跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周威宏
研究生(外文):Wei-Horng Chou
論文名稱:利用陰極電流評估混凝土添加礦物摻料抑制鹼骨材反應之研究
論文名稱(外文):Using the cathodic current to evaluate the inhibition of the alkali-silica reaction by adding mineral admixatures
指導教授:張建智
指導教授(外文):Jiang-Jhy Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:132
中文關鍵詞:鹼骨材反應礦物摻料陰極電流
外文關鍵詞:alkali-silica reactionmineral admixaturescathodic current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
混凝土中如含有潛在反應性骨材,當外加陰極電流存在時將造成鈉、鉀離子往負極集中,進而加速鹼骨材反應的發生,為瞭解混凝土中添加礦物摻料對抑制鹼骨材反應之影響,本研究利用普通水泥、易反應性骨材、爐灰或偏高嶺土,以外加鹼劑方式拌製出具鹼骨材反應試體,並施加陰極電流加速鹼矽膠體的生成,然後藉由試體表面初始裂縫生成時間,鈉、鉀離子在混凝土中之濃度量測與界面處微硬度實驗分析來詮釋實驗結果。
研究結果顯示隨著爐灰或偏高嶺土的添加,試體表面因鹼矽膠體而產生的裂縫可有效獲得改善,且水灰比降低有助於裂縫生成時間的延長;此外,由鈉、鉀離子累積含量分析可知施加陰極電流確實會造成鹼性離子大量往鋼筋界面集中,進而增加鹼矽膠體生成的潛能,且由鋼筋界面混凝土微硬度值試驗發現當爐灰或偏高嶺土添加時,因結構孔隙緻密導致鈉鉀離子累積含量相對較低,其硬度值均較控制組高。由上述結果顯示礦物摻料的添加具有抑制混凝土鹼骨材反應之效果。
It has been confirmed that applying cathode current on the concrete containing potentially reactive aggregates could cause sodium and potassium ions migrating towards the negative polarity, and then accelerating alkali-silica reaction. In order to verify the influence of incorporating mineral admixtures to inhibit alkali-silica reaction, in this study we use Portland cement, Pyrex glass cullet, fly & slag, metakaolin and NaOH solution to adjust the initial alkali content to form the specimens. Furthermore, apply cathode current to increase the occurrence of alkali-silica gel, then by observing the period of crack initiation, determining the accumulated sodium and potassium ions in the concrete, and micro-hardness test nearby the rebar-concrete interface to analyze the experimental results.
The result showed that utilization of slag & fly ash in concrete as a partial replacement of Portland cement could suppress the crack due to alkali-silica reaction, and the descending in water to cementations ratio would prolong the time of crack initiation. Furthermore, due to the chemical titration test, we found that applying cathode current was able to induce the alkali metal ions to remove towards the rebar-concrete interface, and increase the potential occurrence of alkali-silica gel. In addition, through micro hardness test, due to the improvement of the permeability in pore structure, we also found that concrete containing fly & slag or metakaolin could lower concentration on the accumulated sodium and potassium ions, and the micro hardness was higher than specimen containing no mineral admixtures. Summarize this study concrete containing mineral admixtures have great effect to inhibit alkali-silica reaction.
中文摘要 i
英文摘要 ii
誌謝 iv
內文目錄 v
圖目錄 viii
表目錄 xi

第一章 緒 論 1
1-1 研究背景 1
1-2 動機與目的 2
1-3 研究方法與流程 3
第二章 文獻回顧 6
2-1 鹼骨材反應 6
2-1-1 鹼骨材反應分類 6
2-1-2 鹼骨材的反應模式 9
2-1-3 鹼金屬的來源 12
2-1-4 鹼離子的運動 13
2-1-5 鹼骨材反應的表象 13
2-2 預防水泥混凝土鹼骨材反應的方法 14
2-2-1 慎選粒料 14
2-2-2 添加水泥代用材料 14
2-2-3 採用低鹼水泥 15
2-2-4 防止水份入侵 16
2-2-5 使用輸氣劑 16
2-2-6 改變鹼矽膠體 16
2-3 礦物摻料抑制鹼骨材的效果 17
2-3-1 矽灰 17
2-3-2 飛灰 18
2-3-2-1 飛灰對混凝土耐久性之影響 19
2-3-2-2 飛灰於水泥混凝土的取代方式與取代量 21
2-3-3 爐石粉 25
2-3-3-1 爐石粉在混凝土中水化機理 27
2-3-3-2 水淬高爐石粉對新拌混凝土性質之影響 28
2-3-3-3 水淬高爐石粉對硬固混凝土性質之影響 29
2-3-4 偏高嶺土 33
2-4 鹼骨材反應的檢測方法 34
2-4-1 分析粒料之潛在有害反應性 34
2-4-1-1 混凝土粒料岩相分析指引 35
2-4-1-2 粒料之潛在鹼質與二氧化矽反應性試驗法 35
2-4-1-3 碳酸鹽質岩石用作混凝土粒料之潛在鹼質反應性試驗法 36
2-4-2 其他試驗法 37
2-4-2-1 水泥與粒料之組合潛在鹼質反應性試驗法 37
2-4-2-2 砂漿棒快速法 37
2-4-2-3 岩相分析法 38
2-4-2-4 硬固水泥混凝土鈾基溶液檢測法 39
2-4-2-5 硬固水泥混凝土染色檢驗法 40
2-4-2-6 添加礦物摻料對於抑制鹼矽反應膨脹的效果 41
2-4-2-7 水泥混凝土的潛在體積變化 42
第三章 實驗計畫 43
3-1 實驗變數 43
3-2 配比規劃 44
3-3 試驗材料 46
3-4 試驗設備 52
3-5 試體製作及實驗裝置 57
3-5-1 試體製作與養護條件 57
3-5-2 陰極電流裝置 61
3-6 試驗方法 61
第四章 結果與討論 67
4-1反應性骨材選擇 67
4-2 流度值及坍流度 71
4-3 抗壓強度 75
4-4 裂縫觀察 82
4-5 孔隙結構變化 84
4-6 鹼質離子之分佈 91
4-7 硬度試驗 92
4-8 SEM觀測 103
第五章 結論與建議 108
5-1 結論 108
5-2 建議 109












圖 目 錄

圖1-1 研究流程 5
圖2-2 鹼矽反應所產生膨脹裂縫 14
圖3-1 配比規劃說明 45
圖3-2 恆溫恆濕養護箱 52
圖3-3 長度比較測微器 53
圖3-4 萬能材料試驗機 54
圖3-5 直流電源供應器 55
圖3-6 裂縫量測儀 55
圖3-7 離子自動滴定儀 56
圖3-8 維式硬度儀 57
圖3-9 水泥砂漿試體 59
圖3-10 低壓蒸氣養護時間曲線……………………………………….. .60
圖3-11 陰極防蝕電路安裝示意圖 61
圖3-12 真空滲透儀器連結 63
圖4-1 標準砂、普通玻璃砂及耐熱玻璃砂之不同齡期體積膨脹量變化 69
圖4-2 普通玻璃砂及耐熱玻璃砂之鹼度降低量及溶解二氧化矽值 70
圖4-3 水灰比0.4時不同配比拌合流度值 73
圖4-4 水灰比0.6時不同配比拌合坍流度 73
圖4-5 不同水灰比等量爐灰及MK條件下之流度值差異性 74
圖4-6 不同水灰比等量爐灰及MK條件下之坍流度差異性 74
圖4-7 不同爐灰摻量試體14天齡期抗壓強度發展 77
圖4-8 不同MK摻量試體14天齡期抗壓強度發展 77
圖4-9 不同爐灰摻量試體28天齡期抗壓強度發展 78
圖4-10 不同MK摻量試體28天齡期抗壓強度發展 78
圖4-11 不同爐灰摻量試體56天齡期抗壓強度發展 79
圖4-12 不同MK摻量試體56天齡期抗壓強度發展 79
圖4-13 等量爐灰及MK條件下試體14天齡期抗壓強度發展差異 80
圖4-14 等量爐灰及MK條件下試體28天齡期抗壓強度發展差異 81
圖4-15 等量爐灰及MK條件下試體56天齡期抗壓強度發展差異 81
圖4-16 控制組F2反應裂縫生成照片 83
圖4-17控制組F1反應裂縫生成照片 83
圖4-18 不同爐灰摻量試體56天齡期吸水率 86
圖4-19 不同MK摻量試體56天齡期吸水率 86
圖4-20 等量爐灰及MK條件下試體56天吸水率差異 87
圖4-21 等量爐灰試體56天齡期氯離子穿透試驗結果 89
圖4-22 等量MK試體56天齡期氯離子穿透試驗結果 89
圖4-23 等量爐灰及MK條件下試體56天齡期氯離子穿透試驗差異 90
圖4-24 鈉離子率定曲線 94
圖4-25 鉀離子率定曲線 94
圖4-26 施加陰極電流前距離鋼筋不同位置之鈉、鉀離子累積含量(W/C=0.4) 97
圖4-27 施加陰極電流前距離鋼筋不同位置之鈉、鉀離子累積含量(W/C=0.6) 97
圖4-28 施加陰極電流後距離鋼筋不同位置之鈉、鉀離子累積含量(W/C=0.4) 98
圖4-29 施加陰極電流後距離鋼筋不同位置之鈉、鉀離子累積含量(W/C=0.6) 98
圖4-30 未施加陰極電流距離鋼筋不同位置微硬度變化(W/C=0.4) 101
圖4-31 未施加陰極電流距離鋼筋不同位置微硬度變化(W/C=0.6) 101
圖4-32 施加陰極電流後距離鋼筋不同位置微硬度變化(W/C=0.4) 102
圖4-33 施加陰極電流後距離鋼筋不同位置微硬度變化(W/C=0.6) 102
圖4-34 配比F1鋼筋與混凝土界面微觀結構圖(未通電組,400倍) 104
圖4-35 配比10F1鋼筋與混凝土界面微觀結構圖 104
圖4-36 配比10M1鋼筋與混凝土界面微觀結構圖(未通電,10,000倍) 105
圖4-37 配比F1鋼筋與混凝土界面微觀結構圖(通電組,500倍) 105
圖4-38 配比F2鋼筋與混凝土界面微觀結構圖(通電組,500倍) 106
圖4-39 鈉含量高微觀結構圖(通電組配比F2,10,000倍) 106
圖4-40 通電組配比F2之EDS分析 107
圖4-41 配比10F1鋼筋與混凝土界面微觀結構圖(通電組,500倍) 107

表 目 錄

表2-1 潛在有害的反應性礦物、岩石及人造材料 7
表2-2 飛灰在營建工程與營建材料的優點 23
表2-3 CNS 3036對飛灰化學成份之規定 24
表2-4 混凝土中飛灰取代水泥量之參考值 24
表2-5 混凝土暴露解冰鹽下對卜作嵐材料之限量 25
表2-6 不同等級爐石粉、替代率與強度成長之關係 30
表3-1 實驗變數 44
表3-2 水泥砂漿試體配比設計 45
表3-3 水泥之物理性質 46
表3-4 水泥之化學成份 47
表3-5 細骨材物理性質 47
表3-6 爐石及飛灰之化學成份與物理性質 48
表3-7 偏高嶺土化學成份 49
表3-8 偏高嶺土物理性質 49
表3-9 使用材料之鹼質含量 49
表3-10 所使用之礦物摻料NA2O及K2O含量 50
表3-11 氫氧化鈉之化學成份 50
表3-12 鈦網輔助陽極材之特性 51
表3-13 粒料級配規定 58
表3-14 試體分類 59
表3-15 依據施加電量不同所顯示之氯離子穿透力 64
表4-1 不同細粒料與鹼質產生反應性膨脹結果 69
表4-2 各種配比拌合之流度值(%)及坍流度(㎝) 72
表4-3 不同配比水泥砂漿試體14天齡期抗壓強度 76
表4-4 裂縫生成時間 82
表4-5 不同配比水泥砂漿試體56天齡期吸水率 85
表4-6 試體56天齡期電滲試驗結果 88
表4-7 試體取樣距離 92
表4-8 未施加陰極電流前水泥砂漿試體鈉、鉀離子累積含量 95
表4-9 施加陰極電流後水泥砂漿試體鈉、鉀離子累積含量 96
表4-10 未施加陰極電流微硬度變化 99
表4-11 施加陰極電流後微硬度變化 100
1.Majid, A. H. and Grattan-Bellew, “Potential Reactivity of Concrete Aggregates from Iraq”, University of Ottawa and National Research Council, Canada ,pp.321-334, 1978.
2.Duncan, M. A. G., ”Alkali-Aggregate Reaction in Nova Scotia I Summary of a five-year Study”, Cement and Concrete Research, Vol.3, No.1, pp.55-69, 1973.
3.Figg, J. W., Lambert, M. P. and Pillay, N., “Investigations of the Alkali Reactivity of Some Middle East Aggregates”,Harry Stanger Ltd.,UK, pp. 309-320, 1978.
4.Gillott, J. E. ,Duncan, M. A. G. and Swenson, E., “Alkali Aggregate Reaction in Nova Scotia Ⅳ, Character of the Reaction”, Cement and Concrete Research,Vol.3, No.5, pp. 521-535, 1973.
5.Gudmundsson, G. and Asgeirsson, H., “Parameters Affecting Alkali Expansion in Icelandic Concretes”, Proceedings of the 6th International Conference on Alkalis in Concrete, Copenhagen, pp. 217-222, 1983.
6.Swamy, R. N., The Alkali-Silica Reaction in Concrete, Blackie, London, 1992.
7.張承志,”集料鹼活性的評定與混合材抑制鹼集料反應膨脹有效性的評定”, 中國南京化工大學材料科學與工程系, 博士論文, 1996年6月.
8.褚炳麟、顏聰、盧俊寬,”台灣西部地區砂石料源鹼質反應調查研究”, 交通部國道新建工程局研究報告, 1994年3月.
9.王櫻茂、吳振成, “制訂混凝土耐久性試驗方法及規範研究”, 內政部建研所籌備處專題研究計畫成果報告, MOIS 840018, 1995年7月.
10.王智興, ”適合台灣地區鹼-骨材反應判斷圖之研究”, pp. 53-54, 1999年6月.
11.Federal Aviation Adminstration AC 150/5320-6D, “ Airport Design and
Evaluation-Advisory Circular” , p23, 1995.
12.Unified Facility Criteria(UFC), ”Concrete Crack and Partial Spall Repair” ,Air Force Civil Engineer Support Agency, pp.9-27, 2001.
13.”Alkali-Aggregate Reactivity”,Cement Association of Canada, 2004.
14.Hansen, W. C., “Studies relating to the mechanism by which the alkali-aggregate reaction proceeds in concrete”, Journal of the American Concrete Institute, Vol. 15, No. 3, pp. 213-27,1944.
15.McGowan, J. K. and Vivian, H. E. , “Studies in cement-aggregate reaction:Correlation between crack development and expansion of mortars”, Australian Journal of Applied Science, Vol. 3, pp. 228-232, 1952.
16.Vivian, H. E., ”The effect of hydroxyl ions on the reaction of opal”, Australian Journal of Applied Science ,Vol. 2,No.1, pp.108-113, 1951.
17.Powers, T. C. and Steinour, H. H.,”An Interpretation of Some Pubished Researches on the Alkali-Aggregate Reaction. Part2-A Hypothesis Concerning Safe and Unsafe Reactions with Reactive Silica in Concrete”, Journal of the American Concrete Institute, Vol.26 No.8, pp497-516,1955.
18.Powers, T. C. and Steinour, H. H.,”An Interpretation of Some Pubished Researches on the Alkali-Aggregate Reaction. Part2-A Hypothesis Concerning Safe and Unsafe Reactions with Reactive Silica in Concrete”, Journal of the American Concrete Institute, Vol.26,No.8, pp785-811,1955.
19.Chatterji, S., Thaulow, N and Jensen, A. D., “Studies of alkali-silica reaction, part 6: practical implications of a proposed reaction mechanism”, Cement and Concrete Research, Vol.18, No.3,pp. 363-366,1988
20.Wang, H. and Gillott, J. E., ” Effect of Ca(OH)2 on alkali-silica reaction”, In Magazine of Concrete Research,Vol. 43, No.154, pp. 29-35, 1991.
21.Urhan, S., “Alkali silica and pozzolanic reactions in concrete:Interpretation of published results and an hypothesis concerning the mechanism”, Cement and Concrete Research,Vol.17,NO.1,pp.141-152, 1987.
22.Gillott, J. E. and Swenson, E. G.,”Some unusual alkali-expansive of concrete aggregates,”Engrg. Geology, Vol. 7,pp.181-195,1973.
23.Dent Glasser,.L. S. and Kataoka N., “On the Role of Calcium in the Alkali-AggregateReaction”,Cement and Concrete Research,Vol.12,No.3, pp.321-331, 1982 .
24.李釗,「花蓮港區混凝土構造物鹼骨材反應調查報告」,省交通處港灣技術研究所研究報告,1998年6月.
25.Jensen, V., “Alkali Aggregate Reaction in Southern Norway”, Doctor Technicae Thesis, The Norwegian Institute of Technology, University of Trondheim, Norway, pp 262,1993.
26.Batic, O. A, Sota, J. D. and Iasi, R., ”Contribution of Alkalies by Aggregates to Alkali-Aggregate Reaction in Concrete”, ASTM STP 1061, American Society for Testing and Material, Philadelphia Pennsylvania,pp.159-168,1990.
27.Metha, P. K., ”Effect of chemical additions on the alkali-silica expansion”, Proceeding of the fourth international Conference on the Effect of Alkalis in Cement and Concrete, Publication No. CE-Mat-1-78, School of Civil Engineering Purdue University,U.S.A.,pp.229-234, 1978.
28.Nixon, P. J., Collins, R. J. and Rayment, P. L., ”The concentration of alkalies by moisture migration in concrete – a factor influencing alkali aggregate reaction”, Cement and Concrete Research,Vol. 9, No.4,pp.417-423 ,1979.
29.Xu, Z. and Hooton, R.D., ”Migration of alkali ions in motor due to several mechanisms”, Cement and Concrete Research,Vol. 23, No.4, pp.951-961,1993.
30.張正勤, “陰極電流對鹼骨材反應影響之研究” , 國立海洋大學碩士論文, 2003年6月.
31.Ali, M. G. and Rasheeduzzafar, “ Cathodic Protection Current Accelerates Alkali-Silica Reaction ”,ACI Material Journal,Vol. 90,No. 3,pp. 247-252,1993.
32.Metha, P.K.,“Concrete Structure Properties and Materials” Prentice-Hall editor, New Jersey, 1986
33.Glasser, F. P.,”Chemistry of Alkali-Aggregate Reaction”,The Alkali-Silica Reaction in Concrete, R.N. Swamy (ed.), Van Nostrand Reinhold, New York,pp. 30-53, 1992.
34.Hobbs, D. W., “Alkali-Silica Reaction in Concrete”,Thomas Telford, London, pp.103-113,1998.
35.Lumeley, J. S., “ASR suppression by Lithium compounds”, Cement and Concrete Research,Vol. 27,No.2, pp.235-244, 1997.
36.Olafsson, H. “Alkali-silica reaction-Icelandic expensive. In Swamy R.N” (Editor), The Alkali-Silica Reaction in Concrete. Blackie, London, pp. 333, 1992
37.Dikeou, J. T., ”Fly Ash Increases Resistance of Concrete to Sulphate Attacks”, Water Resources Technical Publications No.23, U.S. Bureau of Reclamation, 1970.
38.ACI Committee 201, ”Guide to Durable Concrete”, ACI Manual of Concrete Practice, Detroit, 1995.
39.Stanton, T. E., “Expantion of Concrete Through Reaction between Cement and Aggergate”, Proceedings of the American Society of Civil Engineers, Vol. 66, No. 10, Vol.66, pp.1784-1811, 1940.
40.Stanton, T.E.,“Expantion of Concrete Through Reaction between Cement and Aggergate,” Transaction ASCE, part Ⅱ, 1942.
41.Larsen, T. J. and Page, G. C.,”Fly Ash for Structure Concrete in Aggerssive Enviorments,” Proc. 4th. Ash Utilization Symposium, St-Louis,1976.
42.Larsen, T. J.,MacDaniel, W. H.,Browm, R. P., and Sosa,J. L. , ”Corrosion-inhibiting properties of Portland and Portland Pozzolan Cement Concrete”, Transportation Research Records, No.613, pp.21-29, 1976.
43.Compton, F. R. and MacInnis C., ”Field Trial of Fly Ash concrete”, Ontario Hydro Research News,pp.18-21,1952.
44.Carette G.G. and Malhotra V. M., “Characterization of Canadian fly ashes and their performance in concrete” ,Division Report, MRP/MSL (OP&J),CANMET, Energy, Mines and Resources Canada, pp.84-137,1984.
45.行政院公共工程委員會, “公共工程飛灰混凝土使用手冊” , 1999年8月.
46.Samarin, A.,Munn. R. L., ,and Ashby, J. B. “The rise of fly Ash in Concrete Australian Experience”, Fly Ash, Silicate Fume, Slag, Other Mineral By Products in Concrete, ACI SP-79, Vol. I, pp.143-172, 1983.
47.黃兆龍,王和源,1998,「公共工程混凝土使用飛灰要點」,行政院公共工程委員會專案研究計畫,台北.
48.洪文方, 「普通水泥中添加高爐熟料之影響」, 國立台灣工業技術學院碩士論文, 1985.。
49.林平全, 「赴日本考察水利會工程出國報告」, 經濟部暨所屬機關因公出國人員報告書, 1992。
50.Yamamoto, C., Makita, M., Moriyama, Y. and Numata, S., “Concrete Alkali-Aggregate Reactions”, ed. P.E.G. Grattanbellew, Noyes Publications,New Jersey, pp.49-54,1987.
51.Durand, B. & Chen, H., “Preventive measures against and Alkali-Aggregate reactions, Course Manual, Petrography and Alkali-Aggregate Reactivity”, Ottawa, pp.399-489, 1991.
52.行政院公共工程委員會, “公共工程高爐混凝土使用手冊” , 2001年4月.
53.中國國家標準, ”預拌混凝土相關國家標準彙編”,1993.
54.林草英、黃兆龍,” 製程對砂漿性質的影響”,技術學刊第二期,pp.231-238, 1987.
55.陳振川、詹穎雯,”填加飛灰與高爐石粉混凝土之體積穩定探討”,高爐石粉與飛灰資源在混凝土工程上應用研討會論文集,台北,民國七十五年十二月.
56.詹穎雯, ”飛灰爐石混凝土之原理、性質與應用”, 飛灰爐石於混凝土工程之合理運用研討會論文集, 台灣營建研究院, pp.1-16, 1999年5月.
57.Hogan, F. J. and Meusel, J. W., “Evaluation for Durability and Strength Development of a Ground Granulated Blast-Furnace Slag,” Cement, Concrete, and Aggregates,Vol.3, No.1, pp.40-52,1981.
58.ACI Committee 233, ”Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete”, American Concrete Institute, Detroit, 1996.
59.Hobbs, D. W., “Deleterious expansion of concrete due to alkali-silica reaction: influence of Pfa and Slag”,Magazine of Concrete Research,Vol.38,No. 137,pp.191-205,1986.
60.De Silva PS, Glasser, FP.,“Hydration of cements based on metakaolin:thermochemistry”,Advances in Cement Research,Vol.3,Issue 12 pp.167-77, 1990.
61.Ambroise, J., Maxmilien, S. and Pera, J.,” Properties of metakaolin blended cement”,Journal of Advanced Cement Based Materials. Vol.1, No.4, pp.161-168,1994.
62.Basheer, PAM, McCade, CC and Long, AE.,” The influence of metakaolin on properties of fresh and hardened concrete”, In:Swamy Rn, editor, Proceedings of the international conference on infrastructure through better construction,pp.199-211,1990.
63.Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T. and Grutzeck, ”Chemical stability of cementitious materials based on metakaolin”, Cement Concrete Research,Vol.29,No.7,pp.977-1004,1999.
64.Wild, S., Khatib, J. M. and Jones, A., ”Relative strength pozzolanic activity and cement hydration in superplasticised metakaolin concrete”, Cement and Concrete Research,Vol.26,No.10,pp.1537-1544, 1996.
65.Walters, G. V. and Jones, T. R.,”Effect of metakaolin alkali-silica reaction (ASR) in concrete manufactured from reactive aggregates”, The International Conference on the Durability of Concrete, Montreal Canada, ACI, SP-126,pp.941-953,1991.
66.孔繁盛, “偏高嶺土混凝土力學與物理性質之研究”, 國立台灣海洋大學河海工程學系碩士學位論文, 2004年6月.
67.Zhong, MH and Malhotra, VM,”Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete”, Cement and Concrete Research,Vol.25,No.8,pp.1713-1725, 1995.
68.Sabir, B.B., Wild, S. and Bai, J., “Metakaolin and calcined clays as pozzolans for concrete”, A review, Cement and Concrete composites ,Vol.23, No.4, pp.441-54, 2001.
69.Powers, T. C. and Laura, J.,“Development in Alkali-Silica Gel Detection”, Concrete Technology Today”, PL991, Portland Cement Association ,1999.
70.黃兆龍, “混凝土性質與行為”, 2002.
71.Hwang, CL, Lin, CY.,“Strength development of blended blast furnace slag cement mortars”, In: ACI SP 91, Detroit, pp.1323-1340,1986.
72.Miura, T. and Iwaki, I.,“Strength development of concrete incorporating high levels of ground granulatede blast-furnace slag at low temperatures”, ACI materials Journal,Vol.97,No.1,pp.66-70, 2000.
73.Aldea, C., Young, F., Wang, K. and Shah, SP., ”Effect of curing conditions on properties of concrete using slag replacement”, Cement and Concrete Research,Vol.30,No.3,pp.465-472,2000.
74.Khatib, J. M. and Hibbert, J. J.,”Selected engineering properties of concrete incorporating slag and metakaolin”, Construction and Building Materials,Vol.19,No.6,pp.460-472,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top