|
環檢所網站 Http://www.niea.gov.tw/
Allen, R. M., and Bennetto, H. P. Microbial fuel cells – electricity production from carbohydrates. Appl. Biochem. Biotechnol. 1993, 39(40), 27-40.
Bennetto, H. P., Dew, M. E., Stirling, J. L., and Tanaka, K. Rates of reduction of phenothiazine redox dyes by E. coli. Chem. Ind. 1981, 7, 776-778.
Bond, D. R., and Lovely, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69, 1548-1555.
Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002, 295, 483-485.
Chaudhuri, S. K., and Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229-1232.
Dealney, G. M., Bennetto, H. P., Mason, J. R., Roller, S. B., Stirling, J. L., and Thurston, C. F. Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-sub-closed circuit to an open circuit (arrow 3), and when the circuit was converted from an open circuit to a closed circuit without external resistance (arrow 4). strate combinations. Chem. Tech. Biotechnol. 1984, 34B, 13-27.
Emde, R., and Schink, B. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl. Environ. Microbiol. 1990, 56(9), 2771-2776.
Emde, R., Swain, A., and Schink, B. Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl. Microbiol. Biotechnol. 1989, 32, 170-175.
Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J. Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens. Bioelectron. 2003, 18, 327-338.
Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., and Kim, B. H. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem.2004, 39, 1007-1012.
Karube, I., Ikemoto, H., Kajiwara, K., Tamiya, E., and Matsuok, H. Photochemical energy conversion using immobilized bluegreen algae. J. Biotechnol. 1986, 4, 73-80.
Katz, E., Shipway, A. N., and Willner, I. in Handbook of Fuel Cells—Fundamentals, Technology, Applications.n2003, 1(4), 21, 355-381
Kaufmann, F., and Lovley, R. Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J. Bacteriol. 2001, 183(15), 4468-4476.
Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., and Tatsumi, H. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Technol. 1999, 13, 475-/478.
Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., and Kim, B. H. A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefacians. Enzyme Microbiol. Technol. 2002, 30, 145-152.
Kim, N., Choi, Y., Jung, S., and Kim, S. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 2000, 70(1), 109-114.
Leang, C., Coppi, M. V.,and Lovley, D. R. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacterial. 2003, 185(7), 2096-2103.
Liu, H., and Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38, 4040-4046.
Liu, H., Ramnarayanan, R., and Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 2004, 38, 2281-2285.
Logan, B. E., Murano, C., Scott, K., Gray, N. D., and Head, I. M. Electricity generation from cysteine in a microbial fuel cell. Water Research. 2005, 39, 942-952.
Lovley, D. R., and Phillips, E. J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. and Environ. Microbiol. 1986, 51, 683-689.
Magnuson, T. S., Hodges-Myerson, A. L., and Lovley, D. R. Characterization of the membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+-reducing bacterium Geobacter sulfurreducens. FEMSMicrobiol. Lett. 2000, 185, 205-211.
Mano, N., Mao, F., and Heller, A. A miniature biofuel cell operating in physiological buffer. J. Am. Chem. Soc. 2002, 124, 12962-12963.
Mano, N., Mao, F. and Heller, A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 2003, 125, 6588–6594.
Min, B., and Logan, B. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 2004, 38, 5809-5814.
Oh, S. Min, B., and Logan, B. E. Cathode performance as a Factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38, 4900-4904.
Park, D. H., and Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 2000, 66, 1292-1297.
Park, D. H., and Zeikus, J. G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 2003, 81(3), 348-355.
Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., Chang, I. S., Park, Y. K., and Chang, H. I. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe. 2001, 7, 297-306.
Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70, 5373-5382.
Rabaey, K., Lissens, G.,Siciliano, S. D., and Verstraete, W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25, 1531-1535.
Rawson, D. M., and Willmer, A. J. Whole-cell biosensors for environmental monitroing. Biosens. Bioelectron. 1989, 4, 299-311.
Reimers, C. E., Tender, L. M., Ferig, S., and Wang, W. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 2001, 35, 192-195.
Roller, S. D., Benetto, H. P., Delanvy, G. M., Mason, J. R., Stirling, J. L., and Thurston, C. F. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Technol. Biotechnol . 1984, 34B, 3-12.
Stirling, J. L., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. B., Tanaka, K., and Thurston, C. F. Microbial fuel cells. Biochem. Soc. Trans. 1983, 11(4), 451-453.
Suzuki, S., Karube, I., and Matsunaga, T. Application of a biochemical fuel cell to wastewater. Biotechnol. Bioeng. Symp. 1978, 8, 501-511. Tayhas, G., Palmore, R., and Whitesides, G. M. In Enzymatic Conversion of Biomass for Fuels Production. Am. Chem. Soc. Washington, DC, 1994, 271-290.
Tayhas, G., and Palmore, R. Bioelectric power gereration. Trends Biotechnol. 2004, 22, 99-100.
Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J., and Lovley, D. R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20(8), 821-825.
Thurston, C. F., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., and Stirling, J. L. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 1985, 131, 1393-1401.
Williams, K. R. In An Introduction to Fuel Cells. Elsevier, Amsterdam, 1966, p. 248.
Wingard, L. B., Shaw, C. H., and Castner, J. F. Bioelectrochemical fuel cells. Enzyme Microb. Technol. 1982, 4, 137-/142.
Yao, S. J., Appleby, A. J., Geise, A., Cash, H. R., and Wolfson, S. K. Anodic oxidation of carbohydrates and their derivatives in neutral saline solution. Nature. 1969, 224, 921-922.
|