跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾弦峰
研究生(外文):Hsien-Feng Chung
論文名稱:真三軸試驗下夯實紅土應力應變行為之研究
論文名稱(外文):Stress-strain Behavior of Compacted Laterite in True Triaxial Tests
指導教授:陳俶季陳俶季引用關係
指導教授(外文):Shuh-Gi Chern
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:158
中文關鍵詞:真三軸試驗應力應變異向性三維破壞準則紅土
外文關鍵詞:True triaxial testsStress-strainAnisotropic3-D failure criterionLaterite
相關次數:
  • 被引用被引用:4
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:1
大地工程所使用之材料大多為非均質、非等向性的材料,實際上土壤真實力學行為亦非等向性的。因此,為模擬土壤真實的受力行為,以瞭解土壤在三維應力作用下之力學性質,開發出真三軸試驗系統,即σx≠σy≠σz以別於傳統三軸試驗σz≠σy=σx,希望能夠於試驗室中模擬土壤受力狀態,對土壤三維力學特性能夠更為瞭解。本研究以自行研發之自動化真三軸伺服控制系統,對林口地區重模夯實紅土,進行一系列壓密不排水真三軸試驗,以探討飽和紅土在三維應力下之應力應變行為。本研究對於飽和夯實紅土,分別進行K0壓密及均向壓密真三軸試驗。結果顯示夯實紅土採用均向壓密方式及模擬Lade 試驗方法,於徑向應力路徑試驗後之應力應變分析可獲得較佳成效。而中間主應力及主應力的旋轉,會影響土壤受力後變形行為及剪力強度關係。重模夯實紅土Cross-Anisotropic特性亦於本研究進行探討,試驗結果顯示土壤Cross-anisotropic特性使得真三軸試驗夯實紅土抗剪強度有降低趨勢。本研究利用Lade破壞準則進行三維分析,則能獲得良好的評估模式。
Most materials in geotechnical engineering are nonhomogeneous and anisotropic. Therefore the true mechanical behavior of soil is not isotropic, too. In order to imitate the real 3-D mechanical behavior of soil in the laboratory, the true triaxial test devices were developed and three different principal stresses σx≠σy≠σz were also been applied. The objective of this study is to investigate the 3-D stress-strain behaviors of compacted laterite. A series of radial stress path tests are performed with flexible boundary true triaxial testing apparatus. The methods of K0 and hydrostatic consolidation conditions are used in this study. Undrained test results show that hydrostatic consolidation and simulation of test methods of Lade have better performance for estimation of the stress-strain behaviors of soil. Test results also show that the intermediate principal stress dose influence the shear strength and deformation of soil after tests. The cross-anisotropic properties of soil are also investigated in this study. Analysis of data indicate that octahedral plane described by Lade three-dimensional failure criterion can represent 3-D mechanical behavior of soil satisfactorily.
誌謝 Ⅰ
摘要 Ⅱ
目錄 Ⅳ
表目錄 Ⅷ
圖目錄 Ⅸ
符號表 ⅩⅣ

第一章 緒論 1
1.1 前言 1
1.2 研究動機與背景 1
1.3 研究目的與方法 2
1.4 論文內容概要 3

第二章 文獻回顧 5
2.1 紅土概述 5
2.1.1 紅土基本性質 5
2.1.2 紅土力學性質 6
2.2 真三軸試驗設備之發展 6
2.2.1 柔性邊界條件真三軸試驗設備 7
2.2.2 剛性邊界條件真三軸試驗設備 10
2.2.3 混合型邊界條件真三軸試驗設備 11
2.3 真三軸理論背景 12
2.3.1 三維空間應力 12
2.3.2 三維降伏破壞準則 16
2.4 真三軸相關研究回顧 20
2.4.1 Cross-anisotropic 之探討 20
2.4.2 中間主應力的影響 21

第三章 試驗計劃、設備及試驗步驟 45
3.1 試驗計劃 45
3.2 真三軸試驗設備簡介 46
3.2.1 硬體裝置 46
3.2.2 軟體系統 48
3.2.3 周邊設備 49
3.3 試驗前準備工作 51
3.3.1 試驗設備測試 51
3.3.2 試驗加壓速率之決定 52
3.3.3 試體製作及壓密方式之選定 54
3.4 試驗土樣 55
3.4.1 基本性質 55
3.4.2 重模試體製作 56
3.5 試驗步驟 56
3.5.1 真三軸系統組立及試體安置 56
3.5.2 通水飽和階段 57
3.5.3 壓密階段 58
3.5.4 徑向應力路徑試驗 58

第四章 試驗結果分析與討論 74
4.1 不同壓密之型式之探討 75
4.1.1 壓密後試體變形行為 75
4.1.2 孔隙水壓力 76
4.2 紅土三維應力應變行為 77
4.2.1 軸差應力與軸向應變關係 78
4.2.2 Octahedral 剪應力與剪應變關係 81
4.2.3 破壞點的選定 83
4.3 中間主應力與主應力旋轉對土壤強度參數之影響 85
4.3.1 超額孔隙水壓 85
4.3.2 有效應力摩擦角 87
4.3.3 不排水剪力強度 88
4.4 三維破壞準則評估 89

第五章 結論與建議 139
5.1 結論 139
5.2 建議 140

參考文獻 141
附錄 147
1. 王亮鈞(2004),「夯實紅土在徑向應力路徑試驗下之力學行為」,碩士論文,國立台灣海洋大學河海工程研究所,基隆。
2. 余文芳(1991),「真三軸應力路徑下沉泥質黏土之應力-應變-強度行為」,碩士論文,國立台灣科技大學營建工程研究所,台北。
3. 林文洲(2004),「複合試體之異向性力學行為及強度評估」,碩士論文,國立台灣科技大學營建工程研究所,台北。
4. 邱鉦文(2003),「自動化真三軸試驗系統軟硬體發展之研究」,碩士論文,國立台灣海洋大學河海工程研究所,基隆。
5. 洪如江(1983),「台灣地區地質分區簡介」,地工技術雜誌,第二期,p.122~126。
6. 袁福祿(1996),「重模沉泥質粘土在真三軸下之行為」,碩士論文,國立台灣科技大學營建工程研究所,台北。
7. 許澤善(1978),「台灣紅土回脹壓力之研究」,碩士論文,國立成功大學土木工程研究所,台南。
8. 許海龍(1988),「重塑與不擾動紅土之動態工程特性之研究」,行政院國家科學委員會,防災科技研究報告76-41號。
9. 陳慧珊(1999),「利用廢棄牡蠣殼改良林口紅土之工程性質研究」,碩士論文,國立台灣海洋大學河海工程研究所,基隆。
10. 陳文為(1997),「不同徑向應力路徑下柱狀改良土之力學行為」,碩士論文,國立台灣科技大學營建工程技術研究所,台北。
11. 張育誠(2002),「伺服控制真三軸試驗系統軟硬體之撰寫、製作與改良」,碩士論文,國立台灣海洋大學河海工程研究所,基隆。
12. 張聰耀(1996),「台北沉泥質黏土之變形特性研究」,碩士論文,國立台灣科技大學營建工程技術研究所,台北。
13. 森河由紀弘、中井照夫、檜尾正也、長井弘明、佐藤公也(2004),「3主応力下で種の繰返し載荷を受ける砂の変形挙動」,第39回地盤工学研究発表会,新潟。
14. 萬獻銘、陳淑華、呂仲泰(1986),「林口台地紅土基本特性研究」,行政院國家科學委員會,防災科技研究報告75-52A號。
15. 鄭文隆、吳偉康(1989),「林口紅土的夯實特性受初始含水量影響之研究」,中國土木水利工程學刊,第一卷,第一期,p.77~82。
16. 歐章煜、蕭文達(1994),「K0壓密及平面應變下臺北粉質粘土之不排水剪力強度」,中國土木水利工程學刊,第六卷,第四期,p.383~388。
17. 賴弘嘉(1998),「重模台北沉泥質粘土之降伏特性」,碩士論文,國立台灣科技大學營建工程技術研究所,台北。
18. 廖家葦(2002),「複合試體之強度特性試驗及異向性行為探討」,國立台灣科技大學營建工程系,碩士論文。
19. 廖洪鈞、余文芳(1993),「徑向應力路徑對台北盆地沉泥質粘土強度行為之影響」,中國土木水利工程學刊,第五卷,第三期,p.269~275。
20. Abelev, A. V., and Lade, P. V. (2004). “Charaterization of Failure in Cross-Anisotropic Soils.” J. Eng. Mech., 130(5), 599–606.
21. Arthur, J. R. F. (1988). “Cubical devices: Versatility and constraints.” Proc., Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, R.T. Donaghe, R. C. Chaney, and M. L. Silver, eds., American Society for Testing and Materials, Philadelphia, Pa., 743–765.
22. Broms, B. B., and Casbarian, A. O. (1965). ‘‘Effects of rotation of principal stress axes and of the intermediate principal stress on the shear strength.’’ Proc., 6th Int. Conf. on Soil Mech. and Found. Eng., Montreal, 1, 179–183.
23. Casagrande, A., and Carillo, N. (1944). “Shear failure of anisotropic materials,” J. Boston. Soc. Civ. Eng., 31(4), pp.74-87.
24. Duncan, J. M., and Seed, H. B. (1966). ‘‘Anisotropy and stress reorientation in clay.’’ J. Soil Mech. Found. Div., 92(5), 21–50.
25. Gidigasu, M. D. (1976). “Laterite Soils Engineering.” Elsevier Scientific Publishing Company, New York.
26. Habib, M. P. (1953). ‘‘Influence of the variation of the intermediate principal stress on the shearing strength of soil.’’ Proc., 3rd Int. Conf. on Soil Mech. and Found. Eng., 1, 131.
27. Hambly, E. C. (1969). “A New True Triaxial Apparatus.” Geotechnique, 19(2), 307-309.
28. Hajime Matsuoka, De'an Sun, Akiteru Kogane, Nobuhiko Fukuzawa, and Wataru Ichihara (2002). “Stress-strain behaviour of unsaturated soil in true triaxial tests ”. Can. Geotech. J. , 39 , 608-619.
29. Henkel, D. J. (1959). ‘‘The relationship between the strength, pore-water pressure, and volume-change characteristics of saturated clay.’’ Geotechnique, 9, 119–135.
30. Henkel, D. J., and Bishop, A. W. (1960). “The Measurement of Soil Properties in the Triaxial Test.” 2nd Edition, Edward Amold Ltd., London.
31. Ibsen, L. B., and Praastrup U. (2002). “The Danish Rigid Boundary True Triaxial Apparatus for Soil Testingt.” ASTM Geotech. Test. J., 25(3), 1-12.
32. Kirkgard, M.M., and Lade, P.V. (1993). “Anisotropic three- dimensional behavior of a normally consolidated clay,” Can. Geotech. J., 30, pp. 848-858.
33. Ko, H. Y., and Scott, R. F. (1969). “A New Soil Testing Apparatus.” Geotechnique, 17(1), 40-57.
34. Kuwano, J., and Bhattarai, B. N. (1989). “Deformation Characteristic of Bangkok Clay under Three Dimensional Stress Conditions.” Journal of the Southeast Asian Society of Soil Engineering, 20(2), 111-129.
35. Lade, P. V., and Duncan, J. M. (1973). “Cubical Triaxail Tests on Cohesionless Soil.” J. Soil Mech. Found. Div., 99(10), 793-812.
36. Ladd, C. C. (1991). “Stability Evaluation During Staged Construction.” J. Geotech. Eng., 117(4), 540-615.
37. Lade, P. V., and Duncan, J. M. (1973), “Cubical Triaxail Tests on Cohesionless Soil.” J. Soil Mech. Found. Div., 99(10), 793-812.
38. Lade, P. V. (1977). ‘‘Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces.’’ Int. J. Solids Struct., 13, 1019–1035.
39. Lade, P. V., and Musante, H. M. (1978). “Three Dimensional Behavior of Remolded Clay,” J. Geotech. Eng. Div., 104(2), 193-209.
40. Lade, P.V. (1984). "Failure Criterion for Frictional Materials," Chapter 20 in Mechanics of Engineering Materials, Edited by C.S. Desai and R.H. Gallagher, Wiley, 1984, pp. 385-402.
41. Lade, P. V., and Wang, Q. (2001). “Analysis of shear banding in true triaxial tests on sand.” J. Eng. Mech., 127(8), 762–768.
42. Lade, P. V., and Abelev, A. V. (2003). “Effects of cross-anisotropy on three-dimensional behavior of sand. II: Volume change behavior and failure.” J. Eng. Mech., 129(2), 167–174.
43. Matsuoka, H. and Nakai, T. (1974). “Stress-deformation and strength characteristics of soil under three different principal stresses.” Proceedings of Japan Society of Civil Engineers (JSCE), 232, 59-70.
44. Matsuoka, H., Koyama, H., and Yamazaki, H. (1985). “A constitutive equation for sands and its application to analyses of rotational stress paths and liquefaction resistance.” Soils and Foundations, 25(1), 27-42.
45. Matsuoka, H., and Sun, D. A. (1995). “Extension of Spatially Mobilized Plane (SMP) to frictional and cohesive materials and its application to cemented sand.” Soils and Foundations, 35(4), 817-90.
46. Mandeville, D., and Penumadu, D. (2004). “True triaxial testing system for clay with proportional-integral-differential control.” ASTM Geotech. Test. J., 27(2), 1-11.
47. Mitachi, T., and Kitago, S. (1976). “The Influence of Stress Hitory of Clay.” Soils and Foundations, 19(1), 45-61.
48. Nakase, A., and Kamei, T. (1983). “Undrained Shear Strength Anisotropy.” Soils and Foundations, 23(1), 91-101.
49. Nakase, A., and Kamei, T. (1984). “Influence of Anisotropy of Deformation Modulus on Effective Stress Path.” Soils and Foundations, 24(2), 106~110.
50. Nakase, A., and Kamei, T. (1986).“Influence of Strain Rate on Undrained Shear Characteristics of K0-Consolidated Cohesive Soils.” Soils and Foundations, 26(1), 85~95.
51. Newill, D. (1961). “A Laboratory Investigation of Two Red Clays from Kenya.” Geotechnique, 11(4), 307-309.
52. Ochiai, H., and Lade, P. V. (1983). “Three-dimensional behavior of sand with anisotropic fabric.” J. Geotech. Eng., 109(10), 1313–1328.
53. Pearce, J. A. (1972). “A New Triaxial Apparatus,” Proceedings of the Roscoe Memorial Symposium, G. T. Foulis, Henley on Thames, pp. 330–339.
54. Prashant, A., and Penumadu, D.(2004). “Effect of Intermediate Principal Stress on Overconsolidated Kaolin Clay.” the J. Geotech. Geoenviron. Eng., 130(3),284-292.
55. Reddy, K. R., Saxena, S. K., and Budiman, J. S. (1992). “Development of a True Triaxial Testing Apparatus.” ASTM Geotech. Test. J., 15(2), 89-105.
56. Rendulic, L. (1936). ‘‘Relation between void ratio and effective principal stresses for a remoulded silty clay.’’ Proc., 1st Int. Conf. on Soil Mech. and Found. Eng., 3, 48–51.
57. Shibata, T., and Karube, D. (1965). ‘‘Influence of the variation of the intermediate principal stress on the mechanical properties of normally consolidated clays.’’ Proc., 6th Int. Conf. on Soil Mech. and Found. Eng., Montreal, 2(48), 359–363.
58. Sivakugan, N., Chameau, J. L., Holtz, R. D., and Altshaeffl, A. G. (1988). ‘‘Servocontrolled cuboidal shear device.’’ ASTM Geotech. Test. J., 11(2), 119–124.
59. Sture, S., and Desai, C. S. (1979). “Fluid cushion truly triaxial or multiaxial testing device.” ASTM Geotech. Test. J., 2(1), 20–33.
60. Terzaghi, K. (1958). “Design and Performance of the Sasumna Dam.” Proceedings of the institution of Civil Engineers, 9, 369-393.
61. Vaid, Y. P., and Campanella, R. G. (1974). ‘‘Triaxial and plane strain behavior of natural clay.’’ J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 100(3), 207–224.
62. Wang, Q. and Lade, P. V. (2001). “Shear Banding in True Triaxial Tests And Its Effect on Failure in Sand.” J. Eng. Mech., 127(8), 754–761.
63. Wu, T. H., Loh, A. K., and Malvern, L. E. (1963). ‘‘Study of failure envelope of soils.’’ J. Soil Mech. Found. Div., Am. Soc. Civ. Eng., 89(1), 145–181.
64. Yong, R. N., and McKyes, E. (1971). ‘‘Yield and failure of a clay under triaxial stresses.’’ J. Soil Mech. Found. Div., Am. Soc. Civ. Eng., 97(1), 159–176.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top