1. 日本道路協會,道路橋示方書同解說,V耐震設計篇(1990)。
2. 日本道路協會,道路橋示方書同解說,V耐震設計篇(1996)。
3. 王暉文(1994),「有限差分法用於台北地區深開挖工程分析之研究」,國立台灣科技大學營建工程技術研究所碩士論文。4. 尹承遠、翁勳政、吳仁明、歐陽湘(1994),,「台灣土石流之特性」」, 工程地質技術應用研討會論文專集,pp.70∼90。
5. 江永哲、鄭瑞昌(1986),「土石流發生特性之初步研究」,中華水土保持學報,22(2),pp.21∼37。6. 江英政(1998),,「土石流危險溪流判定之研究」」,國立台灣大學土木工程研究所碩士論文。
7. 何敏龍(1997) ,「土石流發生機制與流動制止結構物之研究」,,國立台灣大學土木工程研究所碩士論文。
8. 李毅宏(2004),「土石流預警與降雨關係之研究」,國立中興大學水土保持學系碩士論文。9. 李磑柏(2000),「以單梁模式分析深開挖引致之擋土壁體變形」,國立台灣科技大學營建工程技術研究所碩士論文。10. 吳明峰(1999),「軟弱粘土深開挖地表沈陷之分析與探討」,國立台灣科技大學營建工程技術研究所碩士論文。11. 吳昭慧、歐章煜(2000),「台北盆地T2區深開挖引致之壁體變形與地表沈陷」,中國土木水利學刊,12(3),pp.499∼510。
12. 吳偉特(1979),「台灣地區砂性土壤液化潛能之初步分析」,土木水利,6(2),pp.39∼70。13. 吳積善、康志成、田連權、章書成 (1990),”雲南蔣家溝泥石流觀測研究”,中國大陸科學出版社。
14. 林美聆、王幼行(1999) ,「地表水及地下水對土石流破壞型態之影響」,地工技術,第74期,pp.29∼38。
15. 林美聆、詹士勝(1995) ,「地理資訊系統應用於土石流溪流危險度判定之初步研究」,,中國土木水利工程學刊,7(4),pp.475∼486。
16. 林炳森、馮賜陽、李俊明(1993),「礫石層土石流發生特性之研究」,中華水土保持學報,24(1),pp.55∼64。17. 林耀煌(1982),「高層建築基礎開挖施工法與設計實例」,長松出版社。
18. 高子劍(2001),「機率式土石流臨界降雨線之研究」,國立台灣大學農業工程學研究所碩士論文。19. 范正成、姚正松(1997),「台灣東部地區土石流發生的水文及地文條件之初步研究」,八十六年度農業工程研討會,台南市,pp.525-531。
20. 唐雨耕(1998),「土壤參數識別應用於深開挖分析之研究」,國立台灣科技大學營建工程技術研究所博士論文。21. 陳永義(1997),「逆築工程施工規劃與管制研究行為之研究」,國立台灣科技大學營建工程技術研究所碩士論文。22. 陳明棠(2002),「台灣北部地區土石流潛勢溪流危險度與預警分析之研究-類神經網路與模糊理論之應用」,國立台灣大學土木工程研究所碩士論文。23. 陳晉琪(2000),「土石流發生條件及發生機率之研究」,國立成功大學水利及海洋工程學系碩士論文。24. 陳俶季、李煜仕、張延任、盧致仁(2005),「以整合式模糊群聚類神經網路評估土壤液化」,中國土木水利工程學刊,17(2),pp.335∼347。25. 陳俶季、張固宇、蔡宜峰、李煜仕、張延任(2002),「模糊自適應共振類神經網路在大地工程之應用」,中國土木水利工程學刊,14(3),pp.405∼417。26. 許琦、李德河(1997),「高雄捷運紅橘線地質與其鄰近開挖沉陷特性」,捷運施工及托底工程研討會,pp.113∼116。
27. 張東炯(2000),「類神經網路於土石流發生預測模式之研究」,台灣水利,48(2),pp.92∼98。
28. 張紘愷(2003),「應用分群技術於資料探勘之研究」,國立高雄應用科技大學電子與資訊工程研究所碩士論文。29. 張基礎(2000),「深開挖引致之地表沉陷特性及其預測模式之研究」,國立成功大學土木工程研究所碩士論文。30. 黃宏斌(1991),「土石流之發生模式探討」」,中國農業工程學報,37(4),pp.35∼47。31. 曾國源(2003),「以類神經網路架構土石流預警系統之研究」,國立台灣大學生物環境系統工程學系暨研究所碩士論文。32. 游繁結、陳重光(1987),「豐丘土石流災害之探討」,中華水土保持學報,18(1),pp.76∼92。33. 游繁結(1987),「土石流之基礎研究(I):土石流發生機制之研究」,中華水土保持學報,18(2),pp.28∼40。34. 游繁結、賴建信(1994),「不同粒徑組成與土石流發生之關係探討」,中華水土保持學報,25(1),pp.25∼31。35. 游繁結(1997),「賀伯颱風造成之土石流案例研討(上)」,現代營建,第209期,pp.9∼20。36. 游繁結(1997),「賀伯颱風造成之土石流案例研討(下)」,現代營建,第210期,pp.19∼23。37. 詹尚宏(1992),「台北市區深開挖之數值分析」,國立台灣科技大學營建工程技術研究所碩士論文。38. 詹君治、冀樹勇、陳錦清(2000),「類神經網路於深開挖壁體變形之預測」,中興工程,第六十九期,pp.21∼38。39. 詹錢登 (1994),「土石流危險度之評估與預測」,中華水土保持學報,25(2),第95∼102頁。40. 詹錢登、陳晉琪(2000),「土石流發生臨界條件之理論分析」,力學系列B,16(2),pp.119∼129。41. 蕭景福(1997),「軟弱黏土對深開挖擋土連續壁之研究」,國立台灣海洋大學河海工程研究所碩士論文。42. 賴宏源(2000),「九二一集集地震中部地區土壤液化案例之研析」,國立成功大學土木工程所碩士論文。43. 謝正倫、江志浩、陳禮仁 (1992),「花東兩縣土石流現場調查與分析」,中華水土保持學報,23(2),pp.109∼122。44. 謝正倫、陳禮仁(1993),,「土石流預警系統之研究(Ⅱ) 」,行政院農委會,研究試驗報告第 139 號。
45. 謝正倫、陳禮仁(1993b),「土石流潛在溪流之危險度的評估方法 」,中華水土保持學報,24(1),pp.13∼19頁。46. 謝正倫、張東炯(1996),「中部地區土石流現場調查與分析」,農業工程學報,43(3),pp.31∼46。
47. 謝正倫、陸源忠、游保杉、陳禮仁(1995),「土石流發生臨界降雨線設定方法之研究」,中華水土保持學報,26(3),pp.167∼172。48. 謝百鉤、歐章煜(2000),「利用擬塑性模式於黏土不排水條件之深開挖分析」,中國土木水利學刊,12(4),pp.703∼713。
49. 冀樹勇、陳錦清、王建智(1999),「RIDO程式之最佳化土層參數之探討」,地工技術,第75期,pp.61∼67。50. Abu, K. M. A.,(1998),“ General Regression Neural Networks for Driven Piles in Cohesionless Soils, ” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 12, pp. 177∼1185 .
51. Adeli, H., and Yeh, C.,(1989),“ Perception Learning in Engineering Design, ” Microcomputers in Civil Engineering, Vol. 4, No. 4, pp. 247∼256 .
52. Anderson, J. A., and Rosenfeld, E.,(1989),” Neurocomputing: Foundations of Research, ” Cambridge, MA: MIT Press.
53. Bezdek, J. C.,(1973),“ Fuzzy mathematics in pattern classification, ” ph. D. dissertation, Cornell University, Ithaca, N.Y.
54. Brown, D. A., and Berke, L.,(1991),“ Computational Simulation of Composite Ply Micromechanics Using Artificial Neural Networks, ” Microcomputers in Civil Engineering, Vol. 6, pp.87∼97.
55. Caine, N. (1980), " The Rainfall Intensity-During Control of Shallow Landslides and Debris Flows, " Geografiska Annaler, Vol.62, pp.23-27.
56. Cannon, S. H., S. D. Ellen (1985), " Rainfall Conditions for Abundant Debris Avalanches in the San Francisco Bayegion California, " California Geology, Vol. 38, No.12, pp.267-272.
57. Chen, J. W., and Chen, C. Y.,(1997),“ A Fuzzy Methodology for Evaluation of the Liquefaction Potential, ” Microcomputers in Civil Engineering, Vol. 12, No. 3, pp. 193∼204 .
58. Chern, S. G., Hu, R. F., Chang, Y. J., and Tsai, I. F.,(2002),“ Fuzz-ART Neural Networks for Predicting Chi-Chi Earthquake Induced Liquefaction in Yuan-Lin Area, ” Journal of Marine Science and Technology,Vol. 10, No. 1,.
59. Chern, S. G., Lee, Y. S., Chang, Y. J. and Hu, R. F.,(2005),” A Research Combines Nondestructive Testing and A Neuro-Fuzzy System for Evaluating Rigid Pavement Failure Potential, ” Journal of Marine Science and Technology,Accepted.
60. Dai, H., and Macbeth, C.,(1995),“ Automatic Picking of Seismic Arrivals in Local Earthquake Data Using an Artificial Neural Network, ” Geophysical Journal International, Vol. 120, pp. 758∼774 .
61. Ellis, G. W., Yao, C., Zhao, R., and Penumadu, D., (1995),“ Stress-Strain Modeling of Sands Using Artificial Neural Networks, ” Journal of Geotechnical Engineering, Vol. 121, No. 5, pp. 429∼435 .
62. Elton, D. J., Juang, C. H., and Sukumaran, B.,(1995),“ Liquefaction Susceptibility Evaluation Using Fuzzy Sets, ” Soils and Foundations, Vol. 35, No. 2, pp. 49∼60.
63. Garson, G. D.,(1991),“ Interpreting neural-network connection weights, ” AI Expert, Vol. 6, No. 7, pp. 47∼51.
64. Goh, A. T. C.,(1994),“ Seismic Liquefaction Potential Assessed by Neural Network, ” Journal of Geotechnical Engineering, Vol. 120, No. 9, pp. 1467∼1480.
65. Goh, A. T. C.,(1996),“ Neural-Network Modeling of CPT Seismic Liquefaction Data, ” Journal of Geotechnical Engineering, Vol. 122, No. 1, pp. 70∼73.
66. Hwang, J. H., and Yang, C. W., (2001) ,“ Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data, ” Soil Dynamics and Engineering, Vol. 21, pp. 237∼257.
67. Ishibashi, I., Sherif, M. A., and Cheng, W. L.,(1982),“ The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction, ” Soils and Foundations, Vol. 22, No. 1, pp. 39∼48.
68. Juang, C. H., and Chen, C. J.,(2000),“ A Rational Method for Development of Limit State for Liquefaction Evaluation Based on Shear Wave Velocity Measurements, ” International Journal for Numerical and Analytical Method in Geomechanics, Vol. 24, pp. 1∼27.
69. Juang, C. H., and Chen, C. J.,(1999),“ CPT-Based Liquefaction Evaluation Using Artificial neural networks, ” Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 3, pp. 221∼229.
70. Juang, C. H., Chen, C. J., and Tien, Y. M.,(1999),“ Appraising CPT-Based Liquefaction Resistance Evaluation Methods: Artificial Neural Networks Approach, ” Canadian Geotechnical Journal, Vol. 36, No 3, pp. 443∼454 .
71. Juang, C. H., Chen, C. J., Jiang, T., and Andrus, R. D.,(2000), “ Risk-Based Liquefaction potential Evaluation Using Standard Penetration Tests, ” Canadian Geotechnical Journal, Vol. 37, pp. 1195∼1208.
72. Juang, C. H., Lee, D. H., and Sheu, C.,(1992),“ Mapping Slope Failure Potential Using Fuzzy Sets, ” Journal of The Geotechnical Engineering, Vol. 118, No. 3, pp. 475∼494.
73. Kishida, H.,(1969),“ Characteristics of Liquefied Sands During Mino-owari, Tohnankai and Kikui Earthquakes, ” Soils and Foundations, STP 450, pp. 71∼96.
74. Krishnapuram, R., and Keller, J. M., (1993), “ A Possibilistic Approach to Clustering, ” IEEE Transactions on Fuzzy Systems, Vol. 1, No. 2, pp. 98∼110.
75. Lee, K. L., and Fitton, J. A.,(1969),“ Factors Affecting the Cyclic Loading Strength of Soil, ” Vibration Effects of Earthquake on Soils and Foundations, STP 450, pp. 71∼96.
76. Madhu, S., Juang, C. H., Chen, J. W., and Lee D. H., (1995),“ A Fuzzy System for Rock Mass Classification and Tunnel Support Selection, ” Journal of Civil Engineering Systems.
77. Ni, S. H., Lu, P. C., and Juang, C. H.,(1996),“ A Fuzzy Neural Network Approach to Evaluation of Slope Failure Potential, ” Microcomputers in Civil Engineering, Vol. 11, pp. 59∼66.
78. Ou, C. Y., Hsieh, P. G., and Chiou, D. C.,(1993)“ Characteristics of ground surface settlement during excavation, ” Canadian Geotechnical Journal, Vol. 30, No. 5, pp.758∼767.
79. Robertson, P. K., and Wride, C. E.,(1997) ,“ Cyclic Liquefaction and its Evaluation Based on SPT and CPT, ” Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Edited by Youd, T. L. and Idriss, I. M., NCEER-97∼0022.
80. Ross, G. A., Seed, H. B., and Migliaccio, R. R.,(1969), “ Bridge Foundations in Alaska earthquake, ” Journal of the Soil Mechanics and Foundations Division, Vol. 95, No. SM3, Proc. Paper 4223, May.
81. Seed, H.B., (1979), “ Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes, ” Journal of The Geotechnical Engineering Division, Vol. 105, No. GT2, Feb., pp. 201∼255.
82. Seed, H. B., and Idriss, I. M., (1971),“ Simplified Procedures for Evaluation Soil Liquefaction Potential, ” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. SM9, pp. 1249∼1273.
83. Seed, H. B., Idriss, I. M., and Arango I., (1983), “ Evaluation of Liquefaction Potential Using Field Performance Data, ” Journal of the Geotechnical Engineering Division, Vol. 109, No. 3, pp. 458∼482.
84. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M., (1985), “ Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation, ” Journal of Geotechnical Engineering, Vol. 111, No. 12, pp. 1425∼1445.
85. Shi, J., Ortigao, J. A. R., and Bai, J., (1998) ,“ Modular Neural Networks for Predicting Settlements During Tunneling, ” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 5, pp. 389∼395.
86. Takahashi, T. (1981a), " Estimation of Potential Debris Flows and their hazardous zones, " Journal of Natural Disaster science, Vol.3, No.1, pp.57-89.
87. Tokimatsu, K., and Yoshimi, Y., (1983), “ Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fines Content, ” Soils and Foundations, Vol. 23, No. 4, pp. 56∼74.
88. Tung, A. T. Y., Wang, Y. Y., and Wong, F. S., “Assessment of Liquefaction Potential Using Neural Networks,” Soil Dynamics and Engineering, Vol. 12, pp. 325-335 (1993).
89. VanDine, D. F.(1985), " Debris Flows and Debris Torrents in the Southern Canadian Cordillera, " Can. Geotech. J., Vol. 22, pp. 44∼68.
90. Wang, J., and Rahman, M. S., (1999) ,“ A Neural Network Model for Liquefaction-Induced Horizontal Ground Displacement, ” Soil Dynamics and Earthquake Engineering, Vol. 18, pp. 555∼568.
91. Wieczorek, G. F. (1987), " Effect of Rainfall Intensity and During on Debris Flows in Central Santa Cruz Mountains, " California, Flows/Avalanches: Process, Recognition and Mitigation, Geological Society of America, Reviews in Engineering Geology, Vol.7, pp.93-104.
92. Wong, R.T., Seed H. B., and Chan, C. K., (1975), “ Cyclic Loading Liquefaction of Gravelly Soils, ” Journal of The Soil Mechanics and Foundations Division, Vol. 101, No. GT6, pp. 571∼583.
93. Woo, S. M., and Moh, Z. C.,(1990)" Geotechnical Characteristics of Soils in the Taipei Basin, " Proceeding of 10th Southeast Asian Geotechnical Conference, Taipei, Vol. 2, pp.51∼65.
94. Zadeh, L. A., (1965), “ Fuzzy Sets, ” Information and Control, Vol. 8, pp. 338∼353.