跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林美芳
研究生(外文):Mei-Fang Lin
論文名稱:石斑魚稚魚之維生素C需求及其對緊迫與免疫反應相關性之探討
論文名稱(外文):Studies on vitamin C requirements of juvenile grouper, Epinephelus malabaricus and its effects on stress and immune responses
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen Shiau
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:183
中文關鍵詞:石斑魚維生素C
外文關鍵詞:groupervitamin C
相關次數:
  • 被引用被引用:1
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
總摘要
本論文為探討以L-ascorbic acid (AA)及其四種衍生物,L-ascorbyl-2-monophosphate-Mg (C2MP-Mg), L-ascorbyl-2-monophos phate-Na (C2MP-Na), L-ascorbyl-2-polyphosphate (C2PP)及L-ascorbyl- 2-sulfate (C2S)訂定石斑魚稚魚之維生素C需求及其對緊迫反應及免疫反應之影響。AA需求量為45.3 mg AA/kg diet;C2MP-Mg, C2MP-Na之需求量分別為17.9及8.3 mg AA/kg diet,C2MP-Mg利用效率為C2MP-Na之46%;C2S, C2PP之需求量分別為46.2及17.8 mg AA/kg diet,C2S利用效率為C2PP之39%;C2PP, C2MP-Na之需求量分別為12.8及10.3 mg AA/kg diet,C2PP利用效率為C2MP-Na之81%。綜合以上結果,石斑魚對AA及其四種衍生物之利用效率為C2MP-Na>C2PP>C2MP-Mg>AA>C2S。維生素C及其衍生物均可支持石斑魚超氧陰離子產率、替代補體活性及溶菌酶活性等非特異性免疫反應。添加維生素C最適需求量之六倍,可提高石斑魚肝臟維生素C濃度及其對於弧菌感染之抵抗力。低溫造成石斑魚生理緊迫,降低魚體受弧菌感染時之溶菌酶活性及超氧陰離子產率。至少提供五倍最適需求量之C2MP-Na或C2PP可減少低溫緊迫對石斑魚造成之免疫抑制作用。體外注射促腎上腺皮質激素會促進石斑魚腎間組織釋放腎皮質類固醇激素cortisol,且造成石斑魚頭腎維生素C濃度下降,顯示石斑魚頭腎維生素C與緊迫激素cortisol生成之相關性。飼料中提供十倍適量之C2MP-Na或C2PP能調節腎皮質類固醇激素cortisol之生成。C2PP可節約石斑魚之維生素E需求。C2PP及維生素E,對促進石斑魚之溶菌酶活性及補體活性有加乘作用。
Abstract
The purpose of the study was to estimate vitamin C requirements of juvenile grouper, Epinephelus malabaricus by using L-ascorbic acid (AA) and its four derivatives namely, L-ascorbyl-2-monophosphate-Mg (C2MP-Mg), L-ascorbyl-2-monophosphate-Na (C2MP-Na), L-ascorbyl- 2-sulfate (C2S) and L-ascorbyl-2-polyphosphate (C2PP). The effects of these vitamin C sources on stress and immune responses in grouper were also monitored. The requirement established was 45.3 mg AA/kg diet from AA; 17.9 and 8.3 mg AA/kg diet from C2MP-Mg and C2MP-Na, respectively; 46.2 and 17.8 mg AA/kg diet from C2S and C2PP, respectively; 10.3 and 12.8 mg AA/kg diet from C2MP-Na and C2PP, respectively. It indicates that C2MP-Mg, C2S and C2PP is 46%, 39% and 81% as effective as C2MP-Na, C2PP and C2MP-Na, respectively in meeting the vitamin C requirement for grouper. Overall, the efficiency of AA and the four derivatives as vitamin C source in grouper are in the order of C2MP-Na>C2PP>C2MP-Mg>AA>C2S. The data also revealed that both AA and the derivatives support the non-specific immune responses, including O2- production ratio, alternative complement activity and lysozyme activity, of the fish. Six times of the adequate vitamin C requirement from AA is needed to enhance the non-specific immune responses and maintain survival of the fish challenged with the bacteria Vibrio carchariae. Exposure to low temperature suppressed lysozyme activity and O2- production ratio in fish challenged with V. carchariae. At least five times of the adequate vitamin C requirement from C2MP-Na or C2PP is needed to minimize the suppression of immune responses in fish caused by low temperature stress. Exogenous adrenocoticotropic hormone (ACTH) injection resulted in cortisol increase in plasma and AA depletion in interrenal tissue of the fish. Ten times of the adequate vitamin C requirement from C2MP-Na or C2PP is required to regulate cortisol biogenesis in grouper. C2PP exhibited a vitamin E sparing effect in fish. Lysozyme activity and alternative complement activity in fish were synergistically enhanced by the supplementation of C2PP and vitamin E.
目錄
總摘要………………………………………………………………………….I
Abstract………………………………………………………………..II
第一章 文獻整理………………………………………………………..1
1. 1. 前言……………………………………………………………...2
1. 2. 文獻回顧………………………………………………………….5
1. 3. 研究方向………………………………………………...…...20
第二章 石斑魚稚魚維生素C需求量及其對非特異性免疫反應及疾病抵抗之探討
2. 1. 摘要……………………………………………………………..26
2. 2. 前言……………………………………………………………..27
2. 3. 材料與方法………………………………………………………27
2. 4. 結果…………………………………………………………....38
2. 5. 討論……………………………………………………...…….38
2. 6. 結論………………………………………...………………….44
第三章 石斑魚稚魚單磷酸鈉維生素C及單磷酸鎂維生素C需求量及其對免疫反應相關性之比較
3. 1. 摘要………………………………………………………………48
3. 2. 前言………………………………………………………………49
3. 3. 材料與方法…………………………………………………..…50
3. 4. 結果…………………….……...………………………………53
3. 5. 討論………………………………………………………………57
3. 6. 結論………………………………………………………………59
第四章 石斑魚稚魚硫酸態維生素C及多磷酸態維生素C需求量及其對免疫反應相關性之比較
4. 1. 摘要………………………………………………………………63
4. 2. 前言………………………………………………………………64
4. 3. 材料與方法………………………………………………………65
4. 4. 結果………………………………………………………………68
4. 5. 討論………………………………………………………………69
4. 6. 結論………………………………………………………………74
第五章 石斑魚稚魚單磷酸鈉維生素C及多磷酸態維生素C需求量及其對免疫反應相關性之比較
5. 1. 摘要…………………………………………....……….…...78
5. 2. 前言………………………………………………………………80
5. 3. 材料與方法………………………………………………………81
5. 4. 結果…………………………………………………………....84
5. 5. 討論………………………………………………………………85
5. 6. 結論………………………………………………………………90
第六章 單磷酸鈉維生素C及多磷酸態維生素C對石斑魚稚魚低溫緊迫反應之影響
6. 1. 摘要………………………………………………..…….…...94
6. 2. 前言………………………………………………………………96
6. 3. 材料與方法………………………………………………………97
6. 4. 結果…………………………………………………….……..102
6. 5. 討論……………………………………………….…………..108
6. 6. 結論…………………………………………………….……..113
第七章 促腎上腺皮質激素對攝食不同劑量維生素C之石斑魚稚魚血漿可體松及組織維生素C含量之影響
7. 1. 摘要……………………………………….……………….….115
7. 2. 前言……………………………………………….…………..116
7. 3. 材料與方法……………………………………………….…..117
7. 4. 結果……………………………………….…………………..120
7. 5. 討論…………………………………………………………...125
7. 6. 結論…………………………………………………………...127
第八章 維生素C及維生素E之交互作用對石斑魚稚魚免疫反應之影響
8. 1. 摘要………………………………………………….…….….129
8. 2. 前言…………………………………………………….……..131
8. 3. 材料與方法…………………………………………………...132
8. 4. 結果……………………………………………….…………..137
8. 5. 討論……………………………………………….…………..143
8. 6. 結論……………………………………………………...…..145

總結論…………………………………...………………..........146
參考文獻……………………………………………………………...149
<附錄>本論文已發表部份之全文…………………………………...172
1.

表目錄
第一章
表1-1. 魚類維生素C之需求量……………………………………….22
表1-2. 魚類維生素C衍生物之需求量……………………………….23

第二章
表2-1. 石斑魚稚魚實驗飼料組成…………………………………..37
表2-2. 石斑魚稚魚餵予不同實驗飼料八週後之增重率、飼料效率及存活率….................................................39
表2-3. 石斑魚稚魚餵予不同實驗飼料八週後,感染Vibrio carchariae累積死亡率及肝臟維生素C濃度……………………....40
表2-4. 石斑魚稚魚餵予不同實驗飼料八週,感染Vibrio carchariae後之超氧陰離子產率、替代補體活性及溶菌酶活性….…………..41

第三章
表3-1. 石斑魚稚魚實驗飼料組成……………………………….….52
表3-2. 石斑魚稚魚實驗飼料中維生素C濃度分析.值……………..54
表3-3. 石斑魚稚魚餵予不同實驗飼料八週後之增重率、飼料效率、存活率及肝臟維生素C濃度…………………………………………………………...........55
表3-4. 石斑魚稚魚餵予不同實驗飼料八週後之替代補體活性及溶菌酶活性...................................................56

第四章
表4-1. 石斑魚稚魚實驗飼料組成…................…………..67
表4-2. 石斑魚稚魚實驗飼料中維生素C濃度分析值……………...70
表4-3. 石斑魚稚魚餵予不同實驗飼料八週後之增重率、飼料效率、存活率及肝體比…..………………………………………………...71
表4-4. 石斑魚稚魚餵予不同實驗飼料八週後之替代補體活性及溶菌酶活性….................................................72
第五章
表5-1. 石斑魚稚魚實驗飼料組成…………………………………..83
表5-2. 石斑魚稚魚實驗飼料中維生素C濃度分析值……………….86
表5-3. 石斑魚稚魚餵予不同實驗飼料八週後之增重率、飼料效率、存活率及肝臟維生素C濃度……………………………………….….87
表5-4. 石斑魚稚魚餵予不同實驗飼料八週後之超氧陰離子產率及溶菌酶活性.................................................88

第六章
表6-1. 石斑魚稚魚實驗飼料組成………….……………………..101
表6-2. 石斑魚稚魚餵予不同實驗飼料八週後之增重率及存活率.104
表6-3. 石斑魚稚魚餵予不同單磷酸鈉維生素C及多磷酸態維生素C實驗飼料八週後,經低溫緊迫刺激及感染Vibrio carchariae之累積死亡率及肝臟維生素C濃度……….............................105
表6-4. 石斑魚稚魚餵予不同單磷酸鈉維生素C及多磷酸態維生素C實驗飼料八週後,經低溫緊迫刺激及感染Vibrio carchariae之溶菌酶活性及超氧陰離子產率…..................................106
表6-5. 石斑魚稚魚餵予不同單磷酸鈉維生素C及多磷酸態維生素C實驗飼料八週後,經低溫緊迫刺激及感染Vibrio carchariae之血漿cortisol及葡萄糖濃度……………………………………………..107

第七章
表7-1. 石斑魚稚魚實驗飼料組成………………………………...119
表7-2. 石斑魚稚魚餵予不同實驗飼料四週後之增重率及存活率.122
表7-3. 石斑魚稚魚餵予不同單磷酸態維生素C及多磷酸態維生素C實驗飼料四週後,經注射促腎上腺激素或生理食鹽水後之血漿可體松及葡萄糖濃度……………………………………………............123
表7-4. 石斑魚稚魚餵予不同單磷酸鈉維生素C及多磷酸態維生素C實驗飼料四週後,經注射促腎上腺激素或生理食鹽水後之頭腎、後腎及肝臟維生素C濃度.........................................124

第八章
表8-1. 石斑魚稚魚實驗飼料組成………………………………...136
表8-2. 石斑魚稚魚實驗飼料多磷酸態維生素C及維生素E之分析值139
表8-3. 石斑魚稚魚餵予不同含量之多磷酸態維生素C及維生素E實驗飼料八週後之增重率、飼料效率及存活率……………….........140
表8-4. 石斑魚稚魚餵予不同含量之多磷酸態維生素C及維生素E實驗飼料八週後之溶菌酶活性、超氧陰離子產率及替代補體活性…….141
表8-5. 石斑魚稚魚餵予不同含量之多磷酸態維生素C及維生素E實驗飼料八週後肝臟維生素C濃度、維生素E濃度及TBA值……........142



圖目錄
第一章
圖1-1. 研究之整體架構………………………………………..…...24

第二章
圖2-1. 飼料中實際維生素C濃度對石斑魚稚魚增重率之影響………45
圖2-2. 石斑魚稚魚餵食不同維生素C劑量八週後肝臟維生素C濃度與弧菌感染死亡率之相關性……………………………………....……46

第三章
圖3-1. 飼料中實際維生素C濃度對石斑魚稚魚增重率之影響………60
圖3-2. 飼料中實際維生素C濃度對石斑魚肝臟維生素C濃度之影響.61
.
第四章
圖4-1. 飼料中實際維生素C濃度對石斑魚肝臟維生素C之影響…….75
圖4-2. 飼料中實際維生素C濃度對石斑魚稚魚增重率之影響……..76

第五章
圖5-1. 飼料中實際維生素C濃度對石斑魚稚魚增重率之影響………91
圖5-2. 飼料中實際維生素C濃度對石斑魚肝臟AA之影響….……….92

第六章
圖6-1. 石斑魚稚魚餵食不同維生素C衍生物八週後肝臟維生素C濃度與低溫緊迫刺激及弧菌感染死亡率之相關性...................109
Abdelghany, A.E., 1996. Growth response of Nile tilapia Oreochromis niloticus to dietary L-ascorbic acid, L-ascorbyl-2-sulfate, and L-ascorbyl-2-polyphosphate. J. World Aquacult. Soc. 27, 449-455.
Agrawal, N.K., Mahajan, C.L., 1980. Comparative tissue ascorbic acid studies in fishes. J. Fish Biol. 17, 135-121.
Aguirre, P., Gatlin III, D.M., 1999. Dietary vitami C requirement of red drum Sciaenops ocellatus. Aquacult. Nutr. 5, 247-249.
Ai, Q., Mai, K., Zhang, C., Xu, W., Duan, Q., Tan, B., Liufu, Z., 2004. Effect of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture 242, 489-500.
Ainsworh, A.J., Dexiang, C., Waterstrat, P.R., 1991. Changes in peripheral blood leukocyte percentages and function of neutrophils in stressed channel catfish. J. Aquat. Anim. Health 3, 41-47.
Albrektsen, S., Lie, O., Sandnes, K., 1988. Ascorbyl palmitate as a dietary vitamin C source for rainbow trout Salmo gairdneri. Aquaculture 71, 359-368.
Alexander, J.B., Ingram, G.A., 1992. Noncellular nonspecific defense mechanisms of fish. In: Faisal, M. and Hetrick, F.M. (Eds), Annual Review of Fish Diseases, 2. Pergamon Press, New York, pp. 223-247.
Amerio, M., Ruggi, C., Rovelli, R.M., Volker, L., 1998. Ascorbic acid availability from ascorbyl-2-polyphosphate and ascorbyl-2-sulfate in sea bass Dicentrarchus labrax. Aquaculture 159, 233-237.
Anderson, D.P., 1992. Immunostimulants, adjuvants and vaccine carrier in fish: application to aquaculture. Ann. Rev. Fish Dis. 2, 281-307.
Andrew, J.W., Murai, T., 1975. Studies on the vitamin C requirements of channel cat fish Ictalurus punctatus. J. Nutr. 105, 557-561.
Association of Official Analytical Chemists, 1995. Official Methods of Analysis, 16th ed. AOAC, Arlington, VA.
Babior, B.M., 1984. Oxidants from phagocytes: agents of defense and destruction. Blood 64, 959-966.
Balm, P.H.M., Pepels, P., Helfrich, S., Hovens, M.L.M., Wendelaar Bonga, S.E., 1994. Adrenocorticotropic hormone in relation to in terrenal function during stress in tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 96, 347-360.
Barton, B.A., Iwama, G.K., 1991. Physiologial changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. J. Fish Dis. 1, 3-26.
Belanger, J.M., Son, J.H., Laugero, K.D., Moberg, G.P., Doroshov, S.I., Lankford, S.E., Cech, J.J., 2001. Effects of short-term management stress and ACTH injects on plasma cortisol levels in cultured white sturgeon, Acipenser transmontanus. Aquaculture 203, 165-176.
Benitez, L.V., Halver, J.E., 1982. Ascorbic acid sulfate sulfohydrolase (C2S sulfatase):The modular of cellar levels of L-ascorbic acid in rainbow trout. Proc. Natl. Acad. Sci. USA, 79, 5445-5449.
Blom, S., Foerlin, L., Anderson, T.B., 2001. Characterisation of head kidney and liver microsomal 17-hydroxyprogesterone 21- hydroxylase activity in rainbow trout Oncorhynchus mykiss and the lack of regulatory effects of ACTH. Fish Physiol. Biochem. 24, 1-8.
Brise, H., Hallberg, L., 1962. Effect of ascorbic acid on iron absorption. Acta. Medica. Scand. 171, 51-58.
Brodeur, J.C., Daniel, C., Ricard, A.C, Hontela, A., 1998. In vitro response to ACTH of the interregnal tissue of rainbow trout (Oncorhynchus mykiss) exposed to cadmium. Aquatic Toxicolo. 42, 103-113.
Buddington, R.K., Puchal, A.A., Houpe, K.L., Diehl III, W.J., 1993. Hydrolysis and absorption of two monophosphate derivatives of ascorbic acid by channel catfish Ictalurus punctatus intestine. Aquaculture 114, 317-326.
Burns, J.J., 1975. Introduction: Overview of ascorbic acid metabolism. In: King, C. G., Burns, J.J. (Eds), Second conference on vitamin C. Acad. Sci., New York. pp. 5-6.
Chan, A.C., 1993. Partners in defense, vitamin E and vitamin C. Can. J. Physiol. Pharmacol. 71, 725-731.
Chen, H.Y., Tsai, J.C., 1994. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets. Aquaculture 119, 265-271.
Clerton, P., Troutaud, D., Verlhac, V., Gabaudan, J. Deschaux, P., 2001. Dietary vitamin E and rainbow trout (Oncorhynchus mykiss) phagocyte functions: effect on gut and on head kidney leukocyte. Fish Shellfish Immunol. 11, 1-13.
Dabrowska, H., Dabrowski, K., Meyer-Burgdorff, K., Hanke, W., Gunther, K.D., 1991. The effect of large doses of vitamin C and Magnesium on stress responses in common Carp, Ccprinus carpio. Comp. Biochem. Physiol. 99A, 681-685.
Dabrowski, K., Hinterleitner, S., Sturmbauer, C., El-Fiky, N., Wieser, W., 1988. Do carp larvae require vitamin C ? Aquaculture 72, 295-306.
Dabrowski, K., Kock, G., 1989. Aborption of ascorbic acid and ascorbate sulfate and their interaction with minerals in the digestive tract of rainbow trout Oncorhynchus mykiss. Can. J. Fish. Aquat. Sci. 46, 1952-1957.
Dabrowski, K., Kock, G., Frigg, M., Wieser, W., 1990. Requirement and utilization of ascorbic acid and ascorbate sulfate in juvenile rainbow trout. Aquaculture 91, 317-337.
Dabrowski, K., Matusiewicz, K., Matusiewicz, M., Hoppe, P.P., Ebeling, J., 1996. Bioavailability of vitamin C from two ascorbyl- monophosphate esters in rain bow trout, Oncorhynchus mykiss (Walbaum). Aquacult. Nutr. 2, 3-10.
Davis, K.B., Simco, B.A., 1998. Effect of reduction of supplementary dietary vitamins on the stress response of channel catfish Ictalurus punctatus. J. World Aquacult. Soc. 29, 319-324.
De Martinez, M.C.C., 1990. Vitamin C requirement of the Mexican native cichild Cichlasoma urophthalmus (Gunther). Aquaculture 86, 409-416.
Doulas, N.L., Constantopoulous, A., Litsios, B., 1987. Effect of ascorbic acid on guinea pig adrenal adenylate cyclase activity and plasma cortisol. J. Nutr. 117, 1108-1114.
Durve, V.S., Lovell, R.T., 1982. Vitamin C and disease resistance in channel catfish Ictalurus punctatus. Can. J. Fish. Aquat. Sci. 39, 948-951.
El Naggar, G.O., Lovell, R.T., 1991. L-ascorbyl-2- monophosphate has equal antiscorbutic activity as L-ascorbic acid but L-ascorbyl-2-sulfate is inferior to L-ascorbic acid for channel catfish. J. Nutr. 121, 1622-1626.
Ellis, A.E., 1989. The immunology of teleosts. In: Roberts, R. J. (Ed.), Fish Pathology. Bailliere Tindall, London, England, pp. 135-152.
Fournier, V., Gouillou-Coustans, M.F., Kaushik, S.J., 2000. Hepatic ascorbic acid saturation is the most stringent response criterion for determining the vitamin C requirement of juvenile European sea bass (Dicentrarchus labrax). J. Nutr. 130, 617-620.
Frei, B., Englan, L., Ames, B.N., 1991. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA. 86, 6377-6381.
Fryer, J.N., Peter, R.E., 1977. Hypothalamic control of ACTH secretion in goldfish III. Hypothalamic control implant studies. Gen. Comp. Endocrinol. 33, 215-225.
Gatlin, D.M., Poe, W.E., Wilson, R.P., Ainsworth, A.J., Bowser, P.R., 1986. Effects of stocking density and vitamin C status on vitamin E-adequate and vitamin E-deficient fingerling channel catfish. Aquaculture 56, 187-195.
Girard, C, Brodeur, JC, Hontela, A., 1998. Responsiveness of the interregnal tissue of yellow perch (Perca flavescens) from contaminated sites to an ACTH challenge test in vivo. Can. J. Fish. Aquat. Sci. 55, 438-450.
Gouillou-Coustans, M.F., Bergot, P., Kaushik, S.J., 1998. Dietary ascorbic acid needs of common carp (Cyprinus carpio) larve. Aquaculture 161, 453-461.
Grinde, B., 1989. Lysozyme from rainbow trout, Salmo gairdneri Richardson, as an antibacterial agent against fish pathogens. J. Fish Dis., 12, 95-104.
Halver, J.E., 1972. The role of ascorbic acid in fish disease and tissue repair. Bull. Jpn. Soc. Sci. Fish. 38, 79-92.
Halver, J.E., Ashley, L.M., Smith, R.E., 1969. Ascorbic acid requirement of coho salmon and rainbow trout. Trans. Am. Fish. Soc. 98, 762-771.
Halver, J.E., Hardy, R.W., 1994. L-ascorbyl-2-sulfate alleviates Atlantic salmon scurvy. Proc. Exp. Biol. Med. 206, 421-424.
Halver, J.E., Smith, R.R., Tolbert, B.M., Baker, E.M., 1975. Utilization of ascorbic acid in fish. Ann. NY Acad. Sci. 258, 81-102.
Hamre, K., Waagbo, R., Berge, R. K., Lie, Ø., 1997. Vitamin C and E interact in Atlantic salmon (Salmo salar L.). Free Radicals Biol. Med. 22, 137-149.
Hardie, L.J., Fletcher, T.C., Secombes, C.J., 1991. The effect of dietary vitamin C on the immune response of the Atlantic salmon Salmo salar L. Aquaculture 95, 201-214.
Hardie, L.J., Marsden, M.J., Fletcher, T.C., Secombes, C.J., 1993. In vitro addition of vitamin C affects rainbow trout lymphocyte response. Fish Shellfish Immunol. 3, 207-219.
Hedner, P., Rerup, C., 1962. Adrenocortical activity following corticotrophin injection at low adrenal ascorbic acid level. Acta. Endocrinol. 41, 219-226.
Henrique, M.M.F., Gomes, E.F., Gouillou-Coustans, M.F., Oliva-Feles, A., Davies, S.J., 1998. Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata L. Aquaculture 161, 415-426.
Henrique, M.M.F., Morris, P.C., Davies, S.J., 1996. Vitamin C status and physiological response of the gilthead seabream, Sparus aurata L., to stressors associated with aquaculture. Aquacult. Res. 27, 405-412.
Hilton, J.W., Brown, R.G., Slinger, S.J., 1979. The half-life and uptake of 14C-L-ascorbic acid in selected organs rainbow trout Salmon gairdneri. Comp. Biochem. Physiol. 62A, 427-432.
Hilton, J.W., Cho, C.Y., Slinger, S.J., 1977. Factors affecting the stability of supplemental ascorbic acid in practical trout diets. J. Fish. Res. Board Can. 34, 683-687.
Hilton, J.W., Cho, C.Y., Slinger, S.J., 1978. Effects of graded levels of supplemental ascorbic acid in practical diets fed to rainbow trout (Salmo gairdneri). J. Fish. Res. Board Can. 35, 431-436.
Hsu, T.S., Shiau, S.Y., 1997. Comparison of L-ascorbyl-2-polyphosphate with L-ascorbyl-2-sulfate in meeting vitamin C requirements of juvenile grass shrimp Penaeus monodon. Fish. Sci. 63, 958-962.
Hsu, T.S., Shiau, S.Y., 1998. Comparison of vitamin C requirement for maximum growth of grass shrimp, Penaeus monodon , using L-ascorbyl-2-monophosphate-Na and L-ascorbyl-2-monophosphate -Mg. Aquaculture 163, 203-213.
Izuru, K., 2002. Interrenal stress responsiveness of marbled sole, Pleuronectes yokohamae, inhabiting Tokyo Bay. Environ. Toxicol. 17, 1-6.
Kanazawa, A., Teshima, S.I., Kosshio, S., Higashi, M., Itoh, S., 1992. Effect of L-ascorbyl-2-phosphate-Mg on the yellowtail, Seriola quinqueradiata as a vitamin C source. Nippon Suisan Gakkaishi 58, 337-341.
Kattari, S., Evans, D., klemer, J., 1998. Varied redox forms of teleost IgM: an alternative to isotypic diversity? Immunol. Rev. 166, 133-142.
Kim, K.W., Wang, X., Choi, S.M., Park, G.J., Koo, J.W., Bai, S.C., 2003. No synergistic effects by the dietary supplementation of ascorbic acid, α-tocopheryl acetate and selenium on the growth performance and challenge test of Edwardsiella tarda in fingerling Nile tilapia, Oreochromis niloticus L. Aquacult. Res. 34, 1053-1058.
Kipp, D.E., Rivers, J.M., 1987. Uptake and release of adrenal ascorbic acid in the guinea pig after injection of ACTH. J. Nutr. 117, 1570-1575
Kitabchi, A.E., 1967. Ascorbic acid in steroidogenesis. Nature 215, 1385-1386.
Kusuda, R., Salati, F., 1993. Major bacterial diseases affecting mariculture in Japan. Annu. Rev. Fish Dis. 3, 69-85.
Laney, P.H., Levy, J.A., Kipp, D.E., 1990. Plasma cortisol and adrenal ascorbic acid level after ACTH treatment with a high intake of ascorbic acid in the guinea pig. Ann. Nutr. Metab. 34, 85-92.
Lee, K.K., Yii, K.C., 1996. A comparison of three methods for assaying hydrophobicity of pathogenic vibrios. Lett. Appl. Microbiol. 23, 343-346.
Li, M.H., Wise, D.J., Robinson, E.H., 1998. Effect of dietary vitamin C on weight gain, tissue ascorbate concentration, stress response, disease resistance of channel catfish Ictalurus punctatus. J. World Aquacult. Soc. 29, 1-8.
Li, Y., Lovell, R.T., 1985. Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. J. Nutr. 115, 123-131.
Liao, I.C., Lee, K.K., Chien, Y.H., 1996. Practical approaches to marine fish health problems in Taiwan. In: Main, K.L., Rosenfeld, C. (Eds), Aquaculture Health Management Strategies for Marine Fish in Asia and the United States. The Oceanic Institute, Honolulu, pp. 57-67.
Lie, Ø., Evensen, Ø., Sorensen, A., Froysadal, E., 1989. Study on lysozyme activity in some fish species. Dis. Aquat. Org. 6, 1-5.
Lim, C., Lovell, R.T., 1978. Pathology of the vitamin C deficiency syndrome in channel catfish Ictalurus punctatus. J. Nutr. 108, 1137-1146.
Lin, M.F., Shiau, S.Y., 2004. Requirements of vitamin C (L-ascorbyl-2-monophosphate-Mg and L-ascorbyl-2- monophosphate-Na) and its effects on immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 10, 327-333.
Lin, M.F., Shiau, S.Y., 2005a. Dietary L-ascorbic acid affects growth, non-specific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244, 215-221.
Lin, M.F., Shiau, S.Y., 2005b. Requirements of vitamin C (L-ascorbyl-2-sulfate and L-ascorbyl-2- polyphosphate) and its effects on non specific immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. (in press)
Lin, Y. H., Shiau, S. Y., 2005c. Dietary vitamin E requirements of grouper, Epinephelus malabaricus, under two lipid levels, and their effects on immune responses. Aquaculture (in press)
Lin, Y.H., Shiau, S.Y., 2003. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture 225, 243-250.
Lipscomb, H.S., Nelson, D.H., 1960. Dynamic changes in ascorbic acid and corticosteoids in adrenal vein blood after ACTH. Endocrinology 144-146.
Liu, O.R., Plumb, J.A., Guerin, M., Lovell, R.T., 1989. Effect of megalevels of dietary vitamin C on the immune responses of channel catfish Ictalurus punctatus in ponds. Dis. Aquat. Org. 7, 191-194.
Lovell, R.T., El Naggar, G.O., 1989. Vitamin C activity for L-ascorbic acid, L-ascorbyl-2-sulfate, and L-ascorbyl-2-phosphate Mg for channel catfish. In: Pro Third Int Symp on Feeding and Nutrition in Fish. Toba, Japan, Aug 28-Sept 1, pp 159-165.
Lovell, R.T., Lim, C., 1978. Vitamin C in pond diets for channel catfish. Trans. Am. Fish. Soc. 107, 321-325.
Mackie, A.M., Mitchell, A.I., 1985. Identification of gustatory feeding stimulants for fish-applications in aquaculture. In: Cowey, C.B., Mackie, A.M., Bell, J.B. (Eds), Nutrition and Feeding in Fish. Academic Press, London, pp. 177-189.
Mahajan, C.L., Agrawal, N.K., 1980. Nutritional requirements of ascorbic acid by Indian major carp Cirrhina mrigala during early growth. Aquaculture 19, 37-48.
Matusiewicz, M., Dabrowski, K., 1995. Characterization of ascorbyl esters hydrolysis in fish. Comp. Biochem. Physiol. 110B, 739-745.
Matusiewicz, M., Dabrowski, K., Volker, L., Matusiewicz, K., 1995. Ascorbate polyphosphate is a bioavailable vitamin C source in juvenile rainbow trout: Tissue saturation and compartmentalization model. J. Nutr. 15, 3055-3061.
Maule, A.G., Tripp, R.A., Kaattari, S.L., Schreck, C.B. 1989. Stress alter immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol. 120, 135-142.
Mazeaud, M.M., Mazeaud, H., Donaldson, E.M., 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Am. Fish. Soc. 106, 201-212.
Mazik, P.M., Brandt, T.M., Tomasso, J. R., 1987. Effects of dietary vitamin C on growth, caudal fin development, and tolerance of aquaculture-related stressors in channel fish. Prog. Fish-Cult. 49, 13-16.
Miyasaki, T., Sato, M., Yoshinaka, R., Sakaguchi, M., 1992. Conversion of ascorbyl-2-phosphate to ascorbic acid in rainbow trout. Nippon Suisan Gakkaishi 58, 2101-2104.
MÖck, A., Peters, G., 1990. Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution. J. Fish Biol. 37, 873-885.
Montero, D., Marrero, M., Izquierdo, M.S., Robaaiina, L., Vergara, J.M., Tort, L., 1999. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabeabream Sparus aurata L. juveniles subjected to crowding stress. Aquaculture 171, 269-278.
Montero, D., Tort, L., Izquierdo, L., Vergara, J.M., 1998. Depletion of serum alternative complement pathway activity in gilthead seabream caused by ��-tocopherol and n-3 HUFA dietary deficiencies. Fish Physiol. Biochem. 18, 399-407.
Moreau, R., Dabrowski, K., 1996. The primary localization of ascorbate and its synthesis in the kidneys of acipenserid (Chondrostei) and teleost (Teleostei) fishes. J. Comp. Physiol. 166 B, 178-183.
Mulero, V., Angeles Esteban, M., Meseguer, J., 1998. Effects of in vitro addition of exogenous vitamins C and E on gilthead seabream (Sparus aurata L.) phagocytes. Vet. Immunol. Immunopathol. 66, 185-199.
Murai, T., Andrews, J.W., Bauerfeind, J.C., 1978. Use of L-ascorbic acid, ethocel coated ascorbic acid and ascorbate-2-sulfate in diets for channel catfish Ictalurus punctatus. J. Nutr. 108, 1761-1766.
Mustin, W.G., Lovell, R.T., 1992. Na-L-ascorbyl-2-monophosphate as a source of vitamin C for channel catfish. Aquaculture 105, 95-100.
Myllyla, R., Kuntki-Savolainen, E.R., Kirirrikko, K.I., 1978. The role of ascorbate in the prolyl hydroxylase reaction. Biochem. Biophys. Res. Commu. 83, 441-448.
Mϋller-Eberhard, H.J., 1988. Molecular organization and function of the complement system. Ann. Rev. Biochem. 57, 321-347.
Navarre, O., Halver, J.E., 1989. Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture 79, 207-221.
Niki, E., 1987. Interaction of ascorbate and α-tocopherol. Ann. NY Acad. Sci. 498, 186-199.
Niki, E., Yamamoto, Y., Takahashi, M., Yamamoto, Y., Komuro, E., Miki, M., Yasuda, H., Mino, M., 1988. Free radical-mediated damage of blood and its inhibition by antioxidants. J. Nutr. Sci. Vitaminol. 34, 507-512.
Obach, A., Quentel, C., Bandin Laurencin, F., 1993. Effects of alpha-tocopherol and dietary oxidized fish oil on the immune response of sea bass Dicentrarchus labrax. Dis. Aquat. Org. 15, 175-185.
Ortuño, J., Esteban, M.A., Meseguer, J., 1999. Effect of high dietary intake of vitamin C on nonspecific immune response of gilthead sea bream Sparus aurata L. Fish Shellfish Immunol. 9, 429-443.
Ortuño, J., Esteban, M.A., Meseguer, J., 2000. High Dietary intake of ��-tocopherol acetate enhances the non-specific immune response of gilthead seabream (Sparus aurate L.). Fish Shellfish Immunol. 10, 293-307.
Ortuño, J., Esteban, M.A., Meseguer, J., 2003. The effect of dietary intake of vitamin C and E on the stress response of gilthead seabeabream Sparus aurata L. Fish Shellfish Immunol. 14, 145-156.
Packer, J.E., Slater, T.F., Willson, R.L., 1979. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278, 737-738.
Phromkunthong, W., Boonyaratpalin, M., Storch, V., 1997. Different concentrations of ascoryl-2-monophosphate-magnesium as dietary sources of vitamin C for seabass, Lates calcarifer. Aquaculture 151, 225-243.
Phromkunthong, W., Boonyaratpalin, M., Verakunpiriya. 1993. Histopathology of the gills of ascorbic acid deficient grouper, Epinephelus malabaricus. Gyobyo Kenkyu 28, 151-159.
Pickering, A.D., Duston, J., 1983. Administration of cortisol to brown trout, Salmo trutta L. and its effects on the susceptility to Saprolegnia infection and furunculosis. J. Fish Biol. 23, 163-175.
Pickford, G.E., Srivastava, A.K., Slicher, A.M., Pang, P.K., 1971. The stress response in the abundance of circulating leucocyting in the killifish, Fundulus heteroclitus. J. Exp. Zool. 177, 89-108.
Plytycz, B., Flory, C.M., Galvan, I., Bayne, C.T., 1989. Leukocytes of rainbow trout (Oncorhychus mykiss) pronephros: cell types producing superoxide anion. Dev. Comp. Immunol. 13, 217-224.
Robbins, K.R., 1986. A method, SAS program, and example for fitting the broken line to growth data. University of Tennessee Agricultural Experiment Station Research Report, University of Tennessee, Knoxville, TN.
Robert, M.C., Davies, S.T., Pulsford, A.C., 1995. The influence of ascorbic acid (vitamin C) on non-specific immunity in the turbot Scophthalmus marimus L. Fish Shellfish Immunol. 5, 27-38.
Roberts, R.J., 1989. The immunology of teleosts. In: Roberts, R.J. (Ed), Fish Pathology. U. S. A., pp. 92-104.
Ruff, N., Fitzgerald, R.D., Cross, T.F., Hamre, K., Kerry, J.P., 2003. The effect of dietary vitamin E and C level on market-size turbot (Scophthalmus maximus) fillet quality. Aquacult. Nutr. 9, 91-103.
Sakai, D.K., 1981. Spontaneous and antibody-dependent hemolysis activities of fish sera and inapplicability of mammalian complements to the immune hemolysis reaction of fishes. Bull. Jpn. Soc. Sci. Fish. 47, 979-991.
Sakai, M., 1999. Current research status of fish immunostimulants. Aquaculture 172, 63-92.
Sakakura, Y., Koshio, S., Iida, Y., Tsukamoto, K., Kida, T., Blom, J.H., 1998. Dietary vitamin C improves the quality of yellowtail Seriola quinqueradiata seedling. Aquaculture 161, 427-436.
Sandnes, K., Hansen, T., Killie, J-E. A., WaagbØ, R., 1990. Ascorbate-2-sulfate as a dietary vitamin C source for Atlantic salmon Salmo salar L. Growth, bioactivity, haematology and humoral immune reponse. Fish Physiol. Biochem. 8, 419-427.
Sandnes, K., Torrissen, O., WaagbØ, R., 1992. The minimum dietary requirement of vitamin C in Atlantic salmon Salmo salar fry using Ca ascorbat-2-monophosphate as dietary source. Fish Physiol. Biochem. 10, 315-319.
Sato, M., Hatano, Y., Yoshinaka, R., 1991. L-ascorbyl-2-sulfate as a dietary vitamin C source for rainbow trout Oncorhynchus mykiss. Nippon Suisan Gakkaishi 57, 717-721.
Sato, M., Kondo, T., Yashinaka, R., Ikeda, S., 1982. Effect of dietary ascorbic acid levels on collagen formation in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 48, 553-556.
Sato, M., Miyasaki, T., Yoshinaka, R., 1991. Utilization of L-ascorbyl-2-phosphate in rainbow trout as a dietary vitamin C source. Nippon Suisan Gakkaishi 57, 1923-1926.
Sato, M., Yoshinaka, R., Ikeda, S., 1978. Dietary ascorbic acid requirement of rainbow trout for growth and collagen formation. Bull. Jpn. Soc. Sci. Fish. 44, 1029-1035.
Sealey, W.M., Gatlin III, D.M., 1999. Dietary vitamin C requirement of hybrid striped bass Morone chrysops×M. saxatilis. J. World Aquacult. Soc. 30, 297-301.
Sealey, W.M., Gatlin III, D.M., 2002a. Dietary vitamin C and vitamin E interact to influence growth and tissue composition of juvenile hybrid striped bass (Morone chrysops ♀×M. saxatillis ♂) but have limited effects on immune responses. J. Nutr. 132, 748-755.
Sealey, W.M., Gatlin III, D.M., 2002b. In vitro manipulations vitamin C and vitamin E concentrations alter intracellular O2- production of hybrid striped bass (Morone chrysops ♀×M. saxatillis ♂) head-kidney cells. Fish Shellfish Immunol. 12, 131-140..
Secombes, C.J., 1990. Isolation of salmonid macrophages and analysis of their killing activity. In: Stolen, J.S., Fletcher, T.C., Anderson, D., Robertson, B.S., van Muiswinkel, W.B. (Eds), Techniques in Fish Immunology, vol. I. SOS Publications, Fair Haven, NJ, pp. 137-154.
Seib, P.A., Liang, Y.T., Lee, C.H., Hoseney, R.C., Deyoe, C.W., 1974. Synthesis and stability of L-ascorbate-2sulfate. J. Chem. Soc. Perkin I. 11, 1220.
Shiau, S.Y., 2001. Vitamin C requirement in crustaceans. In: Dabrowski, K. (Ed), Ascorbic acid in Aquatic Systems. CRC Press., Boca Raton, FL. USA, pp. 87-96.
Shiau, S.Y., Hsu, T.S., 1993. Stability of ascorbic acid in shrimp feed during analysis. Nippon Suisan Gakkaishi 59, 1535-1537.
Shiau, S.Y., Hsu, T.S., 1994. Vitamin C requirement of grass shrimp, Penaeus monodon, as determined with L-ascorbyl-2 -monophosphate. Aquaculture 122, 347-357.
Shiau, S.Y., Hsu, T.S., 1995. Tissue storage of ascorbic acid in tilapia, Oreochromis niloticus × O. aureus fed L-ascorbic acid, L-ascorbyl-2-sulfate or L-ascorbyl-2-monophosphate. Fish. Sci. 61, 1043-1044.
Shiau, S.Y., Hsu, T.S., 1999. Quantification of vitamin C requirement for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus, with L-ascorbyl-2-monophosphate-Na and L-ascorbyl-2-monophosphate- Mg. Aquaculture 175, 317-326.
Shiau, S.Y., Hsu,C.Y., 2002. Vitamin E sparing effect by dietary vitamin C in juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture 210, 335-342.
Shiau, S.Y., Jan, F.L., 1992. Dietary ascorbic acid requirement of juveile tilapia Oreochromis niloticus×O. aureus. Nippon Suisan Gakkaishi 58, 671-675.
Shiau, S.Y., Lan, C.W., 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper Epinephelus malabaricus. Aquaculture 145, 259-266.
Shiau, S.Y., Lin, Y.H., 2001. Carbohydrate utilization and its protein sparing effect in diets for grouper Epinephelus malabaricus. Anim. Sci. 73, 299-304.
Shiau, S.Y., Lin, Y.H., 2002. Utilization of glucose and starch by the grouper Epinephelus malabaricus at 23 degrees C. Fish. Sci. 68, 991-995.
Sobhana, K.S., Mohan, C.V., Shankar, K.M., 2002. Effect of dietary vitamin C on the disease susceptibility and inflammatory response of mrigal Cirrhinus mrigala (Hamilton) to experimental infection of Aeromonas hydrophila. Aquaculture 207, 225-238.
Soliman, A.K., Jauncey, K., Roberts, R., 1986. The effect of varying forms of dietary ascorbic acid on the nutrition of juvenile tilapia Oreochromis niloticus. Aquaculture 52, 1-10.
Soliman, A.K., Jauncey, K., Roberts, R., 1987. Stability of L-scorbic acid and its forms in fish feeds during processing, store and leaching. Aquaculture 60, 73-83.
Soliman, A.K., Jauncey, K., Roberts, R.J., 1994. Water-soluble vitamin requirements of ascorbic acid (vitamin C) requirement of Nile tilapia, Oreochromis niloticus L. Aquacult. Fish. Manage. 25, 269-278.
Stickney, R.R., McGeachin, R.B., Lewis, D.H., Marks, J. Riggs, A., Sis, R.F., Robinson, E.H., Wurts, W., 1984. Response of Tilapia aurea to dietary vitamin C. J. World Maricult. Soc. 14, 179-185.
Taiko, M., 1995. Metabolism and physiological activity of ascorbyl-2-phosphate in fish. J. Shimonoseki Univ. Fish. 43, 45-107.
Tangney, C.C., McNair, H. M., Drikell, J.A., 1981. Quantitation of individual tocopherols in plasma, platelets, lipids and livers by high performance liquid chromatography. J. Chromatogr. 224, 389-397.
Tappel, A.L., 1968. Will antioxidant nutrients slow aging processes? Geriatrics 23, 97-105.
Teng, S.K., Chua, T.E., Lim, P.E., 1978. Preliminary observation on the dietary protein requirement of estuary grouper, Epinephelus salmoides Maxwell, cultured in floating net-cages. Aquaculture 15, 257-271.
Thomas, P., 1984. Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissue. I. Effect of salinity, capture-stress, and temperature. J. Fish Biol. 25, 711-720.
Thompson, I., White, A., Fletcher, T.C., Houlihan, D.F., Secombers, C.J., 1993. The effect of stress on the immune responses of Atlantic salmon Salmon salar L. fed diets containing different amounts of vitamin C. Aquaculture 114, 1-18.
Tolbert, B.M., 1985. Metabolism and a function of ascorbic acid and its metabolites. Internal. J. Vit. Nutr. Res. Suppl. 27, 121-138.
Tolbert, B.M., Downing, M., Carlson, R.W., Knight, M.K., Baker, E.M., 1975. Chemistry and metabolism of ascorbic acid and ascorbate sulfate. Ann. N. Y. Acad. Sci. 258, 48-69.
Tort, L., Gómez, E., Montero, D., Sunyer, J.O., 1996a. Serum haemolytic and agglutinating activity as indicators of fish immunocompetence: their suitability in stress and dietary studies. Aquacult. Internat. 4, 31-41.
Tort, L., Sunyer, J.O., Gomez, E., Molinero, A., 1996b. Crowding stress induces changes in serum haemolytic and agglutinating activity in the gilthead seabream Sparus aurata. Vet. Immunol. Immunopath. 51, 179-188.
Tucker, B.W., Halver, J.E., 1984. Ascorbate-2-sulfate metabolism in fish. Nutr. Rev. 42, 173-179.
Tucker, B.W., Halver, J.E., 1986. Utilization of ascorbate-2-sulfate in fish. Fish. Physiol. Biochem. 2, 151-160.
Uchiyama, M., Mihara, M., 1978. Determination of malonaldehyde precursor in tissue by thiobarbituric acid test. Anal. Biochem., 86, 271-278.
Verlhac, V., Gabaudan, J., 1994. Influence of vitamin C on the immune system of salmonids. Aquacult. Fish. Manag. 25, 21-36.
WaagbØ, R., Glette, J., Raa-Nilsen, E. Sandnes, K., 1993. Dietary vitamin C, immunity and disease resistance in Atlantic salmon Salmo salar. Fish Physiol. Biochem. 12, 61-73.
WaagbØ, R., Sandnes, K., 1996. Effect of dietary vitamin C on growth and parr-smolt transformation in Atlantic salmon, Salmo salar L. Aquacult. Nutr. 2, 65-69.
Wahli, T., Verlhac, V., Gabaudan, J., Schüep, W., Meier, W., 1998. Influence of combined vitamin C and E on non-specific immunity and disease resistance of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 21, 127-137.
Wang, X., Kim, K., Bai, SC., 2002. Effects of different dietary levels of L-ascorbyl-2-polyphosphate on growth and tissue vitamin C concentration in juvenile olive flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquacult. Res. 33, 261-267.
Wang, X., Kim, K., Bai, SC., 2003. Comparison of L-ascorbyl-2-monophosphate-Ca with L-ascorbyl-2- monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish (Sebastes schlegeli). Aquaculture 225, 387-395.
Wedemeyer, G., 1969. Stress-induced ascorbic acid depletion and cortisol production in two salmonid fishes. Comp. Biochem. Physiol. 29, 1247-1251.
Weeks, B.A., Warinner, J.E., 1986. Functional evaluation of macrophages in fish from a polluted estuary. Vet. Immunol. Immunopathol. 12, 313-320.
Weyts, F.A.A., FilK, G., Rombout, J.H.W.A., Verburg-ven kemenade, B.M.L., 1998. Cortisol induces apoptosis in activated B cell, not in other lymphoid cells of the common carp, Cyprinus carpio L. Dev. Comp. Immunol. 22, 5-6.
Wilbur, V.A., Walker, B.L., 1977. Dietary ascorbic acid and the time of response of the guinea pig to ACTH administration. Nutr. Rep. Int. 16, 789-794.
Wilbur, V.A., Walker, B.L., 1978. Effect of dietary vitamin C on adrenal cholesterol ester content in the guinea pig. Lipids 13, 116-120.
Wilson, R.P., 1973. Absence of ascorbic acid synthesis in channel catfish Ictalurus punctatus and blue catfish Ictalurus frucatus. Comp. Biochem. Physiol. 46 B, 635-638.
Wilson, R.P., Poe, W.E., 1973. Impaired collagen formation in the antiscorbutic channel catfish. J. Nutr. 103, 1359-1364.
Wilson, R.P., Poe, W.E., Robinson, E.H., 1989. Evaluation of L-ascorbyl-2-polyphosphate as a dietary ascorbic acid source for channel catfish. Aquaculture 81, 129-136.
Wise, D.J., Schwedler, T.E., Otis, D.L., 1993. Effects of stress on susceptibility of native channel catfish in immersion challenge with Edwardsiella ictaluri. J. Aquat. Anim. Health 5, 92-97.
Woodward, B., 1985. Riboflavin requirement for growth, tissue saturation and maximal flavin-dependent enzyme activity in young rainbow trout (Salmo gairdneri) at two temperature. J. Nutr. 115, 78-84.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2002. Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J. Nutr. 132, 72-79.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2003. Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus. Fish Shellfish Immunol. 14, 223-238.
Yamamoto, Y., Sato, M., Ikeda, S., 1978. Existence of L-gulonolactone oxidase in some teleosts. Bull. Jpn. Soc. Sci. Fish. 44, 775-779.
Yano, T., 1992. Assays of hemolytic complement activity. In: Stolen, J.S., Fletcher, T.C., Anderson, D.P., Kaattari, S.L., Rowley, A.F. (Eds), Techniques in Fish Immunology. SOS Publications, Fair Haven, pp. 131-141.
Yii, K.C., Yang, T.I., Lee, K.K., 1997. Isolation and characterization of Vibrio carchariae, a causative agent of gastroenteritis in the groupers, Epinephelus coioides. Curr. Microbial. 35, 109-115.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊