跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建宏
研究生(外文):Jian-Hong Chen
論文名稱:微生物燃料電池處理污水與醋酸溶液之產電潛能
論文名稱(外文):Electricity Generation in Microbial Fuel Cells from Wastewater and Acetate
指導教授:李志源李志源引用關係
指導教授(外文):Chi-Yuan Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:73
中文關鍵詞:微生物燃料電池COD去除率庫倫效率最大功率密度初沉池上澄液醋酸溶液
外文關鍵詞:microbial fuel cellCOD removal efficiencyCoulombic efficiencypower densitysupernatant of primary settling tankacetate
相關次數:
  • 被引用被引用:3
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究組裝並測試連續流式雙槽微生物燃料電池系統之產電潛能。電池之陰極槽以磷酸鹽做為緩衝液,氯化鈉做為電解質;陽極槽中催化反應之微生物取自污水場之初沉池上澄液,並以初沉池上澄液,或實驗室配製人工合成的醋酸溶液做為燃料。每種燃料依初始進流濃度區分為三種試程,操作之水力停留時間均為16小時。結果顯示,當以污水為燃料時,在試程W I(初始進流濃度150 mg COD/L),W II(300 mg COD/L)及W III(600 mg COD/L),所得 COD去除率分別為39,42與73 %,庫倫效率為3.4、3.1與1.5 %,最大功率密度則為3.2、4.5與5.5 mW/m2。當以醋酸為燃料,在試程A I(130 mg COD/L)、A II(220 mg COD/L)及A III(600 mg COD/L),所得COD去除率分別為17、21與3 %,庫倫效率為15.0、10.4與19.8 %,最大功率密度為2.8、6.9與1.8 mW/m2。由上述之實驗結果,我們發現以污水為燃料時,COD去除率與最大功率密度皆會隨進流濃度增加而上升,而庫倫效率則是隨之下降。目前本研究所設計之微生物燃料電池輸出功率不高,未來需在設計與操作上繼續改進。
This study investigates the electricity generation in microbial fuel cells (MCFs) from wastewater and acetate. The MFC consists of two chambers separated by a proton exchange membrane. The cathode chamber contained electrolyte solution, and carbon paper where microorganisms used for catalyzing reaction, carbon paper, and fuel were contained in anodic chamber. Power production for each fuel was tested for three runs, each with a particular influent concentration continuously fed to the MFC that operated at 16 hours of hydraulic retention time. While the influent concentrations of supernatant from sewage primary settling tank were 150, 300, and 600 mg COD/L, respectively, we obtained COD removal efficiencies 39, 42, and 73 %, Coulombic efficiencies 3.4, 3.1, and 1.5 %, and power densities 2.8, 6.9, and 1.8 mW/m2. When acetate was used as fuel, the performance of MFC were that COD removal efficiencies 17, 21, and 3 %, Coulombic efficiencies 15.0, 10.4, and 19.8 %, and power densities 2.8, 6.9, and 1.8 mW/m2, at nominal influent concentrations of 130, 220, and 600 mg COD/L, respectively. The above results indicated the COD removal percentage and power output increase, but Coulombic recoveries decreases, with the increasing influent concentration of sewage. This study suggested that future research should seek to increase the power generation through better design and operation of microbial fuel cell.
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 3
2.1 微生物燃料電池的發展歷史 3
2.2 微生物燃料電池之簡介 5
2.3 微生物在燃料電池上的作用 5
2.4 質子交換膜之原料與原理 6
2.5 微生物燃料電池之種類 6
2.5.1 底泥微生物燃料電池 6
2.5.2 雙槽微生物燃料電池 7
2.5.3 單槽微生物燃料電池 7
2.5.3.1 有膜微生物燃料電池 8
2.5.3.2 無膜微生物燃料電池 8
2.6 影響微生物燃料電池效率的因素 8
2.6.1 電極因素 8
2.6.2 溶液因素 9
2.6.2.1 陽極pH值 10
2.6.2.2 溶氧量 10
2.6.2.3 電解液 11
第三章 實驗材料與方法 13
3.1 燃料之配製 13
3.1.1 污水進流溶液 13
3.1.2 醋酸進流溶液 13
3.2 實驗內容 14
3.2.1 微生物燃料電池之構造 14
3.2.2 微生物燃料電池之操作方法 14
3.2.3 微生物燃料電池之氧化還原電位(ORP) 15
3.3水樣基本性質分析 16
3.3.1 水質檢測 16
3.3.2 檢量線製作 19
3.4 實驗藥品與分析儀器 21
3.4.1 實驗藥品 21
3.4.2 分析儀器 21
第四章 結果與討論 24
4.1 污水 24
4.1.1 污水基本性質 24
4.1.2 各試程之COD去除率與庫倫效率 24
4.1.2.1 試程W I(進流濃度:150 mg COD/L) 24
4.1.2.2 試程W II(進流濃度:300 mg COD/L) 25
4.1.2.3 試程W III(進流濃度:600 mg COD/L) 26
4.1.3 各試程之氧化還原電位 26
4.1.4 各試程於不同電阻值下,電流與電壓、功率密度之關係 27
4.2 醋酸 27
4.2.1 各試程之COD去除率與庫倫效率 27
4.2.1.1 試程A I(進流濃度:130 mg COD/L) 27
4.2.1.2 試程A II(進流濃度:220 mg COD/L) 28
4.2.1.3 試程A III(進流濃度:600 mg COD/L) 29
4.2.2 各試程之氧化還原電位 30
4.2.3 各試程於不同電阻值下,電流與電壓、功率密度之關係 30
4.3 綜合討論 31
4.3.1 污水燃料電池與文獻之比較 31
4.3.2 醋酸燃料電池與文獻之比較 32
4.3.3 陰極曝氣量對燃料電池的影響 32
第五章 結論與建議 34
5.1 結論 34
5.2 建議 35
第六章 參考文獻 36
中華民國行政院環境保護署-環境檢驗所網站(網址:http://www.niea.gov.tw/)
台灣杜邦網站(網址:http://www.dupont.com.tw/5-02.htm#1)
謝乃賢,2002,電世界的奇葩,曉園出版社有限公司,台北。
Allen, R. M. and Bennetto, H. P., (1993) "Microbial fuel cells-electricity production from carbohydrates." Appl. Biochem. Biotechnol., 39/40, 27-40.
Bennetto, H. P., Dew, M. E., Stirling, J. L. and Tanaka, K., (1981) "Rates of reduction of phenothiazine redox dyes by E. coli." Chem. Ind., 7, 776-778.
Bennetto, H. P., Mason, J. R., Stirling, J. L. and Thurston, C. F., (1987) "Research and development in non-mechanical electrical power sources." In Power Sources 11 (ed. Pearce, L. J.), 373-380.
Bond, D. R. and Lovley, D. R., (2003) "Electricity production by Geobacter sulfurreducens attached to electrodes." Appl. Environ. Microbiol., 69, 1548-1555.
Chaudhuri, S. K. and Lovley, D. R., (2003) "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells." Nat. Biotechnol., 21, 1229-1232.
Cole, K. S., (1972) In Membranes, Ions and Impulses, University of California Press.
Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. and Kim, H. J., (2003) "Operational parameters affecting the performance of a mediator-less microbial fuel cell." Biosen. Bioelectron., 18, 327-334.
Jang, J.K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H., (2004) "Construction and operation of a novel mediator- and membrane-less microbial fuel cell." Process Biochem., 39, 1007-1012.
Karube, I., Ikemoto, H., Kajiwara, K., Tamiya, E. and Matsuok, H., (1986) "Photochemical energy conversion using immobilized bluegreen algae." J. Biotechnol., 4, 73-80.
Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J. and Phung, N. T., (2004) "Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell." Appl. Microbiol. Biotechnol., 63, 672-681.
Kim, N., Choi, Y., Jung, S. and Kim, S., (2000) "Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris." Biotechnol. Bioeng., 70, 109-114.
Liu H., Cheng, S. and Logan, B. E., (2005) "Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell." Environ. Sci. Technol., 39, 658-662.
Liu, H. and Logan, B. E., (2004) "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane." Environ. Sci. Technol., 38, 4040-4046.
Liu, H., Ramnarayanan, R. and Logan, B.E., (2004) "Production of electricity during wastewater treatment using a single chamber microbial fuel cell." Environ. Sci. Technol., 38, 2281-2285.
Lovley, D. R. and Phillips, E. J. P., (1986) "Organic matter mineralization with reduction of ferric iron in anaerobic sediments." Appl. Environ. Microbiol., 51, 683-689.
Min, B. and Logan, B. E., (2004) "Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell." Environ. Sci. Technol., 38, 5809-5814.
Oh, S., Min, B. and Logan B. E., (2004) "Cathode performance as a factor in electricity generation in microbial fuel cells." Environ. Sci. Technol. 38, 4900-4904.
Park, D. H. and Zeikus, J. G., (2000) "Electricity generation in microbial fuel cells using neutral red as an electronophore." Appl. Environ. Microbiol., 66, 1292-1297.
Park, D. H. and Zeikus, J. G., (2003) "Improved fuel cell and electrode designs for producing electricity from microbial degradation." Biotechnol. Bioeng., 81, 348-355.
Potter, M. C., (1911) Proc. Roy. Soc. London, Ser. B., 84, P.260.
Rabaey, K. and Verstraete, W., (2005) "Microbial fuel cells novel biotechnology for energy generation." Trends. Biotechnol., 23, 291-298.
Reimers, C. E., Tender, L. M., Fertig, S. and Wang, W., (2001) "Harvesting energy from the marine sediment-water interface." Environ. Sci. Technol., 35, 192-195.
Rittmann B. E. and McCarty P. L. (2001) Environmental Biotechology: Principes and Applications. New York, McGraw-Hill.
Rohrback, G. H., Scott, W. R. and Canfield, J. H., (1962) "Biochemical fuel cells." Proc. 16th Ann. Power Sources Conf., 18-22.
Scholz, F. and SchrÖder, U., (2003) "Bacterial batteries." Nat. Biotechnol., 21, 1151-1152.
Shukla, A. K., Suresh, P., Berchmans, S. and Rajendran, A., (2004) "Biological fuel cells and their applications." Curr. Sci., 87, 455-468.
Tayhas, G. and Palmore, R., (2004) "Bioelectric power generation." Trends. Biotechnol., 22, 99-100.
Thurston, C. F., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D. and Stirling, J. L., (1985) "Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine mediated Proteus vulgaris fuel cell and its relation to coulombic yields." J. Gen. Microbiol., 131, 1393-1401.
Williams K. R., (1966) "An Introduction to Fuel Cells." Elsevier, Amsterdam, 156-181.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊