跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文鈴
研究生(外文):Wen-Lin Huang
論文名稱:乳酸鏈球菌素與EDTA對腸炎弧菌等革蘭氏陰性菌抗菌效果之探討
論文名稱(外文):Studies on the antibacterial effect of nisin and EDTA against several Gram-negative bacteria as Vibrio parahaemolyticus
指導教授:潘崇良
指導教授(外文):Chong-Liang Pan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:88
中文關鍵詞:乳酸鏈球菌素腸炎弧菌抗菌效果
外文關鍵詞:nisinVibrio parahaemolyticusantibacterial effect
相關次數:
  • 被引用被引用:16
  • 點閱點閱:1378
  • 評分評分:
  • 下載下載:206
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

乳酸鏈球菌素 (nisin) 為由 Lc. lactis subsp. lactis 所分泌的一種抗菌多胜肽 (polypeptide)。Nisin 已被證明對於革蘭氏陽性菌及病原菌具較廣的抑制效果。當 nisin 與食品中常用的抗氧化劑和螯合劑 EDTA 合併使用時,即可有效地減少 E. coli、Salmonella 等革蘭氏陰性菌之含量。本研究為探討 E. coli BCRC 11549、Sal. choleraesuis subsp. choleraesuis BCRC 10744、V. parahaemolyticus isolates 1、5、10、或 16,在起始 pH 值為 4.0、5.0、或 6.0 之適當培養液中,配合 26oC 或 37oC 的培養溫度,合併使用 50 �慊 mL-1 nisin 及 20 mM EDTA 所呈現之被抑制效果。在以洋菜孔洞擴散測試法所得實驗結果顯示 nisin 對於指標菌 Str. thermophilus BCRC 12268 最小抑制濃度為 100 ppm。單獨使用不同濃度的 nisin 或 EDTA 對於 V. parahaemolyticus isolates 1、5、10、及 16 皆無抑菌環產生。E. coli BCRC 11549、Sal. choleraesuis subsp. choleraesuis BCRC 10744、V. parahaemolyticus isolates 1、5、10、或 16,在起始 pH 值為 4.0、5.0、或 6.0 之適當培養液中,於 26oC 或 37oC 培養 12 hr 後,未加抗菌物質的控制組所含菌數皆高於實驗組。
至於 V. parahaemolyticus isolates 1、5、10、或 16 在起始 pH 值為 4.0、5.0、或 6.0 下以 37oC 培養,並以 50 �慊 mL-1 nisin 與 20 mM EDTA 處理 1-6 hr後的殘存率為 0%。而V. parahaemolyticus isolates 1、10、或 16在起始 pH 值為 4.0 和 26oC 下以相同濃度 nisin 與 EDTA 處理 3-6 hr 後所觀察到的殘存率亦為 0%。其中以 V. parahaemolyticus isolate 1 最為敏感於起始 pH 值為 4.0 培養液中於 37oC 下培養 1.0 hr 後菌數即降到未能檢出。E. coli BCRC 11549、及 Sal. choleraesuis subsp. choleraesuis BCRC 10744 在 37oC 起始 pH 值為 4.0或 6.0培養時,50 �慊 mL-1 nisin 與 20 mM EDTA 作用後殘存生菌數為 3.1 及 3.3 log CFU/mL。在前述實驗中,E. coli BCRC 11549、Sal. choleraesuis subsp. choleraesuis BCRC 10744 以及 V. parahaemolyticus isolates 1、5、10、或 16 之控制組與實驗組生菌數 (log CFU/mL)對數值之最大差異分別為 4.4、5.5 以及 9.0、8.8、8.8、或 8.88。
Abstract

Nisin is an antimicrobial polypeptide produced by certain strains of Lc. lactis subsp. lactis. It has been demonstrated that nisin exhibits a wide range of inhibitory effects against Gram-positive bacteria and pathogens. When nisin combination with EDTA, a chelating agent commonly used as an antioxidant in the food industry, has been shown to be effective for reducing populations of Gram-negative bacteria, such as E. coli and Salmonella. In this study, 50 �慊 mL-1 nisin combined with 20 mM EDTA were used to testing the antibacterial effect against E. coli BCRC 11549, Sal. choleraesuis subsp. choleraesuis BCRC 10744, and V. parahaemolyticus isolates 1, 5, 10, or 16. The testing conditions were initial pH of broth at 4.0, 5.0, or 6.0 as well as incubation temperature at 26oC or 37oC. Experiment results from agar well diffusion method showed that the minimum inhibitory concentration (MIC) of nisin against indicator strain, Str. thermophilus BCRC 12268, was 100 ppm. Inhibition zone was not observed when various concentrations of nisin or EDTA was used individually to testing against V. parahaemolyticus isolates 1, 5, 10, or 16. While E. coli BCRC 11549, Sal. choleraesuis subsp. choleraesuis BCRC 10744, V. parahaemolyticus isolates 1, 5, 10, or 16 was treated with nisin (50 �慊 mL-1) and EDTA (20 mM) under initial broth pH at 4.0, 5.0, or 6.0 and incubated at 26oC or 37oC for 12 hr, viable cell counts of experimental groups were lower than the control group.
The antibacterial effect of 50 �慊 mL-1 nisin and 20 mM EDTA against V. parahaemolyticus isolates 1, 5, 10, or 16 was 100% as incubated in initial broth pH at 4.0, 5.0, or 6.0 and incubated at 37oC for 1-6 hr. The survival rates of V. parahaemolyticus isolates 1, 10, and 16 were 0% as treated by 50 �慊 mL-1 nisin and 20 mM EDTA under initial broth pH at 4.0 and incubated at 26oC for 3-6 hr.. Among them, V. parahaemolyticus isolate 1 was the most sensitive one as its survival rate showed 0% after 1.0 hr incubation. While E. coli BCRC 11549 and Sal. choleraesuis subsp. choleraesuis BCRC 10744 were tested by 50 �慊 mL-1 nisin and 20 mM EDTA for their surviving rarte under initial broth pH at 4.0 or 6.0 and incubated at 37oC, the viable cell count showed as 3.1 and 3.3 log CFU/mL, respectively. The largest differences of viable cell count (log CFU/mL) between control group and experiment group (with nisin and EDTA treatment) observed in above experiments of E. coli BCRC 11549, Sal. choleraesuis subsp. choleraesuis BCRC 10744, V. parahaemolyticus isolates 1, 5, 10, or 16 were 4.4, 5.5, and 9.0, 8.8, 8.8, or 8.88, respectively.
目 錄
目 錄 i
表 目 錄 iv
圖 目 錄 v
中文摘要 vii
英文摘要 ix
一、前言 1
二、文獻整理 3
I. 乳酸菌之定義、特性、及抗菌作用 3
I-1. 乳酸菌之定義及特性 3
I-2. 乳酸菌之抗菌作用 4
II. 乳酸鏈球菌素 (nisin) 7
II-1. 細菌素之發現及定義 7
II-2. Nisin 之發現 8
II-3. Nisin之介紹 9
II-3-1. Nisin之結構 9
II-3-2. Nisin之特性 10
II-3-3. Nisin之抗菌特性及機制 11
II-3-4. Nisin生產之影響因子 13
II-3-4-1. 內因性因子 13
II-3-4-2. 外因性因子 13
II-3-5. Nisin 抗菌活性的檢測 16
II-3-6. Nisin 對革蘭氏陰性菌與革蘭氏陽性菌
細胞之影響 17
II-4. EDTA 對革蘭氏陰性菌抗菌作用之機制 17
II-5. 食品中常見的革蘭氏陰性病原菌 19
II-6. Nisin在食品加工上之應用 20
三、材料與方法 26
I. 實驗材料 26
I-1. 實驗菌株 26
I-2. 培養基 26
I-3. 實驗藥品 26
I-4. 儀器設備 27
II. 實驗方法 27
II-1. 菌株之保存、活化、及生長曲線 27
II-1-1. 菌株的保存 27
II-1-2. 菌株之活化與接種菌源之製備 27
II-1-3. 菌株之培養與計數 28
II-2. Nisin 及 EDTA 試劑之配製 28
II-2-1. 乳酸鏈球菌素 (nisin) 溶液之製備 28
II-2-2. EDTA 溶液之製備 28
II-3. Nisin 及 EDTA之抗菌試驗 29
II-3-1. Nisin 對指標菌洋菜孔洞擴散法抗菌
活性之測試 29
II-3-2. 不同培養溫度對六株革蘭氏陰性菌
之抗菌作用 29
II-3-3. 不同起始 pH 值對六株革蘭氏陰性
菌之抗菌作用 30
四、結果與討論 31
I. 六株革蘭氏陰性菌生長曲線之測定 31
II. 洋菜孔洞擴散法實驗 31
II-1. Nisin 對指標菌的抗菌效果 31
II-2. Nisin 與 EDTA 對腸炎弧菌的抗菌效果 32
III. Nisin 與 EDTA 對革蘭氏陰性菌之抗菌效果 33
III-1. 不同起始 pH 值之培養液在 26oC 下培養之
抗菌效果 33
III-1-1. 對 V. parahaemolyticus isolates 1、5
、10、及 16 之抗菌效果 33
III-1-2. 對 E. coli BCRC 11549、Sal.
choleraesuis subsp. choleraesuis BCRC
10744 之抗菌效果 36
III-2. 不同起始 pH 值之培養液在 37oC 下培養之
抗菌效果 37
III-2-1. 對 V. parahaemolyticus 分離株1、5
、10、和 16之抗菌效果 37
III-2-2. 對 E. coli BCRC 11549、Sal.
choleraesuis subsp. choleraesuis BCRC
10744 之抗菌效果 40
五、結論 43
六、參考文獻 44
表 目 錄

表一、 細菌素做為食品防腐劑:可應用範圍的案例 63
表二、 各種細菌素名稱及其生產菌株 64
表三、 Nisin 在各國的使用狀況 65
表四、 控制組與實驗組經 50 �慊 mL-1 nisin 及 20 mM EDTA 在
不同起始 pH 值培養液中對六株革蘭氏陰性菌在 26oC
或 37oC 作用 0、1、3、6、9 或 12 hr 生菌量對數值
的差異 67
表五、 Nisin 及 EDTA 於 26oC及37oC 對 V. parahaemolyticus 分離株 1、5、10、和 16、以及 E. coli BCRC 11549 和 Sal.
choleraesuis subsp. choleraesuis BCRC 10744 在 pH
4.0、5.0 及 6.0 之 TSB + 2.5% NaCl 及TSB 培養 12.0
hr 後菌數之殘存率 69


圖 目 錄

圖一、 經轉譯後修飾作用所形成的 nisin 分子結構 70
圖二、 Nisin 抗菌作用之模式 71
圖三、 圖解革蘭氏陽性菌與革蘭氏陰性菌細胞套 72
圖四、 腸炎弧菌分離株 1、5、10、及 16 之生長曲線 73
圖五、 大腸桿菌 BCRC 11549 及沙門氏菌 BCRC 10744 之
生長曲線 74
圖六、 Nisin 對 Str. thermophilus BCRC 12268 的抗菌效果 75
圖七、 不同濃度 nisin 對 Str. thermophilus BCRC 12268 形
成的抑菌環 76
圖八、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 1 在 26oC 培養之抗菌
效果與 pH 值之變化 77
圖九、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 5 在 26oC 培養之抗菌
效果與 pH 值之變化 78
圖十、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 10 在 26oC 培養之抗菌
效果與 pH 值之變化 79
圖十一、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 16 在 26oC 培養之抗菌
效果與 pH 值之變化 80
圖十二、 不同起始 pH 值下 nisin 和 EDTA 對 E. coli
BCRC 11549 在 26oC 培養之抗菌效果與 pH 值之
變化 81
圖十三、 不同起始 pH 值下 nisin 和 EDTA 對 Sal.
choleraesuis subsp. choleraesuis BCRC 10744 在
26oC 培養之抗菌效果與 pH 值之變化 82
圖十四、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 1 在 37oC 培養之抗菌
效果與 pH 值之變化 83
圖十五、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 5 在 37oC 培養之抗菌
效果與 pH 值之變化 84
圖十六、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 10 在 37oC 培養之抗菌
效果與 pH 值之變化 85
圖十七、 不同起始 pH 值下 nisin 和 EDTA 對
V. parahaemolyticus isolate 16 在 37oC 培養之抗菌
效果與 pH 值之變化 86
圖十八、 不同起始 pH 值下 nisin 和 EDTA 對 E. coli
BCRC 11549 在 37oC 培養之抗菌效果與 pH 值之
變化 87
圖十九、 不同起始 pH 值下 nisin 和 EDTA 對 Sal.
choleraesuis subsp. choleraesuis BCRC 10744 在
37oC 培養之抗菌效果與 pH 值之變化 88
六、參考文獻

王吉彬。1996a。食品生物防腐劑-細菌素之介紹。食品工業。28(5): 23-31。
王逢興。1996b。認識食品細菌素。雜糧與畜產。279: 14-19。
行政院衛生署。1989。食品添加物使用範圍及用量標準。台北。pp. 1-4。
行政院衛生署。2003a。食品添加物使用範圍及用量標準。台北。http://food.doh.gov.tw/law/ingrdient_standard.asp。
行政院衛生署。2003b。歷年食品中毒統計資料。行政院衛生署,台北。
江靜雯。1999。Lactobacillus acidophilus LC1 細菌素之生產及其在牛乳保鮮上之應用。國立臺灣海洋大學食品科學系碩士學位論文。基隆。pp. 1-22。
吳建威。1997。Pediococcus pentosaceus ACCEL 生產細菌素之純化及其特性探討。國立臺灣海洋大學水產食品科學系碩士學位論文。基隆。pp. 1-12。
李福臨。2000。乳酸菌分類之研究近況。食品工業。32(8): 36-42。
呂靜怡、龍湘美。2003。乳酸鏈球菌素之抑菌作用及其在食品工業上之應用。食品工業。35(1): 32-46。
林君翰。2001。外加碳源對EDTA生物分解之影響。國立中興大學環境工程學研究所碩士學位論文。台中。pp. 1-19。
高邦愷。2000。腸炎弧菌之細胞圍蛋白質模式與生化特性。國立臺灣海洋大學食品科學系碩士學位論文。基隆。pp. 1-10。
郭文玉。1993。乳酸鏈球菌素、真空包裝及溫度對金黃色葡萄球菌及仙人掌桿菌於素食食品中生長之影響。國立中興大學食品科學系碩士學位論文。台中。pp. 1-11。
張淑文。1995。乳酸鏈球菌於低鹽鹽醬品及調味鯖魚片加工之應用。國立臺灣海洋大學水產食品科學系碩士學位論文。基隆。pp. 3-21。
張啟華。1993。拮抗性微生物之篩選與乳酸菌細菌素在漁獲保鮮上之利用。國立臺灣海洋大學水產食品科學系碩士學位論文。基隆。pp. 1-32。
陳元宏。1994。生物防腐劑-乳酸鏈球菌素生產之研究。國立臺灣大學食品科技研究所碩士學位論文。台北。pp. 1-21。
陳玉真。2004。乳酸菌發酵吳郭魚保健食品產製技術及生理活性之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。pp. 3-6。
陳俊成。2003。乳酸菌之益生作用。食品資訊。196: 52-58。
陳勁初。1991。以乳酸菌保存食物之機制。食品工業。23(9): 17-21。
陳陸宏、劉夢蘭、李佳音、蘇遠志。1992。比較以菌落雜交法及其他方法鑑定腸炎弧菌之研究。食品科學。19(4): 517-523。
黃秀英。1997。乳酸菌電穿孔株之鑑定與應用以及電穿孔反應條件之探討。國立臺灣海洋大學水產食品科學系碩士學位論文。基隆。pp. 2-11。
黃嘉源、康建智。1998。食品生物防腐劑-細菌素。水產食品。25: 102-117。
游若篍、賴明群、羅培仁。2000。乳酸鏈球菌素、EDTA 及乳酸菌酛對德式酸菜發酵之影響。臺灣農業化學與食品科學。38(5): 476-481。
廖啟成。1992。抑菌素及其應用。食品工業發展研究所菌種保存及研究簡訊。17: 1-7。
廖啟成。1998。乳酸菌之分類及應用。食品工業。30(2): 1-10。
廖啟成、李福臨、許渲姝、楊媛絢、陳勁初、王吉彬、彭瑞森、李韞慧。2000。乳酸菌專輯。財團法人食品工業發展研究所。新竹。pp. 123-233。
劉正浩。2002。腸炎弧菌於培養基系統中預測生長模式之建立。國立中興大學食品科學研究所碩士學位論文。台中。pp. 1-20。
劉祖君。2001。革蘭氏陽性菌的細菌素介紹。食品工業。33(9): 40-47。
潘崇良、張啟華、郭鴻均、郭俊德。1995。乳酸菌細菌素之抑菌力及對泥鰍若干菌羣之影響。中國農業化學會誌。33(4): 444-458。
蔡耀德。2002。產細菌素乳酸菌在輕度加工生菜沙拉中抑制病原菌生長的影響。輔仁大學食品營養學系碩士學位論文。台北。pp. 40-53。
盧巧玲。1995。Pediococcus damnosus Accel 及 Leuconostoc dextranicum L1/6 之細菌素特性及溫度、pH、培養基組成對細菌素生產之影響。國立臺灣海洋大學水產食品科學系碩士學位論文。基隆。pp. 3-9。
賴明群。1998。德式酸菜之控制發酵及E. coli O157: H7 在發酵儲存期間之存活研究。國立臺灣大學食品科技研究所碩士學位論文。台北。pp. 15-21。
龍湘美。2004。乳酸菌細菌素抗菌作用及其在食品上應用之回顧。國立臺灣海洋大學食品科學系碩士學位論文。基隆。pp. 13-89。
鍾淑女。2000。EDTA螯合物分解菌之生物分解特性研究。國立中興大學環境工程學研究所碩士學位論文。台中。pp. 1-10。
蘇訓正、李佳音。1997。腸炎弧菌No. 100之溶血反應特性。中華民國微生物及免疫學雜誌。30: 32-42。
蘇遠志。1999。應用微生物學。國立編譯館。華香園出版社。台北。
Abee, T., T. R. Klaenhammer and L. Letellier. 1994. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60: 1006-1013.
Abee, T., L. Krockel and C. Hill. 1995. Bacteriocin: Modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 28: 169-185.
Andrews, L. S. 2004. Strategies to control Vibrios in molluscan shellfish. Food Prot. Trends 24: 70-76.
Annuk, H., J. Shchepetova, T. Kullisaar, E. Songisepp, M. Zilmer and M. Mikelsaar. 2003. Characterization of intestinal lactobacilli as putative probiotic candidates. J. Appl. Microbiol. 94: 403-412.
Aplin and Barrett. 1989. Countries where specific approval exists for the use of nisin. Technical Information Sheet 4/89/11. England.
Ariyapitipun, T., A. Mustapha and A. D. Clarke. 2000. Survival of Listeria monocytogenes Scott A on vacuum-packaged raw beef treated with polylactic acid, lactic acid, and nisin. J. Food Prot. 63: 131-136.
Axelsson, L. T. 1998. Lactic acid bacteria: Classification and physiology. In: Lactic Acid Bacteria. “In Microbiology and Function”. pp. 1-72. 2nd Eds. by Salminen, S., and A. Wright. Marcel Dekker, Inc., New York.
Axelsson, L. T., T. C. Chung, W. J. Dobrogosz and S. Lindgren. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Disease 2: 131-136.
Barefoot, S. F., Y. R. Chen, T. A. Hughes, A. B. Bodine, M. Y. Shearer and M. D. Hughes. 1994. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B. Appl. Environ. Microbiol. 60: 3522-3528.
Barnby-Smith, M. 1992. Bacteriocins: Applications in food. Trend. Food Sci. Technol. 3: 133-136.
Beard, B. M., B. W. Sheldon and P. M. Foegeding. 1999. Thermal resistance of bacterial spores in milk-based beverages supplemented with nisin. J. Food Prot. 62: 484-491.
Benkerroum, N., H. Oubel and L. B. Mimoun. 2002. Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter. J. Food Prot. 65: 799-805.
Biswas, S. R., P. Ray, M. C. Johnson and B. Ray. 1991. Influence of growth conditions on the production of a bacteiocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57: 1265-
1267.
Blom, H., T. Katla, B. F. Hagen and L. Axelsson. 1997. A model assay to demonstrate how intrinsic factors affect diffusion of bacteriocins. Int. J. Food Microbiol. 38: 103-109.
Bouttefroy, A., M. Mansour, M. Linder and J. B. Milliere. 2000. Inhibitory combinations of nisin, sodium chloride, and pH on Listeria monocytogenes ATCC 15313 in broth by an experimental design approach. Int. J. Food Microbiol. 54: 109-115.
Boziaris, I. S. and M. R. Adams. 1999. Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram-negatives. Int. J. Food Microbiol. 53: 105-113.
Boziaris, I. S. and M. R. Adams. 2000. Transient sensitivity to nisin in cold-shocked Gram negatives. Lett. Appl. Microbiol. 31: 233-237.
Breukink, E. and B. de Kruijff. 1999. The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta 1462: 223-234.
British Standard Institution. 1974. Methods for the estimation and differentiation of nisin in processed cheese. British Standard. BS 4020.
Brotz, H., M. Josten, I. Wiedemann, U. Schneider, F. Gotz, G. Bierbaum and H. G. Sahl. 1998. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30: 317-327.
Budu-Amoake, E., R. F. Ablett, J. Harris and J. Delves-Broughton. 1999. Combined effect of nisin and moderate heat destruction of Listeria monocytogenes in cold-pack lobster meat. J. Food Prot. 62: 46-50.
Cabo, M. L., L. Pastoriza, G. Sampedro, M. Gonzalez and M. A. Murado. 2001. Joint effect of nisin, CO2, and EDTA on the survival of Pseudomonas aeruginosa and Enterococcus faecium in a food model system. J. Food Prot. 64: 1943-1948.
Choi, H. J. and Y. H. Park. 2000. Selective control of lactobacilli in kimchi with nisin. Lett. Appl. Microbiol. 30: 173-177.
Cleveland, J., T. J. Montville, I. F. Nes and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.
Coventry, M. J., M. W. Hickey and K. Muirhead. 1995. Partial characterisation of pediocin PO2 and comparison with nisin for biopreservation of meat products. Int. J. Food Microbiol. 26: 133-145.
Cutter, C. N. and G. R. Siragusa. 1995. Population reductions of gram-negative pathogens following treatments with nisin and chelators under various conditions. J. Food Prot. 58: 977-983.
Cutter, C. N. and G. R. Siragusa. 1996. Long-term storage stability of the bacteriocin propionicin PLG-1 produced by Propionibacterium thoenii and potential packaging. Food Microbiol. 13: 23-33.
Daba, H., S. Pandian, J. F. Gosselin, R. E. Simard and C. Lacroix. 1991. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57: 3450-3455.
Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservative. Food Technol. 43: 164-167.
Daeschel, M. A. and T. R. Klaenhammer. 1985. Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol. 50: 1538-1541.
Davidson, P. M. and M. E. Parish. 1989. Methods for testing the efficacy of food antimicrobials. Food Technol. 43: 148-155.
Deklerk, H. C. and J. A. Smit. 1967. Properties of a Lactobacillus fermentum bacteriocin. J. Gen. Microbiol. 48: 309.
Delves-Broughton, J. 1990. Nisin and its uses as a food preservative. Food Technol. 44: 100-117.
DePaola, A., J. Ulaszek, C. A. Kaysner, B. J. Tenge, J. L. Nordstrom, J. Wells, N. Puhr and S. M. Gendel. 2003. Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in north America and Asia. Appl. Environ. Microbiol. 69: 3999-4005.
de Vos, W. M., J. W. M. Mulders, R. J. Siezen, J. Hugenholtz and O. P. Kuipers. 1993. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl. Environ. Microbiol. 59: 213-218.
de Vuyst, L. and J. Vandamme. 1992. Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol. 138: 51-58.
DIN. 1984. Amtliche SammLung von Untersuchungsverfahren nach 35 LMBG. Verfahren zur Probentanahme und Untersuchung von Lebensmitteln, Tabakerzeugnissen, Kosmetischen Mitteln und Bedarfsgegenstanden, Beuth, Koln, 1980 bis 1984.
Dixon, N. M., D. B. Kell. 1989. The inhibition by CO2 of the growth and metabolism of microorganism. J. Appl. Bacteriol. 67: 109-136.
Dodd, H. M., N. Horn, C. J. Giffard and M. J. Gasson. 1996. A gene replacement strategy for engineering nisin. Microbiology 142: 47-55.
Fang, T. J. and L. W. Lin. 1994. Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination system. J. Food Prot. 57: 479-485.
Fang, T. J. and Y. S. Shiuann. 1995. Production and property of a bacteriocin-like inhibitor from Lactococcus lactis DY 11212. Food Technol. 22: 479-4100.
Fang, T. J. and Y. T. Hsueh. 2000. Effect of chelators, organic acid and storage temperature on growth of Escherichia coli O157: H7 in ground beef treated with nisin, using response surface methodology. J. Food Drug Anal. 8: 187-194.
Franz, C. M. A. P., U. Schillinger and W. H. Holzapfel. 1996. Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int. J. Food Microbiol. 29: 255-270.
Fukase, K., M. Kitazawa, A. Sano, K. Shombo, H. Fujita, S. Horimoto, T. Wakamiya and T. Shiba. 1988. Total synthesis of peptide antibiotic nisin. Tetrahedron Lett. 29: 759-798.
Garvie, E. I. 1986. Genus Leuconostoc. In “Bergey‘s Manual of Systematic Bacteriology”. pp. 1071-1075. Vol. 2. Eds. by Sneath, P. H. A., N. S. Mair, M. E. Sharpe and J. G. Holt. Williams and Wilkins Co., Baltimore.
Geisen, R. B. Becker and W. H. Holzapfel. 1993. Bacteriocin production of Leuconostoc carnosum LA54A at different combination
of pH and terperature. J. Indust. Microbiol. 12: 337-340.
Gill, A, O. and R. A. Holley. 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. Int. J. Food Microbiol. 80: 251-259.
Griffard, C. J., H. M. Dodd, N. Horn, S. Ladha, A. R. Mackie, A. Parr, M. J. Gasson and D. Sanders. 1997. Structure-function relations of variant and fragment nisins studied with model membrane systems.
Biochemistry 36: 3802-3810.
Grinstead, D. A. and S. F. Barefoot. 1992. Jenseniin G, a heat-stable bacteriocin produced by Propionibacterium jensenii P126. Appl.
Environ. Microbiol. 58: 215-220.
Gross, E. and H. Kiltz. 1973. The number and nature of ��, ��-
unsaturated aminoacids in subtilin. Biochem. Biophs. Res. Commun. 50: 559-565.
Gross, E. and J. L. Morell. 1971. The structure of nisin. J. Am. Chem. Soc. 100: 4634-4635.
Harris, L. J., H. P. Fleming and T. R. Klaenhammer. 1992. Development in nisin research. Food Res. Int. 25: 57-66.
Hastings, J. W., M. Sailer, K. Johnson, K. L. Roy, J. C. Vederas and M. E. Stiles. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173: 7491-7500.
Hechard, Y. and H. G. Sahl. 2002. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84: 545-557.
Helander, I. M. and T. Mattila-Sandholm. 2000. Permeability barrier of the gram-negitive bacterial outer membrane with special reference to nisin. Int. J. Food Microbiol. 60: 153-161.
Hoefnagel, M. H. N., M. J. C. Starrenburg, D. E. Martens, M. Hugenholtz, I. I. V. Swam, R. Bongers, H. V. Westerhoff and J. L. Snoep. 2002. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology 148: 1003-1013.
Horner, T., H. Zahner, R. Kellner and G. Jung. 1989. Fermentaion and isolation of epidermin a lanthionine containing polypeptide antibiotic from Staphylococcus epidermidis. Appl. Microbiol. Biotechnol. 30: 219-225.
Horner, T., V. Ungermann, H. Zahner, H. P. Fiedler, R. Utz, R. Kellner and G. Jung. 1990. Comparative studies on the fermentative production of lantibiotics by staphylococci. Appl. Microbiol. Biotechnol. 32: 511-517.
Huot, E., C. Barrena-Gonzalez and H. Petitdemange. 1996. Comparative effectiveness of nisin and bacteriocin J46 at different pH values. Lett. Appl. Microbiol. 22: 76-79.
Hur, J. W., T. H. Hyun, Y. R. Pyun, T. S. Kim, I. H. Yeo and H. D. Paik. 2000. Identification and partial characterization of lacticin BH5, a bacteriocin produced by Lactococcus lactis BH5 isolated from kimchi. J. Food Prot. 63: 1707-1712.
Hurst, A. 1981. Nisin. Adv. Appl. Microbiol. 27: 85-123.
Jack, R. W., J. R. Tagg and B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171-200.
Jarvis, B. 1967. Resistance to nisin-inactivating enzymes by several Bacillus species. J. Gen. Microbiol. 47: 33-48.
Jay, J. M. 2000. Microorganisms in foods. In “Mordern Food Microbiology”. pp.511-548. 6th ed. International Thomson Publishing, New York.
Jennes, W., L. M. Dicks and D. J. Verwoerd. 2000. Enterocin 012, a bacteriocin produced by Enterococcus gallinarum isolated from the intestinal tract of ostrich. J. Appl. Microbiol. 88: 349-357.
Joerger, M. C. and T. R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167: 439-446.
Kato, T., L. Inuzuka, M. Kondo and T. Matsuda. 2001. Growth of nisin-producing lactococci in cooked rice supplemented with soybean extract and its application to inhibition of Bacillus subtilis in rice miso. Biosci. Biotechnol. Biochem. 65: 330-337.
Kemperman, R., A. Kuipers, H. Karsens, A. Nauta, O. Kuipers and J. Kok. 2003. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl. Environ. Microbiol. 69: 1589-1597.
Kim, T. S., J. W. Hur, M. A. Yu, C. I. Cheigh, K. N. Kim, J. K. Hwang, and Y. R. Pyun. 2003. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food Prot. 66: 3-12.
Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349.
Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.
Klaenhammer, T., E. Altermann, F. Arigoni, A. Bolotin, F. Breidt, J. Broadbent, R. Cano, S. Chaillou, J. Deutscher, M. Gasson, M. van de Guchte, J. Guzzo, A. Hartke, T. Hawkins, P. Hols, R. Hutkins, M. Kleerebezem, J. Kok, O. Kuipers, M. Lubbers, E. Maguin, L. McKay, D. Mills, A. Nauta, R. Overbeek, H. Pel, D. Pridmore, M. Saier, D. van Sinderen, A. Sorokin, J. Steele, D. O'Sullivan, W. de Vos, B. Weimer, M. Zagorec and R. Siezen. 2002. Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82: 29-58.
Klein, G., A. Pack, C. Bonaparte and G. Reuter. 1998. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41: 103-125.
Labuza, T. P., B. Fu, P. S. Taoukis. 1992. Prediction for shelf life and safety of minimally processed CAP/MAP chilled foods. J Food Prot. 55: 741-750.
Larsen, A. G., F. K. Vogeensen and J. Josephsen. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: Purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus M1401. J. Appl. Bacteriol. 75: 113-122.
Lewus, C. B., A. Kaiser and T. J. Montville. 1991. Inhibition of foodborne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol. 57: 1683-1688
Liang, H. F., C. N. Chen, Y. Chang and H. W. Sung. 2003. Natural antimicrobial agent (reuterin) produced by Lactobacillus reuteri for sanitization of biological tissues inoculated with Pseudomonas aeruginosa. Biotechnol. Bioeng. 84: 233-239.
Liang, Z., G. S. Mittal and M. W. Griffiths. 2002. Inactivation of Salmonella typhimurium in orange juice containing antimicrobial agents by pulsed electric field. J. Food Prot. 65: 1081-1087.
Liao, C. C., A. E. Yousef, E. R. Richter and G. W. Chism. 1993. Pediococcus acidilactici PO2 bacteriocin production in whey permeate and inhibition of Listeria monocytogenes in foods. J. Food Sci. 58: 430-434.
Lin, C. M., S. S. Moon, M. P. Doyle and K. H. McWatters. 2002. Inactivation of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes on lettuce by hydrogen peroxide and lactic acid and by hydrogen peroxide with mild heat. J. Food Prot. 65: 1215-1220.
Liu, W. and J. N. Hansen. 1990. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol. 56: 2551-2558.
Lv, W., W. Cong and Z. Cai. 2004. Nisin production by Lactococcus lactis subsp. lactis under nutritional limitation in fed-batch culture. Biotechnol. Lett. 26: 235-238.
Magnusson, J., H. Jonsson, J. Schnurer and S. Roos. 2002. Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 52: 831-834.
Maisnier-Patin, S., S. Tatini and J. Richard. 1995. Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in milk. Lait 75: 81-91.
Marugg, J. D. 1991. Bacteriocins, their role in developing natural products. Food Biotechnol. 5: 305-312.
Matarragas, M., E. H. Drosinos and J. Metaxopoulos. 2003. Antagonistic activity of lactic acid bacteria against Listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4 ± 2oC. Food Microbiol. 20: 256-265.
Mazzotta, A. S. and T. J. Montville. 1997. Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10oC and 30oC. J. Appl. Microbiol. 82: 32-38.
Michiels, J., G. Dirix, J. Vanderleyden and C. Xi. 2001. Processing and export of peptide pheromones and bacteriocins in gram-negative bacteria. Trends Microbiol. 9: 164-168.
Mills, S., A. Coffey, L. O'Sullivan, D. Stokes, C. Hill, G. F. Fitzgerald and R. P. Ross. 2002. Use of lacticin 481 to facilitate delivery of the bacteriophage resistance plasmid, pCBG104 to cheese starters. J. Appl. Microbiol. 92: 238-246.
Miranda, C. M., L. M. Farias, M. A. Carvalho, C. A. Damasceno, A. H. Totola, C. A. Tavares, E. O. Cisalpino and E. C. Vieira. 1993. Purification and partial characterization of a bacteriocin isolated from Bacteroides ovatus H47. Can. J. Microbiol. 39: 169-174.
Moll, G. N., W. N. Konings and A. J. N. Driessen. 1999. Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek. 76: 185-198.
Montville, T. J. and M. E. C. Bruno. 1994. Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int. J. Food Microbiol. 24: 53-74.
Mortvedt, C. I., J. Nissen-Meyer, K. Sletten and I. F. Nes. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L 45. Appl. Environ. Microbiol. 57: 1829-1834.
Motlagh, A. M., M. C. Johnson and B. Ray. 1991. Viability loss of food-borne pathogens by starter culture metabolites. J. Food Prot. 54: 873-878.
Muriana P. M. and T. R. Klaenhammer. 1987. Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Appl. Environ. Microbiol. 53: 553-560.
Natrajan, N. and B. W. Sheldon. 2000. Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation. J. Food Prot. 63: 1268-1172.
Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70: 113-128.
Nettles, C. G. and S. F. Barefoot. 1993. Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. J. Food Prot. 56: 338-356.
Nilsson, L., H. H. Huss and L. Gram. 1997. Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere. Int. J. Food Microbiol. 38: 217-227.
Nishi, H., H. Komatsuzawa, S. Yamada, T. Fujiwara, M. Ohara, K. Ohta, M. Sugiyama, T. Ishikawa and M. Sugai. 2003. Moenomycin -resistance is associated with vancomycin-intermediate susceptibility in Staphylococcus aureus. Microbiol. Immunol. 47: 927-1005.
Nissen-Mayer, J., H. Holo, L. S. Havarstein, K. Sletten and I. F. Ness. 1992. A novel lactococcal bacteriocin whose acticity depends on the complenebtary action of two peptides. J. Bacteriol. 174: 5686-5692.
Nykänen, A., K. Weckman and A. Lapveteläinen. 2000. Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. Int. J. Food Microbiol. 61: 635-72.
Ogden, K., M. J. Waites and J. R. M. Hammond. 1988. Nisin and brewing. J. Indust. Brew. 94: 233-238.
Olasupo, N. A., U. Schillinger, A. Narbad, H. Dodd and W. H. Holqapfel. 1999. Occurrence of nisin Z production in Lactococcus lactis BFE1500 isolated from wara, a traditional nigerian cheese product. Int. J. Food Microbiol. 53: 141-152.
Oumer, A., S. Garde, P. Gaya, M. Medina and M. Nuñez. 2001. The effects of cultivating lactic starter cultures with bacteriocin- producing lactic acid bacteria. J. Food Prot. 64: 81-86.
Parente, E. and A. Ricciardi 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52: 628-638.
Parente, E., C. Brienza, M. Moles and A. Ricciardi. 1995. A comparison of methods for the measurement of bacteriocin activity. J. Microbiol. Methods 22: 95-108.
Parente, E., M. A. Giglio, A. Ricciardi and F. Clementi. 1998. The combined effect of nisin, leucocin F10, pH, NaCl and EDTA on the survival of Listeria monocytogenes in broth. Int. J. Food Microbiol. 40: 65-75.
Piddock, L. J. V. 1990. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. J. Appl. Bacteriol. 68: 307-318.
Pilet, M. R., R. Barre, M. Desmazeand, X. Dousset, G. Novel and J. C. Piard. 1995. Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. J. Food Prot. 58: 256-262.
Presser, K. A., D. A. Ratkowsky and T. Ross 1997. Modeling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 63: 2355-2360.
Rayman, K. and A. Hurst. 1984. Nisin: Properties, biosythesis and fermentation. In “Biotechnology of Industrial Antibiotics”. pp. 607-626. Ed. by Vandamme, E. J. Marcel Dekker, Inc., New York.
Reddy, N. S. and B. Ranganathan. 1983. Nutritional factors affecting growth and production of antimicrobial substance by Streptococcus lactis subsp. diacetylacticis SI-67-C. J. Food Prot. 46: 514-517.
Reese, E. T. and A. Maguire. 1969. Surfactnts as stimulants of enzyme production by microorganism. Appl. Microbiol. 17: 242-245.
Reeves, P. 1965. The bacteriocins. Bacteriol. Rev. 29: 24-45.
Riley, M. A. and J. E. Wertz. 2002. Bacteriocin diversity: Ecological and evolutionary perspectives. Biochimie 84: 357-364.
Rogers, A. M. and T. J. Montville. 1991. Improved agar diffusion assay for nisin quantification. Food Biotechnol. 5: 131-168.
Rollema, H. S., O. P. Kuipers, P. J. Siezen, W. M. de Vos. 1995. Improvement of solubility and stability of the antimicrobial peptide nisin by protein. Appl. Environ. Microbiol. 61: 2872-2878.
Rossano, R., A. D. Fiore, A. D Elia , G. Pesole, E. Parente and P. Riccio. 1998. New procedure for the determination of nisin in milk. Biotechnol. Techniq. 12: 783-786.
Sahl, H. G., M. Kordel and R. Benz. 1987. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch. Microbiol. 149: 120-124.
Salzano, G., F. Billani, O. Pepe, E. Sorrentino, G. Moschetti and S. Coppola. 1992. Conjugal transfer of plasmid-borne bacteriocin production in Enetococcus faecalis 226 NWC. FEMS Microbiol. Lett. 99: 1-5.
Sano, Y. and M. Kageyama. 1993. A novel transposon-like structure carries the genes for pyocin AP41, a Pseudomonas aeruginosa bacteriocin with a DNase domain homology to E2 group colicins. Mol. Gen. Genet. 237: 161-170.
Sarantinopoulos, P., F. Leroy, E. Leontopoulo, M. D. Georgalaki, G. Kalantzopoulos, E. Tsakalidou and L. de Vuyst. 2002. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int. J. Food Microbiol. 72: 125-136.
Scannell, A. G., C. Hill, D. J. Buckley and E. K. Arendt. 1997. Determination of the influence of organic acid and nisin on shelf-life and microbiological safety aspects of fresh pork sausage. J. Appl. Microbiol. 83: 407-412.
Schillinger, U., B. Becker, G. Vignolo and W. H. Holzapfel. 2001. Efficacy of nisin in combination with protective cultures against Listeria monocytogenes Scott A in tofu. Int. J. Food Microbiol. 71: 159-168.
Schillinger, U., M. E. Stiles and W. H. Holzapfel. 1993. Bacteriocin production by Carnobacterium piscicola LV61. Int. J. Food Microbiol. 20: 131-147.
Schleifer, K. H. and R. Kilpper-Balz. 1987. Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: A review. Syst. Appl. Microbiol. 10: 1-19.
Shaheen, H. I., K. A. Kamal, M. O. Wasfy, N. M. El-Ghorab, B. Lowe, R. Steffen, N. Kodkani, L. Amsler, P. Waiyaki, J. C. David, S. B. Khalil and L. F. Peruski Jr. 2003. Phenotypic diversity of enterotoxigenic Escherichia coli (ETEC) isolated from cases of travelers’ diarrhea in Kenya. Int. J. Infect. Dis. 7: 35-41.
Shin, K., H. Hayasawa and B. Lonnerdal. 2001. Inhibition of Escherichia coli respiratory enzymes by the lactoperoxidase-hydrogen peroxide-thiocyanate antimicrobial system. J. Appl. Microbiol. 90: 489-4100.
Siragusa, G. R. and C.N. Cutter. 1993. Brochocin-C, a new bacteriocin produced by Brochothrix campestris. Appl. Environ. Microbiol. 59: 2326-2328.
Somers, E. B. and S. L. Taylor. 1987. Antibotulinal effectiveness of nisin in pasteurized processed cheese spreads. J. Food Prot. 50: 842-848.
Spelhaug S. R. and S. K. Harlander. 1989. Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot. 52: 856-862.
Stevens, K. A., B. W. Sheldon, N. A. Klapes and T. R. Klaenhammer. 1991. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl. Environ. Microbiol. 57: 3613
-3615.
Stevens, K. A., B. W. Sheldon, N. A. Klapes and T. R. Klaenhammer. 1992. Effect of treatment condition on nisin inactivation of Gram-negative bacteria. J. Food Prot. 55: 763-766.
Stiles, M. E. and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29.
Stoffels, G., J. Nissen-Meyer, A. Gudmundsdottir, K. Sletten, H. Holo and I. F. Nes. 1992. Purification and partial characterization of a new bacteiocin isolation from a Carnobacterium spp. Appl. Environ. Microbiol. 58: 1417-1422.
Sudirman, I., F. Mathieu, V. Benoit and G. Lefebvre. 1994. Properties of two bacteriocins synthesized by Leuconostoc strains. Curr. Microbiol. 28: 155-159.
Tagg, J. R. 1991. Bacterial BLIS. ASM News 57: 611.
Tagg, J. R., A. S. Dajani and L. W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722-756.
Tooda, S., A. S. Bala, R. P. Tiwari and G. Singh. 1989. Production of bacteriocin by isolates of Yensinia enterocolitica from fresh butter milk. Folia Microbiol. 34: 151-156.
Tramer, J. and G. G. Flower. 1964. Estimation of nisin in foods. J. Sci. Food Agric. 8: 522-528.
Ukuku, D. O. and W. F. Fett. 2004. Effect of nisin in combination with EDTA, sodium lactate, and potassium sorbate for reducing Salmonella on whole and fresh-cut cantaloupe. J. Food Prot. 67: 2143-2150.
Valenta, C., S. A. Bernkop and C. Teltscher. 1996. Nisin, a potential preservative for topical preparations. Pharmazie 51: 119-122.
van Belkum, M. J., J. Kolk, G. Venema, H. Holo, I. F. Nes, W. N. Konings and T. Abee. 1991. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol. 173: 7934-7941.
van Laack, R. L. J. M., U. Schillinger and W. H. Holzapfel. 1992. Characterization and partial purification of a bacteriocin produced by Leuconostoc carnosum LA44A. Int. J. Food Microbiol. 16: 183-195.
Vaughan, A., V. G. Eijsink, T. F. O'Sullivan, K. O'Hanlon and D. van Sinderen. 2001. An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J. Appl. Microbiol. 91: 131-138.
Verluyten, J., W. Messens and L. de Vuyst. 2003. The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions. Appl. Environ. Microbiol. 69: 3833-3839.
Vessoni, P. and D. A. Moraes. 2002. The influence of nisin on the thermal resistance of Bacillus cereus. J. Food Prot. 65: 415-418.
Visser, S., I. Recio and J. Slangen. 2000. Method for the production of antibacterial peptides from biological fluid at an ionic membrane. Application to the isolation of nisin and caprine lactoferricin. EDP Sci. 80: 187-195.
Waites, M. J. and K. Ogden. 1987. The estimation of nisin using ATP-bioluminometry. J. Inst. Brew. 100: 30-32.
Weigel, L. M., D. B. Clewell, S. R. Gill, N. C. Clark, L. K. McDougal, S. E. Flannagan, J. F. Kolonay, J. Shetty, G. E. Killgore and F. C. Tenover. 2003. Genetic analysis of a high-level vancomycin
resistant isolate of Staphylococcus aureus. Science 302: 1569-1571.
West, C. A. and P. J. Warner. 1988. Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCOD 11100. FEMS Microbiol. Lett. 49: 163-165.
White, C., N. L. Morgan and J. S. Rockey. 1992. Inhibition by nisin of K+ uptake in a sensitive Pediococcus spp. strain. Biotechnol. Technol. 6: 561-564.
Windholz, M. 1976. The Merck Index-An Encyclopedia of Chemicals and Drugs. p. 3477. 9th ed. Merck and Co., Inc. U.S.A.
Wong, H. C., C. C. Liu, T. M. Pan, T. K. Wang, C. L. Lee and D. Y. C. Shih. 1999. Molecular typing of Vibrio parahaemolyticus isolates, obtained from patients involved in food poisoning outbreaks in Taiwan, by random amplified polymorphic DNA analysis. J. Clin. Microbiol. 37: 1809-1812.
Yeung, P. S. M., M. C. Hayes, A. Depaola, C. A. Kaysner, L. Kornstein and K. J. Boor. 2002. Comparative phenotypic, molecular, and virulence characterization of Vibrio parahaemolyticus O3:K6 isolates. Appl. Environ. Microbiol. 68: 2901-2909.
Yezzi, T. L., A. B. Ajao and E. A. Zottola. 1993. Increase nisin in Cheddar-type cheese prepared with pH control of the bulk starter culture system. J. Diary Sci. 76: 2827-2831.
Zhang, S. and A. Mustapha. 1999. Reduction of Listeria monocytogenes and Escherichia coli O157:H7 numbers on vacuum-packaged fresh beef treated with nisin or nisin combined with EDTA. J. Food Prot. 62: 1123-1127.
Zottola, E. A., T. L. Yezzi, D. B. Ajao and R. F. Roberts. 1994. Utilization of cheddar cheese containing nisin as antimicrobial agent in other foods. Int. J. Food Microbiol. 24: 227-238.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top