跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡媛伃
研究生(外文):Yuan-Yu Cai
論文名稱:微生物燃料電池處理污水與葡萄糖溶液之產電潛能
論文名稱(外文):Electricity Generation in Microbial Fuel Cells from Wastewater and Glucose
指導教授:李志源李志源引用關係
指導教授(外文):Chi-Yuan Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:微生物燃料電池功率密度庫侖效率載具電極金屬還原菌
外文關鍵詞:microbial fuel cellpower densitycoulomb efficiencymediatorelectrodemetal-reducing bacteria
相關次數:
  • 被引用被引用:3
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究進行無載具之微生物燃料電池產電試驗。試驗內容分別使用污水與葡萄糖合成液為燃料,以石墨氈作為電極,生活污水中之細菌作為菌種來源,且各試程之水利停留時間為12小時。當以葡萄糖為燃料,在名義初始濃度為 (nominal concentration) 130、260及585 mg COD/L之負荷下,平均輸出功率密度分別為2.5、6.2及2.3 mW/m2,庫侖效率分別為7、5及2 %。上述結果顯示,平均功率密度與進流COD濃度相關性不大,而庫侖效率則隨著進流COD濃度增加而降低。當以污水為燃料,在名義初始濃度為122、294及580 mg COD/L之負荷下,平均功率密度分別為0.6、1.0及2.0 mW/m2,庫侖效率則分別為5、4及2 %。結果顯示,平均功率密度會隨著進流COD濃度越高而增加。而庫侖效率則隨著進流COD濃度越高而降低。以試驗所得結果與文獻值相比較,其產電成果較低。可能原因為本試驗未添加載具、未植種特定金屬還原菌及未使用鉑金電極材質。所以若針對上述操作條件加以改良,預計能得到較理想之產電量。
In this study, we examined power generation in mediator-less microbial fuels cells (MFCs) from glucose and wastewater. Bacteria present in domestic wastewater were used as the biocatalyst. For each fuel, three influent concentrations were tested at hydraulic retention time of 12 hours. While nominal concentrations of glucose were 130, 260 and 585 mg COD/L, the obtained average power densities were 2.5, 6.2 and 2.3 mW/m2 and the coulombic efficiencies were 7, 5 and 2 % respectively. The results indicated that the power density was unrelated to the influent COD concentration but the coulombic efficiency increased with the increasing concentration of influent COD. For wastewater, when nominal concentrations were 122, 294 and 580 mg COD/L, the average power densities were 0.6, 1.0 and 2.0 mW/m2 and the coulombic efficiencies were 5, 4 and 2 % respectively. These Results implied that the power density increased and the coulomb efficiency decreased as influent COD concentration increased. As is compared with those reported in literature, the power output in our study is low. The possible reasons can be attributed to that we did not add mediators, did not supplement specific metal-reducing bacteria, and did not use electrode coated with platinum. For increasing power output, future research should seek to understand the mechanism of bioelectricity generation and to optimize the operating condition of MFC.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 前言 1
1.1 研究動機 1
1.2 研究目的與內容 2
第二章 文獻回顧 3
2.1 微生物燃料電池發展 3
2.2 微生物燃料電池之介紹 4
2.3 微生物燃料電池之三種系統 5
2.3.1 海岸底泥微生物燃料電池系統 5
2.3.2 單純有機物燃料之電池系統 6
2.3.3 廢水燃料電池系統 8
2.4 影響微生物燃料電池效能之操作參數 9
第三章 實驗材料與方法 14
3.1 微生物之來源 14
3.2 燃料與電解液 14
3.2.1 燃料 14
3.2.2 陰極電解液 15
3.3 實驗方法 15
3.3.1 微生物燃料電池之組件前處理 15
3.3.2 微生物燃料電池構造 16
3.3.3 電力產生試驗 16
3.4 分析方法 17
3.4.1 分析試驗 17
3.4.2 檢量線製作 22
3.4.3 電能分析 25
3.5 實驗儀器設備 26
第四章 結果與討論 29
4.1 污水基本性質 29
4.2 以葡萄糖為燃料之產電試驗 29
4.2.1 Test Ⅰ–葡萄糖名義初始濃度為130 mg COD/L 29
4.2.2 Test Ⅱ–葡萄糖名義初始濃度為260 mg COD/L 31
4.2.3 Test Ⅲ–葡萄糖名義初始濃度為585 mg COD/L 32
4.2.4 比較Test Ⅰ、Ⅱ與Ⅲ之產電潛能及試驗結果 34
4.2.5 試驗結果與文獻比較 34
4.3 以污水為燃料之產電試驗 36
4.3.1 Test Ⅳ–污水名義初始濃度為294 mg COD/L 36
4.3.2 Test Ⅴ–污水名義初始濃度為580 mg COD/L 37
4.3.3 Test Ⅵ–污水名義初始濃度為122 mg COD/L 38
4.3.4 比較Test Ⅳ、Ⅴ與Ⅵ之產電潛能及試驗結果 39
4.3.5 試驗結果與文獻比較 39
第五章 結論與建議 42
5.1 結論 42
5.2 建議 43
參考文獻 44
環檢所網站 Http://www.niea.gov.tw/

Allen, R. M., and Bennetto, H. P. Microbial fuel cells – electricity production from carbohydrates. Appl. Biochem. Biotechnol. 1993, 39(40), 27-40.

Bennetto, H. P., Dew, M. E., Stirling, J. L., and Tanaka, K. Rates of reduction of phenothiazine redox dyes by E. coli. Chem. Ind. 1981, 7, 776-778.

Bond, D. R., and Lovely, D. R. Electricity production by Geobacter
sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69, 1548-1555.

Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002, 295, 483-485.

Chaudhuri, S. K., and Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229-1232.

Dealney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. B., Stirling, J. L., and Thurston, C. F. Electron-transfer coupling in microbial fuel cells. 2.
Performance of fuel cells containing selected microorganism-mediator-sub-closed circuit to an open circuit (arrow 3), and when the circuit was converted from an open circuit to a closed circuit without external resistance (arrow 4). strate combinations. Chem. Tech. Biotechnol. 1984, 34B, 13-27.

Emde, R., and Schink, B. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl. Environ.
Microbiol. 1990, 56(9), 2771-2776.

Emde, R., Swain, A., and Schink, B. Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl. Microbiol. Biotechnol. 1989, 32, 170-175.

Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J. Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens. Bioelectron. 2003, 18, 327-338.

Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem.2004, 39, 1007-1012.

Karube, I., Ikemoto, H., Kajiwara, K., Tamiya, E., and Matsuok, H. Photochemical energy conversion using immobilized bluegreen algae. J. Biotechnol. 1986, 4, 73-80.

Katz, E., Shipway, A. N., and Willner, I. in Handbook of Fuel Cells—Fundamentals, Technology, Applications.n2003, 1(4), 21, 355-381

Kaufmann, F., and Lovley, R. Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J. Bacteriol. 2001, 183(15), 4468-4476.

Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., and Tatsumi, H. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Technol. 1999, 13, 475-/478.

Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., and Kim,
B. H. A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefacians. Enzyme Microbiol. Technol. 2002, 30, 145-152.

Kim, N., Choi, Y., Jung, S., and Kim, S. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 2000, 70(1), 109-114.

Leang, C., Coppi, M. V.,and Lovley, D. R. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.
J. Bacterial. 2003, 185(7), 2096-2103.

Liu, H., and Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38, 4040-4046.

Liu, H., Ramnarayanan, R., and Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 2004, 38, 2281-2285.

Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M. Electricity generation from cysteine in a microbial fuel cell. Water Research. 2005, 39, 942-952.

Lovley, D. R., and Phillips, E. J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. and Environ. Microbiol. 1986, 51, 683-689.

Magnuson, T. S., Hodges-Myerson, A. L., and Lovley, D. R. Characterization of the membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+-reducing bacterium Geobacter sulfurreducens. FEMSMicrobiol. Lett. 2000, 185, 205-211.

Mano, N., Mao, F., and Heller, A. A miniature biofuel cell operating in physiological buffer. J. Am. Chem. Soc. 2002, 124, 12962-12963.

Mano, N., Mao, F. and Heller, A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 2003, 125, 6588–6594.

Min, B., and Logan, B. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 2004, 38, 5809-5814.

Oh, S. Min, B., and Logan, B. E. Cathode performance as a Factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38, 4900-4904.

Park, D. H., and Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 2000, 66, 1292-1297.

Park, D. H., and Zeikus, J. G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 2003, 81(3), 348-355.

Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim,
M., Chang, I. S., Park, Y. K., and Chang, H. I. A novel electrochemically
active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe. 2001, 7, 297-306.

Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete,
W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70, 5373-5382.

Rabaey, K., Lissens, G.,Siciliano, S. D., and Verstraete, W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25, 1531-1535.

Rawson, D. M., and Willmer, A. J. Whole-cell biosensors for environmental monitroing. Biosens. Bioelectron. 1989, 4, 299-311.

Reimers, C. E., Tender, L. M., Ferig, S., and Wang, W. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 2001, 35, 192-195.

Roller, S. D., Benetto, H. P., Delanvy, G. M., Mason, J. R., Stirling, J. L., and Thurston, C. F. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Technol. Biotechnol . 1984, 34B, 3-12.

Stirling, J. L., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller,
S. B., Tanaka, K., and Thurston, C. F. Microbial fuel cells. Biochem. Soc. Trans. 1983, 11(4), 451-453.

Suzuki, S., Karube, I., and Matsunaga, T. Application of a biochemical fuel cell to wastewater. Biotechnol. Bioeng. Symp. 1978, 8, 501-511.
Tayhas, G., Palmore, R., and Whitesides, G. M. In Enzymatic Conversion of Biomass for Fuels Production. Am. Chem. Soc. Washington, DC, 1994, 271-290.

Tayhas, G., and Palmore, R. Bioelectric power gereration. Trends Biotechnol. 2004, 22, 99-100.

Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J., and Lovley, D. R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20(8), 821-825.

Thurston, C. F., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., and Stirling, J. L. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 1985, 131, 1393-1401.

Williams, K. R. In An Introduction to Fuel Cells. Elsevier, Amsterdam, 1966, p. 248.

Wingard, L. B., Shaw, C. H., and Castner, J. F. Bioelectrochemical fuel cells. Enzyme Microb. Technol. 1982, 4, 137-/142.

Yao, S. J., Appleby, A. J., Geise, A., Cash, H. R., and Wolfson, S. K. Anodic oxidation of carbohydrates and their derivatives in neutral saline solution. Nature. 1969, 224, 921-922.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊