polymer Material”, First Topical Report. BNL 50134(T-509), pp. 83 (1968)
14. T. Sebok, O. Stranel, “Wear resistance of polymer-impregnated mortars and concrete”, Cement and Concrete Research, Vol.34, pp. 1853-1858 (2004)
15. R. F. Feldman, J. J. Beaudoin, “Studies of composites made by Impregnate of polymethyl methacrylate in Portland cement porous bodies”, Cement and Concrete Research, Vol.7, pp. 19-30 (1977)
16. J. J. Chen, D. Zampini, A. Walliser, “High-pressure epoxy-impregnated cementitious materials for microstructure characterization”, Cement and Concrete Research, Vol. 32,pp.1-7 (2002)
17. A. Çolak, “Characteristics of acrylic latex-modified and partially epoxy-impregnated gypsum”, Cement and Concrete Research, Vol. 31, pp. 1539-1547 (2001)
18. S. Orak, “Investigation of vibration damping on polymer concrete with polyester resin”, Cement and Concrete Research, Vol. 30, pp. 171-174 (2000)
19. M. Rahman, M. A. Mansur, L. K. Lee, J. K. Lum, “Development of a polymer impregnated concrete damping carriage for linear guide ways for machine tools”, International Journal of Machine Tools and Manufacture, Vol.41, pp. 431-441 (2001)
20. O. Figovsky, D. Beilin, N. Blank, J. Potapov, V. Chernyshev,“Development of polymer concrete with polybutadiene matrix”, Cement and Concrete Composites, Vol.18, pp. 437-444 (1996)
21. C. A. William, “Enhanced polymer concrete composition”, Geothermics, Vol.24, pp. 773 (1995)
22. Office of Solid Waste and Emergency Response, “Characterization of Municipal Solid Waste in the United States”, Update (EPA/530-SW-90-042), Environmental Protection Agency (1990)
23. L. Bertolini, M. Carsana, D. Cassago, A. Q. Curzio, M. Collepardi, “MSWI ashes as mineral additions in concrete”. Cement and Concrete Research, Vol.34, pp.1899-1906 (2004)
24. K. L. Lin, K. S. Wang, B. Y. Tzeng, C. Y. Lin, “The reuse of municipal solid waste incinerator fly ash slag a cement substitute”, Resources Conservation and Recycling, Vol. 39,pp.315-324 (2003)
25. W. J. Huang, S. C. Chu, “A study on the cementlike properties of municipal waste incineration ashes”, Cement and Concrete Research, Vol. 33,pp.1795-1799 (2003)
26. Ì. B. Topçu, A. Uğurlu, “Effect of the use of mineral filler on the properties of concrete”, Cement and Concrete Research, Vol. 33,pp.1071-1075 (2003)
27. N. B. Singh, K. N. Bhattacharjee, A. K. Shukla, “Effect of alkali bypass dust on the hydration of granulated blast furnace slag blended cement”, Cement and Concrete Research, Vol. 25,No.4, pp. 883-892 (1995)
28. I. Rouseková, A. V. Živica, “Silica fume-basic blast furnace slag systems activated by an aikali silica fume activator”, Cement and Concrete Research, Vol.27, No.12, pp.1825-1828 (1997)
29. A. Rai, J. Prabakar, C. B. Raju, R. K. Morchalle “Metallurgical slag as a component in blended cement”, Construction and Building Materials, Vol. 16,pp.489-494 (2002)
30. E. Gűneyisi, M. Gesoğlu, T. Özturan, “Properties of rubberized concrete containing silica fume”, Cement and Concrete Research, Vol. 34,pp.2309-2317 (2004)
31. E. Forssberg, J. Cui, “mechanical recycling of waste electric and electronic equipment: a review”, Journal of Hazardous Materials B99, pp.243-263 (2003)
32. H. M. Veit, T. R. Diehl, A. P. Salami, J. S. Rodrigues, A. M. Bernardes, J. A. S. Tenório, “Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap”, Waste Management, Vol.25, pp.67-74 (2005)
33. M. S. Wei, K, H. Huang “Recycling and reuse of industrial wastes in Taiwan”, Waste Management, Vol. 21,pp.93-97 (2000)
34. H. Alter “The origins of municipal solid waste: Ⅱ Policy options for plastics waste management”, Waste Management and Research Vol.11, pp.319-332, (1993)
35. B, K, Lee, M. J. Ellenbecker, R. Moure-Eraso, “Analyses of the recycling potential of medical plastic wastes”, Waste Management, Vol.22, pp.461-470, (2002)
36. 林建中, “應用高分子化學”, 高立出版社, pp. 15-19 (1981)
37. S. Mindess, J. F. Young,“Concrete”, Prentice Hall, NJn, (1981)
38. P. Yimprasert, “Durability, Strength, and Method of Polymer Impregnated Concrete for Slabs ”, Dissertation of University of Texas, (1975)
39. A. Blaga, J. J. Beaudoin,“Polymer Concrete”, National Research Council Canada, Canadian Building Digest, CBD-242, (1985)
40. G. Eam, “polymer impregnated cement pastes with methyl acrylate”, Silicates Industriels, Vol.64, pp.81-85 (1999)
41. E. J. Dahl, W. F. Chen, J. W. Vanderhoff, Y. N. Liu, “Polymer Impregnated Concrete:Laoratory and Field Studies”, Fritz Engineering Laboratory Report No. 390.6, Lehigh University, (1974)
42. 李育德, 顏文義, 莊祖惶, “高分子物性” 高立出版社, pp. 1-18, (1988)
43. “The Cosmo of Acrylic”, Kaohsiung Monomer CO, LTD, pp.3-15
44. Y. Ghi. Phuong, J. T. Hill. David, H. O.,Donnel. James, J. Pomery. Peter, K. Whittaker. Andrew, “The Copolymerisation of Tetrahydrofurfuryl Methacrylate and Methyl Methacrylate”, Polymer Gels and Networks, Vol. 4, pp. 253-267 (1996)
45. B. Vazquez, C. Elvira, J. S. Roman, B. Levenfeld, “Reactivity of a polymerizable amine activator in the free radical copolymerization with methyl methacrylate and surface properties of copolymers”, Polymer, Vol. 38, No. 17, pp. 4365-4372 (1997)
46. H. Jianwei, A. W. Charles, W. Jianqi, “An XPS investigation of thermal degradation and charring of cross-linked polyisoprene and polychloroprene”, Polymer Degradation and Stability, Vol. 71, pp. 305-315 (2001)
47. W. G. Kim, J. Y. Lee, “Cure kinetics of methacrylate-type resin that include cyclohexane moiety”, Polymer, Vol. 44, pp. 6303-6309 (2003)
48. Muth, T. h. Hirth, H. Vogel, “Polymer modification by supercritical impregnation”, Journal of Supercritical Fluids, Vol. 17, pp. 65-72 (2000)
49. I. Francoise, A. G. C. Peter, C. S. David, “Facile synthesis of branched polymethyl methacrylate”, Journal Material Chemical, Vol.13, No.11, pp.2701-2710 (2003)
50. L. Chen, S. Yang, X. Lin, S. Liu, D. Wang, A. Yu, S. He, “Complexes and IPN of CO2 Copolymers”, Polymers for Advanced Technologies, Vol. 12, Issue 11-12, pp.687-692 (2001)
51. N. Silikas, A. Al-Kheraif, D. C. Watts, “Influence of P/L ration peroxide/amine concentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterial formulations”, Biomaterials, Vol. 26, pp. 197-204 (2005)
52. H. A. Youssef, Z. I. Ali, A. H. Zahran. “Electron beam structure modification of poly (vinyl chloride)-wire coating”, Polymer Degradation and Stability, Vol. 74, pp. 213-218 (2001)
53. “混凝土實用手冊”, 中國建築科學研究院, 混凝土研究院, pp. 809-831, (1995)
54. A. Pratap, “Vinyl ester and acrylic based polymer concrete for electrical application”, Progress in Crystal Growth and Characterization of Materials, pp.117-125 (2002)
55. 李育德, 顏文義, 莊祖惶, “高分子物性” 高立出版社, pp. 1-18, (1988)
56. Y. Ohama, “Sustainable construction materials in Japan”, Proceedings Van Cauterenleerstoel, Constructure Materials and Environment, K.U.Leuven, 27 November (1996)
57. Y. Ohama, “Handbook of polymer modified concrete and moryar”, Properties and Process Technology, Noyes Publications (1995)
58. D. V. Gemert, A. Beeldens, S. Ignoul, K. Brosen,“Research and Development in design and application of concrete-polymer composites in Europe”, Proceedings of the First International Conference on Innovative Materials and Technologies for Construction and Restoration Lecce 6-9 June, pp. 543, (2004)
59. P. Seidler, Proceedings International Congresses, Industrial floors 1987.1991,1995,1999,2003,Ed.P, Seidler, Fraunhofer Verlag, Stuttgart
60. M. Steinberg,“Concrete Polymer Materials and Its Worldwide Developments,”SP 40-1, Polymer in Concrete, American Concrete Institute, SP-40, pp 1-13, (1972)
61. 高健章, 李敏達,“注膠混凝土在國內工程應用之研究”, 科學發展月刊, Vol. 5, No.6, pp. 458-477, (1977)
62. A. Blaga, J.J.Beaudoin,“Polymer Modified Concrete”, National Research Council Canada, Canadian Building Digest, CBD-242, (1985)
63. ACI Committee 548 Journal of the American Concrete Institute, Vol. 83, pp.798-829 (1986)
64. D. W. Fowler, Y. Huang, K. Wu, Z. Chen, In Polymer in concrete, Proceedings of the 6th International Congress on Polymers in Concrete, International Academic Publishers, Beijing, pp.10-17 (1990)
65. P. J. R. O. NòVOA, M. C. S. Ribeiro, A. J. M. Ferreira, A. T. Marques, “Mechanical characterization of lightweight polymer mortar modified with cork granulates”, Composites Science and Technology, Vol.64, pp.2197-2205 (2004)
66. ACI Committee 548, “Guide for polymer concrete overlays”, ACI 548:5R, Detroit: American Concrete Institute, pp.1-26(1998)
67. ACI Committee 548, “Polymer concrete structural applications state of the art report”ACI 548:6R, Detroit: American Concrete Institute, pp.1-23 (1996)
68. L. C. Muszynski,“Polymer concrete”, In encyclopedia of polymer science and engineering, New York: Wiley, Vol.12, pp.462-470 (1988)
69. V. V. L. K. Rao, S. Krishnamoorthy, “Influence of resin and microfiller proportions on strength, density and setting shrinkage of polester polymer concrete”, ACI Structure Journal, Vol.95, pp. 153-162 (1998)
70. Y. A. Abdel-Jawad, W. S. Abdullash, “Design of maximum density aggregate grading”, Construction and Building Materials, Vol.16, pp.495-509 (2002)
71. M. Muthukumar, D. Mohan, “Studies on polymer concretes based on optimized aggregate mix proportion”, European Polymer Journal, Vol.40, pp. 2167-2177 (2004)
72. L. Basunbul, A. A. Gulati, G. J. Al-Sulaimani, M. Maluch, “Repaired reinforced concrete beams”, ACI Materials Journal, Vol.87, No. 4, pp. 348-354 (1990)
73. M. El-Hawary, H. Al-Khaiat, S. Fereig, “Performance of epoxy repaired concrete in a marine environment”, Cement and Concrete Research, Vol.30, pp. 259-266 (2000)
74. K. Kienow, H. C Allen,“Concrete pipe for sanitary sewers: corrosion protection update”, Proceedings of Pipeline Infrastructure Ⅱ, ASCE, pp. 229-250 (1993)
75. E. Vincke, E. V. Wanseele, J. Monteny, A. Beeldens, N. D. Belie, L. Taerwe, D. V. Gemert, W. Verstraete, “Influence of polymer addition on biogenic sulfuric acid attack of concrete ”, International Biodeterioration&Biodegradation, Vol.49, pp.283-292 (2003)
76. K. T. Varughese, B. K. Chaturvedi, “Fly ash as fine aggregate in polyester based polymer concrete”, Cement and Concrete Research, Vol.18, pp. 105-108 (1996)
77. M. Cano, J. T. San. Josè, J. L. Ramirez, “Polyester polymer concrete, Fundamental hardened and fresh state”, in: 2ème Conf, Int, sur les Materiaux Composites en Architecture, Construction et Gènie Civil, Bordeaux, France, pp.191-200 (1998)
78. UNE-103-85, EN 103.“Baldosas ceramicas: Determinacion de la dilatacion termical”, CEN Comite Europeo de Normalizacion
79. M. C. S. Ribeoro, J. M. L. Reis, A. J. M. Ferreira, A. T. Marques, “Thermal expansion of epoxy and plyester polymer mortars-plain mortars and fiber-reinforced mortars”, Polymer Testing, Vol.22, pp.849-857 (2003)
80. J. Manson, W. Chen, J. Vanderhoff, H. Mehta, P. Cady, “Use of Polymers in Highway Concrete”, NCMRP Report 190, Transportation Research Board NRC, (1978)
81. E. L. Gluekler, “Local thermal and structural behavior of concrete at elevated temperatures”, Transaction of the 5th International Conference on Structural Mechanics in Reactor Technology, International Congress Center Berlin, Berlin, Germany, Vol.A, pp.13-17 (1979)
82. “Temperature and Concrete”, American Concrete Institute Publication SP-25, (Detroit, 1968)
83. “Polymer in Concrete”, American Concrete Institute Publication SP-40, pp. 93-117 (1973)
84. I. E. Weyers, P. D. Cady, “Development:Deep Grooving-A Method for Impregnating Concrete Bridge Decks”, Transpires. Research, Vol. 962, pp. 14-18 (1984)
85. H. Wu, E. W. Brooman, “Study of Use of Ultrasound Technology to Prepare Polymer- Impregnated Concrete”, Cement and Concrete Research, Vol.23, pp. 640-650 (1993)
86. H. Schorn, “Limits in the Modification of Characteristics by the Transformation of Cement Concrete into Polymer Impregnated Concrete”, Reported by Polymer in Concrete, pp. 31-36 (1975)
87. M. Brandt, “Cement-based Composites:Materials, Mechanical Properties and Performance”, E&FN Spon, (1992)
88. D. G. Manning, “The Role of The Polymer in Polymer-Impregnated Paste and Mortar”, Proceedings of the 1st International Congress on Polymer Concrete, The Construction Press, pp. 37-42 (1975)
89. 陳振欣,“單體組合對高分子注膠混凝土性質影響之研究”,海洋大學材料工程研究所碩士論文,(1999)
90. D. G. Manning, B. B. Hope, “The Effect of Porosity on The Compressive Strength and Elastic Modulus of Polymer Impregnated Concrete”, Cement and Concrete Research, Vol. 1, pp. 631-644 (1971)
91. K. R. Kirtania, S. Maiti, “Effect of Corrosive Environment on Strength, Durability Properties”, Journal of Materials Science, Vol. 21, pp. 341-345 (1986)
92. J. M .Gao, C. X. Qian, B. Wang, K. Morino, “Experimental study on properties of polymer-modified cement mortars with silica fume”, Cement and Concrete Research, Vol.32, pp.41-45 (2002)
93. S. Zhong, Z. Chen, “Properties of latex blends and its modified cement mortars”, Cement and Concrete Research, Vol.32, pp.1515-1524 (2002)
94. S. Chandra, P. Flodin, “Interactions of polymers and organic admixtures on Portland Cement Hydration”, Cement Concrete Resarch, Vol.17, pp.975-890 (1990)
95. C. E. Marmorato. Gomes, O. P. Ferreira, M. R. Fernades, “Influence of vinyl acetate-versatic vinylester copolymer on the microstructural characteristics of cement paste”, Materials Research, Vol.8, No.1, pp.1526-1539 (2005)
96. S. A.Rodger, S. A. Brooks, W. Sinclair, G. W. Groves, D. D. Double, “High strength cement pastes: Part 2, Reaction during setting”, Journal Material Sciens, Vol.20, pp.2853-2860 (1985)
97. H. Yucui, “Research on Powder Organic Compound Modified Cement-based Composites Master’s thesis”, Beijing University of Technology, Beijing, In Chinese (2000)
98. W. Zhihong, H. Yucui, H. Yuan, “Research on increasing effect of solution polymerization for cement-based composite”, Cement and Concrete Research, Vol.33, pp.1655-1658 (2003)
99. J. M. Beeldens, E. Vincke, N. D. Belie, D. Van Gemert, L. Taerwe, W. Verstraete, “Resistance to biogenic sulphuric acid corrosion of polymer modified mortars”, Cement and Concrete Composites, Vol.23, pp.47-56 (2001)
100. D. P. GW, “Polymer modified concrete properties and application”, In:International ICPIC workshop on polymers in concrete for Central Europe, Bled, Slovenia, pp.63-67(1996)
101. J. Liu, C. Vipulanandan, “Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack”Tunneling and Underground Space Technology, Vol. 16, pp. 311-321 (2001)
102. L.Czarnecki, T. Broniewski, “Resin Concrete and Polymer Impregnated Concrete: A Comparative Study”, Proceedings Third Internation Congress on Polymers in Concrete, Koriyama, Japan, Vol. 1, May (1981)
103. “Application of Polymer Concrete”, American Concrete Institute Publication SP-69, (Detroit, 1981)
104. “Polymer in Concrete”, American Concrete Institute Publication, SP-58, (Detroit, 1978)
105. “Polymer Concrete”, Uses Materials and Properties, American Concrete Institute Publication SP-89, (Detroit, 1985)
106. 陳振川,“高性能混凝土推動與營建自動化施工技術探討 ”,營建管理季刊,Vol. 23, pp. 8-21, (1995)
107. J. Wright, S. Rizkalla, “Three year field and laboratory evaluation of linseed oil as a concrete sealer”, Canadian Journal of Civil Engineering, Vol.20, pp.844-854 (1993)
108. Y. Ohama, A. M Brandt, V. C. Li, I. H. Marshall, “Composite materials for durability improvement and repair of reinforced concrete structures in Japan”, In Proceedings of the Fourth International Symposium on Brittle Matrix Composites”, Institute of Economic Education: Warsaw, pp. 513-522 (1994)
109. P. D. Cater, R. E. Weyers, “Development of field polymer impregnation techniques using alkyl alkoxy for preventing corrosion”, In International Symposium on Concrete Bridges in Aggressive, Environments SP-151; ACI Detroit, pp. 95-117 (1994)
110. T. Naito, Y. Matsuoka, T. Shindo, M. Ozawa, K. Tsuruta, “Development of highly durable PIC permanent forms using methyl methacrylate”, Journal of Construction Management and Engineering, Japan Society of Civil Engineer, No.474/VI-20, 41-45 (1991)
111. H. R. Sasse, D. Honsinger, M. Puterman, M. C. Ganorkar, N. R. Rao, “A new chemical and engineering approach for development and optimization of stone protecting materials”, In Proceedings of the First International Colloquium on Role of Chemistry in Archaeology, The Birla Institute of Scientific Research: Hyderabad, India, pp. 87-94 (1991)
112. H. R. Sasse, D. Honsinger, B. Schwamborn, M. J Thiel, “New technology in porous stone conservation”, In Proceedings of the International RILEM/UNESCO Congress on Conservation of Stone and Other Materials Vol. 2 E&FN Spon, London, pp. 705-716 (1993)
113. K. Sugimoto, W. Sivakumaran, S. Kobayashi, “Quality improvement of soft stones by polymer impregnation using MMA”, Journal of Finishing Technology, Vol. 1, No.1, pp. 17-24 (1993)
114. Environment Protection Agency, “Plastic Wastes: Management, Control, Recycling and Disposal”, Pollution Technology Review, No.201, Noyes Data Corporation, Park Ridge, NJ.(2004)
115. H. Alter, “The origins of municipal solid waste: Ⅱ. Policy options for plastics waste management”, Waste Management Research, Vol.11, pp.319-332 (1993)
116. K. S. Rebeiz, A. P. Craft, “Plastic waste management in construction: technological and institutional issues”, Resources, Conservation and Recycling, Vol.15, pp.245-257 (1995)
117. M. C. Bignozzi, A. Saccani, F. Sandrolini,“New polymer mortars conaining polymeric wastes, 1.microstructure and mechanical properties”, Composites: Part A 31(2), pp.97 (2000)
118. M. C. Bignozzi, A. Saccani, F. Sandrolini,“New polymer mortars conaining polymeric wastes, Part 2. Dynamic mechanical and dielectric behavior, Composites: Part A 33,pp.205-211 (2002)
119. K. S. Rebeiz,“Time-temperature properties of polymer concrete using recycled PET”, Cement and Concrete Composites, Vol.17, pp.119-124 (1995)
120. K. S. Rebeiz,“Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste”, Construction and Building Materials, Vol.10, No.3, pp.215-220 (1996)
121. T. R. Naik, S. S. Singh, C. O. Huber, B. S. Brodersen, “Use of post-Consumer plastics in cement-based composites”, Cement and Concrete Research, Vol. 26, No. 10, pp. 1489-1492 (1996)
122. S. B. Park, B. C. Lee, “Studies on expansion properties in mortar containing waste glass and fibers” Cement and Concrete Research, Vol.34, pp.1145-1152 (2004)
123. A. G. Pedroso, L. H. I. Mei, J. A. M. Agnelli, D. S. Rosa, “Properties that characterize the propagation of cracks of recycled glass fiber reinforced polyamide ”, Polymer Testing, Vol.18, pp.211-215 (1999)
124. C. H. Chen, R. Huang, A. Cheng, C. H. Chen, “Properties of Concrete Containing Waste E-glass Particle”, The Third International Conference on Advances in Structural Engineering and Mechanics (ASEM'04), Seoul Korea, pp. 197 (2004)
125. N. Fazel, Z. Fazel, A. BrÛlet, J. M. Guenet, “Molecular structure of poly methyl methacrylate thermoreversible gels”, Journal de Physique Ⅱ, France Vol.2, pp.1617-1629 (1992)
126. P. Mastrorilli, C. F. Nobile, “Supported catalysts form polymerizable transition metal complexes”, Coordination Chemistry Reviews, Vol. 248, pp.377-395 (2004)
127. S. I. Banik, K. Dutta, T. K. Chaki, A. K. Bhowmick, “Electron beam induced structural modification of a fluorocarbon elastomer in the presence of polyfunctional monomers”, Polymer, Vol.40, pp.447-458 (1999)
128. C. Hall, “Water Sorptivity of Mortars and Concretes:a Review”, Magazine of Concrete Research, Vol. 41, No.147, pp. 51-61 (1989)
129. R. B. Polder, “Test methods for on site measurement of resistivity of concrete”, RILEM TC-154 technical recommendation. Construction and Building Materials, Vol. 15, pp.125-131 (2001)
130. L. E. Copeland, J. C. Hayes, “Determination of non-evaporable water in hardened Portland cement paste”, ASTM Bulletin, pp. 70-74 (1953)
131. S. Diamond, “ SEM Investigations of Fracture Surfaces Using Stereo Pairs: I. Fracture Surfaces of Rock and of Cement Past ”, Cement and Concrete Research, Vol. 22, pp. 67-78 (1992)
132. R. F. Feldman, J. J. Beaudoin, “Pretreatment of hardened hydrated cement paste for mercury intrusion measurement”, Cement and Concrete Research, Vol.21, pp. 297-308 (1991)
133. C. Galle, “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry”, Cement and Concrete Research, Vol. 31,pp. 1467-1477 (2001)
134. R. Kumar, B. Bhattacharjee, “Assessment of permeation quality of concrete through mercury intrusion porosimetry“ Cement and Concrete Research, Vol. 34, pp. 321-328 (2004)
135. S. Mindness, J. F. Young, D. Darwin, “ Concrete“, 2nd Edition, Prentice-Hall, NJ, pp. 99 (2003)
136. C. Andrade, M.A. Sanjuan, A.Recuero, O. Rio, “Calculation of Chloride Diffusivity in Concrete from Migration Experiments, in non Steady-state Conditions,” Cement and Concrete Research, Vol.24, pp.1214-1228 (1994)
137. M. Castellote, C. Andrade, C. Alonso, “Electrochemical Chloride Extraction: Influence of Testing Conditions and Mathematical Modeling,” Advanced in Cement Research, Vopl.11, pp.63-80(1999)
138. “高分子奈米材料”,化工產業技術知識網,http://www.chemtech.com.tw
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 10.林東茂,詐欺罪的財產損害,中央警察大學法學論集第三期,1998年3月
2. 11.林東茂,詐欺或竊盜-一個案例的檢討,刑事法雜誌第四十三卷第二期1999年4月
3. 12.林東茂,刑法分則:第一講 不作為詐欺,月旦法學教室第二期,2002年11月
4. 13.林東茂,刑法分則:第三講 詐欺罪的財產處分,月旦法學教室第八期,2003年6月
5. 18.林鈺雄,偽冒扣押之刑責,法學講座雜誌3期,2002年3月
6. 23.李聖傑,人算不如天算--因果(不幸)與歸責(不法),月旦法學教室38期(2005),頁22以下
7. 24.李聖傑,風險變更之結果客觀歸責,中原財經法學7期(2001),頁47以下
8. 25.李聖傑,因果關係的判斷在刑法中的思考,中原財經法學8期(2002),117以下
9. 38.張麗卿,機器與詐欺,刑事法雜誌40卷6期,1996年12月
10. 40.張麗卿,廢弛職務致釀災害的客觀歸責,東海大學法學研究9期(1995),253以下
11. 43.陳志輝,客觀歸責與「回溯禁止」,法學講座雜誌26期(2004),頁38以下
12. 44.陳志龍,客觀歸責性,萬國法律104期(1999),頁73以下
13. 46.陳志龍,救護車致死案--探討因果關係與客觀歸責性問題,月旦法學教室18期(2004),頁14以下
14. 52.劉幸義,罪刑法定原則的理論與實務批評(上),刑事法雜誌1994年10月
15. 53.劉幸義,罪刑法定原則的理論與實務批評(下),刑事法雜誌1994年12月