跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:佘漢榮
研究生(外文):Han-Rong She
論文名稱:水灰比及含水量對去極化時間影響之研究
論文名稱(外文):The Effects Of Water/Cement Ratio and Water Contents on the Depolarization Time
指導教授:葉為忠
指導教授(外文):Prof.Wei-Chung Yeih
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:水灰比含水量去極化時間
外文關鍵詞:water/cement ratiowater contentsdepolarization time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

混凝土中的鋼筋受到外在環境因素的侵蝕如鹽害侵蝕或是中性化影響等因素,以致於造成鋼筋腐蝕,導致鋼筋斷面的減少,使構件強度降低,初期若未發現並即時做防蝕處理,之後則必須面臨花費更昂貴的修復費用或是拆除重建,因此陰極防蝕工法在歐美等各國已商業運轉且為認可的技術,在國內也已有多項工程使用此工法。有鑑於此,本研究針對陰極防蝕工法部分,探討水灰比及含水量對去極化時間影響之研究。試驗項目包括抗壓強度、四極式電阻及鋼筋電位去極化試驗等。
由試驗研究結果顯示:在鋼筋混凝土試體施加固定電場條件(電流密度與通電時間)下,不同含水量之試體與不同水灰比之試體,其去極化時間有相當大之影響。在飽和的鋼筋混凝土試體中,其去極化時間需較長的時間,相反的,在含水量較低的試體中,其去極化時間則明顯較短。然而,在相同含水量試體中,若通以較大之電流密度或較長之通電時間時,則去極化時間則有顯著變快。所以由上述可知,陰極防蝕工法用於不同環境下,隨著試體之含水量高低(模擬環境中空氣之相對濕度下)其防蝕效果有著相當程度的影響。
Abstract

Rebar corrosion is a major factor influencing the durability of the reinforced concrete structure. Due to severe environmental attacks such as the salty condition and carbonation, corrosion may happen and consequently reduce the cross-sectional area of rebar. The cost of repairing and rebuilding is very high once the corrosion damage is not in control. Due to this reason, the cathodic protection method is popular and commercially practiced at Europe and United States. Recently, this method is introduced to Taiwan. However, how to judge the efficiency of the cathodic protection method remains unclear. According to NACE RP0290-00 and the British concrete society technical report No. 37, it is suggested the decayed potential (i.e., the potential between the instantaneous potential after cutting off the current and the potential after 4 hours) should exceed 100 mV to guarantee the efficiency of the cathodic protection method. This judgment criterion is doubtable since the water content inside the concrete pores should influence the rate of depolarization. Due to this, this study focuses on the influence of the water/cement ratio and water content on the depolarization time. The compressive strength test, four-probe resistivity and potential of the depolarized time were performed.
From the results, it is found that under the same polarization conditions (the same cathodic current density and the same polarization time), the depolarization time for reaching 100mV decay is longer when the water/cement ratio is smaller (considering the water content is the same). It is also found that under the same polarization conditions, the depolarization time for reaching 100mV decay is longer when the water content is higher. These results are because of the capacity for the smaller water/cement ratio specimens (or specimens with higher water content) is higher such that the depolarization process requires longer time to achieve. In addition, it is found that for the specimens with the same initial water content, water/cement ratio the depolarization time significantly shortens when the cathodic current density and/or the polarization time are bigger. From our results, it can be concluded that the depolarization time for concrete with different capacity is different and this result indicates that the criterion for judging the efficiency of the cathodic current method should be modified in order to become applicable to concretes under all kinds of humidity conditions.
目錄
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vi
表目錄 viii

第一章 緒論
1-1 研究動機.................................................................................1
1-2 研究目的與範圍.....................................................................2
1-3 研究方法與流程.....................................................................3
第二章 文獻回顧
2-1 鋼筋混凝土的腐蝕.................................................................5
2-1-1前言…………………………………………...…….......….5
2-1-2鋼筋腐蝕之機理....…………………………………......….5
2-1-3混凝土中鋼筋之腐蝕因素……………...............................8
2-1-4伽凡尼效應……………………………………………….10
2-1-5混凝土中鋼筋腐蝕之時期……………………………….10
2-1-6鋼筋腐蝕檢測…………………………………………….12
2-2 電化學技術應用於鋼筋混凝土之腐蝕防治………...……15
2-2-1陰極防蝕原理.…………….………………...…….......….16
2-2-2陰極防蝕之種類………………………………………….20
2-2-3陰極防蝕工法之優缺點………………………………….27
2-2-4陰極防蝕系統測試與驗收……………………………….28
第三章 實驗計畫
3-1 實驗變數…………………………………………………...31
3-2 實驗材料……………………...……………………………32
3-3 試驗設備………………………………………………...…38
3-4 試體製作及試驗方法…………………………………..….45
3-5 試驗裝置與量測裝置……………………………………...47
3-6 力學性質試驗……………………………………………...49
3-7 物理性質試驗……………………………………………...49
第四章 結果與討論
4-1 前言……………………………………………………...…51
4-2 抗壓強度………………………………………………...…51
4-3 四極式電阻試驗……………...……………………………52
4-4 鋼筋電位去極化………………...…………………………54
4-4-1含水量與鋼筋去極化量之關係….………........................58
4-4-2水灰比與鋼筋去極化量之關係…...……………………..61
4-4-3電流密度與鋼筋去極化量之關係…..……..….................63
4-4-4通電時間與去極化量之關係…....……..………………...66
第五章 結論與建議
5-1 結論……………………………………………….………..78
5-2 建議………………………………………………………...80
參考文獻………………………………………………………..……..81
參考文獻

1. 國立中央大學災害防治研究中心,“橋樑設計維修支援系統之建立(Ⅱ)國內現有自然災害危害評估及防治方法之整合研究”,pp.3-137~3-160,1999.
2. ACI Committee 222,“Corrosion of Metals in Concrete”,(ACI 222R-85) (Reapproved 1989), American Concrete Insitute, Detroit, pp.30.1985.
3. 化學工業出版社“腐蝕與防護手冊:化工生產裝置的腐蝕與防護”, pp.567.1991.
4. P. K. Mehta, Concrete-Structure, Properties and Materials, pp.151-154, prentice-Hall, Inc., N. J., 1986.
5. S. Mindess and J. F. Young,Concrete,Prentice-Hall, Inc., N. J., 1981.
6. 蔡騰龍 , ”工業冷卻水系統腐蝕形成之原理與抑制”, 防蝕工程, p.p.23-33, 73年8月.
7. 黃兆龍, “混凝土性質與行為”, 詹氏書局, 1997.
8. P. K. Mehta, “Concrete Structure, Properties and Materials”, Prentice Hall, 1993.
9. Schiessl, P., “Corrosion of Steel in Concrete”, RILEM, 1988.
10. Tuutti K. “Corrosion of Steel in Concrete”,CBI, Research Report 4:82, Stockholm, Sweden,(1982).
11. N.S.Berke, “Evaluation of Concrete Corrosion Inhibitors,” Proceedings of the 12th international Corrosion Congress, NACE, Houston, Texas, pp.3271-3286,1993.
12. Stern Milton, “A Method for Determining Corrosion Rates from Linear Polarization Data” ,1958.
13. ASTM G3-89 “Standard Practice for Convention Applicable to Electrochemical Measurement in Corrosion Testing” ,1994.


14. S. C. Das, “Cathodic Protection Criteria for Steel in Concrete-Some Theoretical and Practical Considerations”, Corrosion and Corrosion Protection of Steel in Concrete, Vol. 2, Edited by N. Swamy, Shoffield Academic Press, 1994.
15. 陳桂清、羅俊雄等,「港灣構造物陰極防蝕準則訂定(草案)研究」,交通部運輸研究所與中華民國防蝕工程學會合作辦理,民國91年3月。
16. L.Bertolini, F.Bolzoni, p.pedeferri, “Cathodic Protection and Cathodic Prevention in Concrete:Principles and Applications”, journal of Applied Electrochemistry 28 (1992)1321-1331.
17. Rp0290-00, “Standard Recommended Practice for Cathodic Protection of Reinforcing Steel in Atmospherically Exposed Concrete Structures”, 2000,National Association of Corrosion Engineers,U.S.A.
18. Broomfield, J.P.,“Corrosion of Steel in Concrete”,First Edition, 1997.
19. Morris, W., Moreno, E. I. and Sauges, A., “Practical Evaluation of Resistivity of Concrete in Test Cylinders a Wenner Array Probe”, Cement and Concrete Research, Vol.26, No.12, pp.1779~1787, 1996.
20. Morris, W., Moreno, E. I. and Sauges, A., “Practical Evaluation of Resistivity of Concrete in Test Cylinders a Wenner Array Probe”, Cement and Concrete Research, Vol.26, No.12, pp.1779~1787, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top