跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佩蒨
研究生(外文):Pei-Chien Wu
論文名稱:探討培養基組成對Bacillussubtilis生產胞外酵素之影響及其利用於鯖魚及龍鬚菜水解之可行性
論文名稱(外文):Effect of Medium Composition on the Extracellular Enzymes from Bacillus subtilis and the Feasibility of Using these Enzymes in the Hydrolysis of Mackerel and Sea Weeds (Gracilaria spp.)
指導教授:江善宗殷儷容殷儷容引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:69
中文關鍵詞:鯖魚龍鬚菜Bacillus subtilis
外文關鍵詞:MackerelGracilaria spp.
相關次數:
  • 被引用被引用:5
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬探討Bacillus subtilis生產protease、amylase、chitosanase及cellulase之最適培養基組成,再利用該類酵素液對鯖魚及龍鬚菜(Gracilaria spp.)進行水解,評估所得的水解物之抗氧化活性、對類人類B細胞株 (human hybridoma HB4C5) 之增生效果以及動物細胞生理活性。結果顯示該Bacillus subtilis在複合培養基 (含1 % skim milk、1 % soya meal、0.25 % starch、0.25% K2HPO4、0.5% NaCl、0.05 % MgCl2.6H2O) 於37℃培養三天後中性蛋白酶、澱粉酶及纖維素酶活性分別達238.6、166.0及1131.1 unit/mL。利用該酵素液於50℃水解鯖魚肉漿0∼8小時,結果發現水解7小時後產物之抗氧化力達最高∼總抗氧化力(TEAC)為2.3 mM;清除��,��-diphenyl-��-picrylhydrazyl (DPPH)自由基效果為61.5%;還原力為0.75;螯合亞鐵離子能力為75.8%。但經8小時水解後產物之抗氧化能力均下降。在水解過程中,總氮含量均無顯著差異(p<0.05),揮發性鹽基態氮 (VBN)<25 mg/100 g。由SDS-PAGE電泳分析與非蛋白質態氮的結果顯示蛋白質降解快速且明顯,但對類人類B細胞增生效果不明顯。該酵素液於50℃水解龍鬚菜0∼8小時,其水解產物對清除DPPH自由基的效果不顯著,但隨著水解時間延長TEAC值則有增加之趨勢,未經酵素水解之龍鬚菜之TEAC值為0.28mM,經8小時水解後增加為0.89mM。水解前後還原醣、可溶性蛋白及胜肽量變化結果顯示該酵素液可有效水解龍鬚菜。
This study aimed to investigate the best medium for Bacillus subtilis to produce protease, amylase, chitosanase and cellulase. The produced enzymes were selectively collected and employed to hydrolyze mackerel and asparagus (Gracilaria spp.). The antioxidation ability, proliferation of human hybridoma HB4C5 and physiological activation ability on animal cells of the hydrolysates were analyzed. According to the results obtained in this study, the best complex medium for Bacillus subtilis to produce protease, amylase, chitosanase and cellulase was the mixture containing 1% skim milk, 1% soya meal, 0.25% starch, 0.25% K2HPO4, 0.5% NaCl and 0.05% MgCl2. After 3 days incubation in this complex medium at 37oC, the neutral protease, amylase and cellulase activities were 238.6, 166.0 and 1131.1 unit/mL, respectively. During 8 h hydrolysis using the selected enzymes solution, the antioxidant ability of hydrolysate increased gradually and got the highest values after 7 h hydrolysis at 50oC [total antioxidation ability (TEAC): 2.3 mM, α, α-diphenyl-β-picrylhydrazyl (DPPH) scavenging ability: 61.5%, reducing power: 0.75, Fe2+ chelating ability: 75.8%]. However, the antioxidation ability significantly decreased after 8 h hydrolysis (p<0.05). No significant changes in total nitrogen and volatile basic nitrogen (VBN, <25 mg/100 g) was observed during 8 h hydrolysis. Changes in SDS-PAGE and nonproteinous nitrogen suggested that obvious degradation of muscle proteins occurred during hydrolysis. However, the hydrolyzed mackerel could not proliferate the human hybridoma HB4C5 cell and physiologically activate the animal cells. During 8 h hydrolysis of Gracilaria spp. at 50oC, although no increase in DPPH scavenging ability was obtained, the TEAC increased with the duration of hydrolysis (from 0.28 to 0.89mM). According to the changes in reducing sugar, soluble protein and peptides before/after hydrolysis, the selected enzymes from Bacillus subtilis incubated in the mentioned complex medium could effectively hydrolyze the asparagus (Gracilaria spp.).
目 錄
謝辭 --------------------------------------------------------------------Ⅰ
中文摘要 --------------------------------------------------------------------Ⅱ
英文摘要 --------------------------------------------------------------------Ⅲ
目錄 --------------------------------------------------------------------Ⅴ
壹、研究背景與目的 -----------------------------------------------------1
貳、文獻整理 --------------------------------------------------------------3
一、枯草桿菌--------------------------------------------------------------3
(一)簡介 ---------------------------------------------------------------3
(二)Bacillus subtilis之酵素 ------------------------------------------3
1、蛋白酶 -------------------------------------------------------------3
2、α-澱粉酶------------------------------------------------------------5
3、植酸酶 -------------------------------------------------------------6
4、幾丁質酶 ----------------------------------------------------------6
5、其他酵素 -------------------------------------------------------------------7
二、微生物生長之營養需求 -----------------------------------------------------7
1、碳源--------------------------------------------------------------8
2、氮源-----------------------------------------------------------------8
3、礦物質--------------------------------------------------------------8
4、維生素--------------------------------------------------------------8
三、蛋白質水解產物 ---------------------------------------------------9
(一)水解方式 -------------------------------------------------------9
1、化學水解法 ---------------------------------------------------------9
2、酵素水解法 --------------------------------------------------------9
(二)蛋白質水解物之機能性 -----------------------------------------10
1、植物來源 -----------------------------------------------------------10
2、動物來源 -----------------------------------------------------------10
四、抗氧化活性 ---------------------------------------------------------11
1、抑制亞麻油酸自氧化 ---------------------------------------------11
2、金屬離子螯合能力--------------------------------------------------12
3、清除DPPH自由基--------------------------------------------------12
4、還原力------------------------------------------------------------13
5、Trolox equivalent antioxidant capacity (TEAC) ----------------13
參、材料方法-----------------------------------------------------------------15
Ⅰ. 實驗材料 -----------------------------------------------------------------15
Ⅱ. 實驗方法 -----------------------------------------------------------------17
一、 菌株之活化與保存 --------------------------------------17
二、 菌株培養基組成對菌種生長之影響 ---------------------------- 17
1、菌數之計數 -----------------------------------------------------17
2、pH值之測定 ------------------------------------------------------17
3、酵素活性測定--------------------------------------------------17
三、Bacillus subtilis 之粗酵素液製備------------------------------18
四、 酵素水解物之製備 --------------------------------------------19
五、品質檢測 ---------------------------------------------------------19
1、揮發性鹽基態氮(VBN)測定 -----------------------------------19
2、Hunter L、a、b 值之測定 -----------------------------------------19
六、水解物之成份變化----------------------------------------------19
1. 總含氮量測定---------------------------------------------------19
2. 非蛋白質態氮測定--------------------------------------------20
3. 可溶性蛋白質含量測定-----------------------------------20
4. 胜肽含量測定-------------------------------------------------20
5. 電泳分析--------------------------------------------------------20
6. 還原醣之測定----------------------------------------------------21
七、水解物之抗氧化探討 --------------------------------------21
1. 清除DPPH自由基能力之測定----------------------------------21
2. 還原力測定-----------------------------------------------------21
3. Trolox equivalent antioxidant capacity (TEAC)------------------21
4. 螯合亞鐵離子能力-------------------------------------------------22
八、動物細胞活性試驗-----------------------------------------------22
肆、結果與討論 ------------------------------------------------------------24
一、菌株培養基組成對菌種生長之影響 ----------------------24
二、培養基組成對生產之酵素種類及活性的影響----------------24
1. 幾丁聚醣酶--------------------------------------------------------24
2. 蛋白酶-------------------------------------------------------------25
3. 纖維素酶 -------------------------------------------------------------25
4. 澱粉酶 -------------------------------------------------------------26
三、鯖魚水解物品質檢測-------------------------------------------------27
1、揮發性鹽基態氮(VBN)測定 ----------------------------------------27
2、Hunter L、a、b 值之測定 -----------------------------------------27
四、水解物之成份變化--------------------------------------------------27
1. 鯖魚水解物--------------------------------------------------------27
(1) 總含氮量及非蛋白質態氮含量測定 -------------------------28
(2)可溶性蛋白及胜肽含量之變化---------------------------------28
(3)電泳分析-------------------------------------------------29
2. 龍鬚菜水解物--------------------------------------------------29
(1) 還原醣含量變化 -------------------------------------------------29
(2)可溶性蛋白及胜肽含量之變化------------------------------29
五、抗氧化活性試驗--------------------------------------------------30
1. 鯖魚水解物-----------------------------------------------------30
(1)清除DPPH自由基能力之測定-------------------------------30
(2)還原力測定-------------------------------------------------30
(3)Trolox equivalent antioxidant capacity (TEAC)---------------31
(4)螯合亞鐵離子能力-------------------------------------------31
2.龍鬚菜水解物----------------------------------------------------32
(1)清除DPPH自由基能力之測定-------------------------------32
(2)Trolox equivalent antioxidant capacity (TEAC)-------------------32
六、動物細胞活性試驗------------------------------------------32
1. 鯖魚水解物------------------------------------------------------32
2.龍鬚菜水解物-------------------------------------------------------33
伍、結論 ---------------------------------------------------------------------34
陸、參考文獻---------------------------------------------------------------35
圖表--------------------------------------------------------------------------------47
方銘志。2002。山藥多醣體之免疫調節機能探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
王正仁,陳孟伶,林畢修平,陳啟祥。1999。水解酵素在工業上的利用。生物產業。10(1): 1-11。
王美人、周正俊、游若篍。1993。枯草菌之DNA轉形對α-澱粉酶生產之研究。中國農業化學會誌。31(4)454-465。
向明。1996。生物技術。九州圖書文物出版有限公司。台北市。
林咨吟。2003。Bacillus subtilis W-118所產幾丁質酶之研究。大葉大學學食品工程研究所碩士論文,彰化。
林玫欣。1999。鯖魚肉與內臟水解物之抗氧化特性研究。國立台灣海洋大學食品科學所碩士論文,基隆。
洪碧霙。2003。蜡蚧輪枝菌幾丁聚醣酶之特性分析及應用研究。朝陽科技大學應用化學系碩士論文,台中。
蘇遠志。1999。應用微生物學。華香園出版社。台北市。
馬盈瑜。2003。龍鬚菜多醣及其水解產物生理活性之探討。國立屏東科技大學食品科學系博士論文,屏東。
陳吉平。1997。微生物學-概念與應用。睿煜出版社。台北市。
陳瑤湖。1995。麴菌、枯草桿菌、光合菌各種組合的添加對養殖環境水質及底質的影響。行政院國科會專題研究計畫成果報告。台北市。
陳美貞。1998。鯖魚肉蛋白質水解物對血管升壓素轉換酶之抑制及其降高血壓的效果。國立台灣海洋大學食品科學系碩士論文,基隆市。
陳威銘。2003。研發利用紅麴菌發酵生產機能性魚肉產品之新技術。國立台灣海洋大學食品科學系碩士論文,基隆市。
陳鴻章及金安兒。2001。食品生物化學。偉明圖書有限公司。台北市。
彭詩純,2003。鯖魚肉酵素水解物之游離胺基酸及胜肽與抗氧化性及苦味之關係。國立臺灣海洋大學水產食品科學系碩士學位論文,基隆。
黃卓治、辛志勳、張文重。1978。納豆菌蛋白質分解酵素生產條件之探討。屏東農專學報19:92-98。
童雅玲。2004。米麴菌蛋白酶水解與併用乳酸菌發酵對鯖魚肉機能性之影響。國立台灣海洋大學食品科學系碩士論文,基隆市。
廖姿婷。2002。龍鬚菜抗氧化性質評估及其飲料產品研製。國立中興大學食品科學所碩士論文,台中。
楊禮謙。2003。研發利用米麴菌改善魚肉加工特性及抗氧化力之研究。國立台灣海洋大學食品科學系碩士論文,基隆市。
農委會,1996。CAS優良肉品標誌制度規範。行政院農委會,台北。
劉錦芬。2001。台灣龍鬚菜萃取物之免疫生理活性探討。國立台灣海洋大學食品科學系碩士論文,基隆市。
Anwar, A. and Saleemuddin, M. 1998. Alkaline proteases: a review. Biosource Technol. 64: 175-183.
Amarowicz, R., and Shahidi, F. 1997. Antioxidant activity of peptide fraction of capelin protein hydrolysates. Food Chemistry. 58: 355–359.
Amos, J. A. 1955. The use of enzymes on the baking industry. J. Sci. Food Agric. 6:489
AOAC. 1997. Offical Methods of Analysis. 16th ed. Association of official Analytical Chemists. Washington, DC, USA.
Aruoma, O. I., Laughton, M. J. and Halliwell, B. 1989. Carnosine, homocarnosine and anserine: Could they act as antioxidants in vivo? Biochemical. 264: 863-869.
Astawan, M., Wahyuni, M., Yasuhara, T., Yamada, K., Tadokoro, T. and Maekawa, A. 1995. Effects of angiotensin I - converting enzyme inhibitory substances derived from Indonesian drued-salted fish on blood pressure of rats. Biosci. Biotech. Biochem. 59: 425-429.
Banerjee, U. C., Sani, R. K., Azmi, W. and Soni, R. 1999. Thermostable alkaline protease form Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35(1-2):213-219.
van den Berg, R., Haenen, G. R. M. M., van den Berg, H. and Bast A. 1999.Applicability of an improved Trolox equivalent antioxidant capacity(TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511-517.
Bernfeld, P. 1955. Amylase α and β. In Methods in Enzymology. 1:149.
Beuchat, L. R. 1974. Preparation and evalution of a microbial growth medium formulated form catfish waste peptone. J. Milk Food Technol. 37:277-281.
Billmeyer, F. W. 1979. Current status of the color-difference problem. Journal of Coating Technology 51: 46-47.
Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W. A. and Brzezinski, R. 1992. Purification and characterization of a chitosanase from Streptomyces N174. Appl. Microbiol. Biotechnol. 38: 188-193.
Brand-Williams, W., Cuveliver, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28:25-30.
Briggs, M. R. P. and Smith, S. J. F. 1993. Macroalgae in aqua-culture: An overview and their possible roles in shrimp culture. Proceedings conference on marine biotechnology in the Asia Pacific. 137-143.
Burdett, I. D. 1988. Structure, growth and division for the Bacillus subtilis cell sulfure. Can. J. Microbiol. 43:373-380.
Butler, O. D., Bratzler, L. J. and Mallmann, W. L. 1953. The effect of bacteria on the color of prepackaged retail beef cuts. Food Technology. 7: 397-411.
Cáceres, P. J., Carlucci, M. J., Damonte, E. B., Matsuhiro, B.and Zúñiga, E. A. 2000. Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry. 53:81-86.
Carlucci, M. J., Ciancia, M., Matulewicz, M. C., Cerezo, A. S. and Damonte, E. B. 1999. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antiviral Res. 43:93-102.
Chang, C. C., Ryu, D. D. Y., Park, C. S. and Kim, J. Y. 1997. Enhancement of rice α-amylase production in recombinant Yarrowia lipolytica. J. Ferment. Bioeng. 84(5):421-427.
Chauvt, J. M., Comtat, J. and Noe, P. 1987. Assistance in bleaching of never-dried pulps by the use of xylanases consequences on pulp properties. Proceedings of 4th International Congress on Wood and Pulping Industry. 270:325-32.
Chen, H. M., Muramoto, K. and Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43(3): 574-578.
Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44(9): 2619-2622.
Chiag, W. D., Shih, C. J. and Chu, Y. H. 1999. Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chemistry. 65: 189-194.
Cobb, G. F., Aoaniz, I. and Thompson, C. A. 1973. Biochemical and microbial studies on shrimp: Volatile nitrogen and amino acid analysis. J. Food Sci. 38:431-437.
Collette, B. B. 2001. Scombridae. Tunas (also, albacore, bonitos, mackerels, seerfishes, and wahoo). p. 3721-3756. In K.E. Carpenter and V. Niem (eds.) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles. FAO, Rome.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66:1219-1227.
Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M. 1994. Action of phenolic derivatives as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 315:161-169.
Diniz, E. M. and Martin, A. M. 1997. Effect of the extract of enzymatic hydrolysis on function properties of shark protein hydrolysate. Lebensm. Wiss. Technol. 30:266-272.
Doi, R. H., Wong, S. L. and Kawamura, F. 1986. Protential use of Bacillus subtilis for secretion and production of foreign proteins. Trends Biotechnol. 4: 232-235.
Dring, G. J., Gould, G. W., Dickens, S. C. and Stubbs, J. M. 1976. Germination and outgrowth of spores. p:147-159. In Fuller, R. and Lovelock, D. W. (eds). Microbial Ultrastructure. Academic Press, London.
Duh, P. D., Tu, Y. Y. and Yen, C. C. 1999. Antioxidative activity of water extract of Harng Tyur (Chrysanthemum morifolium Ramat). Lebensm- Wiss, Technol. 32: 269-277
Dziezak, J. D. 1986. Preservatives: antioxidant. Food Technol. 40:94-102.
Eratt, J. A., Douglas, P. E., Moranelli, F. and Seligy, V. L. 1984. The induction of α-amylase by starch in Aspergillus oryzae: evidence for controlled mRNA expression. Can. J. Biochem . Cell Biol. 62:678-690.
Erickson, M. C. and Hultin, H. O. 1992. Influence of histidine on lipid peroxidation in sarcoplasmic reticulum. Archives of Biochemistry and Biophysics. 292:427–432.
Fenton, D. M. and Eveleigh, D. E. 1981. Purification and mode of action of a chitosanase from Penicillium islandicum. J. Gen. Microbiol. 126:151-165.
Frimodt, C. 1995. Multilingual illustrated guide to the world's commercial warmwater fish. Fishing News Books, Osney Mead, Oxford, England. 215:162.
Frokjaer, S. 1994. Use of Hydrolysates for Protein Supplementation. Food Technol. 48 (10): 10-14.
Fujiwara, N. and Yamamoto, K. 1987. Production of alkaline protease in a low-cost medium by alkalophilic Bacillus sp. and properties of the enzyme. J. Ferment. Technol. 65(3):345-348.
Giese, J. 1996. Antioxidants: Tools for preventing lipid oxidation. Food Technology 50: 73-81.
Godfrey, T. and West, S. 1996. Industrial Enzymoloy. Macmillan Press, London.
Grenier, J., Benhamou, N. and Asselin, A. 1991. Colloidal gold- complexed chitosanase: a new probe for ultrastructural localization of chitosan in fungi. J. Gen. Microbial. 137: 2007-2015.
Hageman, J. H., Shankweiler, G. W., Wall, P. R., Franich, K., Mccowan, G. W.,Cauble, S. M., Grajeda, J. and Quinones, C. 1984. Single chemically defined sporulation medium for Bacillus subtilis: growth, sporulation and extracellular protease production. J. Bacteriol. 160 (1): 438-441.
Halliwell B. 1995. Oxidation of low-density lipoprotein: Question of initiation, propagation, and the effect of antioxidants. Am J Clin Nutr. 61: 670-677.
Halliwell, B. and Gutteridge, J. M. C. 1999. Free radicals in biology and medicine. Oxford University Press Inc., New York, U. S. A.
Hayashida, S., Teramoto, Y. and Inoue, T. 1988. Production and characteristics of raw potato starch disesting α-amylase form Bacillus subtilis 65.Appl Environ Microbiol. 54:1516-1522.
Imoto, T. and Yagishita, K. 1971. A sample activity measurement of lysozyme. Agric. Biol. Chem., 35 : 1154.
Ishii, S., Kikuchi, T., Okami, T. and Yokotsuka, T. 1972. Effect of degrading enzyme of plant tissure on shoyu production. Nippon Nogeikagaku kaishi. 46: 349-354.
Karel, M. Tannenbuam, S. R. Wallace, D. H. and Maloney, H. 1966. Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids. J. Food Sci., 31:892-896.
Keay, L., Moser, P. W. and Wildi, B. S. 1970. Proteases of the genus Bacillus :alkaline proteases. Biotech. Bioeng. 7:213-249.
Keay, L. and Wildi, B. S. 1970. Proteases of the genus Bacillus :neutral proteases. Biotech. Bioeng. 7:179-212.
Kenji, K., Junichiro, N., Yoshitaka, N., Teruko, I. and Masaki, O. 1995. Enzymatic hydrolysis of the horn and hoof of cow and buffalo. Journal of fermentation and bioengineering. 80(5): 478-484.
Kim, J. M., Lim, J. W. and Suh, H. J. 2001. Feather-degrading Bacillus species from poultry waste. Process biochemistry. 37: 287-291.
Kole, M. M., Draper, I. and Gerson, D. F. 1988. Protease production by Bacillus subtilis in oxygen- controlled, glucose fed-batch fermentation. Appl. Microbiol. Biotechnol. 28:404-408.
Konosu, S., Watanabe, K. and Shimizu, T. 1974. Distribution of nitrogenous constituents in the muscle extracts eight speciese of fish. Bull. Jap. Soc. Sci. Fish. 40:909-914.
Kumar, C. G. and Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrual viewpoint. Biotechnol. Adv. 17: 561-594.
Kuo, J. M., Yen, D. B. and Pan. B. S. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47: 3206-3209.
Lachmund, A., Urmann, U., Minol, K., Wirsel, S. and Ruttkowski, E. 1993. Regulation of α-amylase formation in Aspergillus nidulans transformatnt. Curr Microbiol. 26:47-51.
Laemmli U. K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 277: 680-685.
Lahl, W. J.and Braun, S. D. 1994. Enzymatic production of protein hydrolysates for food use. Food Technol 48(10): 68-71.
Law, B. A. 1981. Accelerated ripening of cheddar cheese with microbial proteinases. Neth. Milk Dairy J. 35:313-318.
Lee, Y. S., Noguchi, T. and Naito, H. 1983. Naito: Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br. J. Nutr. 49: 67-76.
Liebs, P., Riedel, K., Graba, J. P., Scharapel, D. and Tischler, U. 1988. Formation of some extracellular enzymes during the exponential growth of Bacillus subtilis . Folia Microbiol. 33:88-95.
Lo, K. V., Liao, P. H. and Bullock, C. 1993. Silage production from salmon Farm mortalities. Aguacultural Engineering. 12:37-45.
Loffler, A. 1986. Proteolytic enzymes: sources and applications. Food Technol. 40(12): 63-70.
Lowry, O. H., Rosebrough, N. J., Farr, A. L, Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J Biol Chem 193: 265-275.
James, J. and Simpson, B. K. 1996. Application of Enzymes in Food Processing, Crit. Rev. in Food Sci. Nutr. 36(5): 437-463.
Johnvesly, B. and Naik, G. R. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. 37:139-144.
Joo, H. S., Kumar, C. G., Park, G. C., Kim, K. T., Paik, S. R. and Chang, C. S. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii.38:155-159.
Mabrouk, S. S., Hashem, A. M., E1-Shayeb, N. M. A., Ismail, A. M. S. and Abdel-Fattah, A. F. 1999. Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415.69:155-159.
MacAllister, R. V. 1979. Nutritive sweeteners made form starch. Adv. Carbohydr. Chem. Biochem. 36:15-19.
Malathi, S. and Chakraborty, R. 1991. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Applied and Environmental Microbiology 57: 712-716.
Manachini, P. L., Fortina, M. S. and Parini, C. 1998. Thermostable alkaline protease produced by Bacillus thermorubber: a new species of Bacillus. Appl Microbiol Biotechnol. 28:409-413.
Manley, C. H. and Ahmedi, S. 1995. The development of process flavors. Trends in Food Science and Technology. 6(2):46-51.
del Mar Yust, M., Pedroche, J., Megías, C., Girón-Calle, J., Alaiz, M., Millán, F. and Vioque, J. 2004 Rapeseed protein hydrolysates: a source of HIV protease peptide inhibitors. Food Chemistry. 87:387-392.
Mawadza, C., Hatti-Kaul, R., Zvauya, R., Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177-187.
Megias, C., Yust, M. D. M., Pedroche, J., Giron-Calle, L. J., Alaiz, M., Millan, F., Vioque, J. 2004. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food. Chem. 52: 1928-1932.
Miller, N. J., Riceevans, C., Davies, M. J., Gopinathan, V. and Milner, A. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin sci. 84(4):407-412.
Mitsuda, H., Yasumoto, K. and Iwami, K. 1966. Antioxidative action of indole compounds during the autoidation of linoleic acid. Eiyo to Syokuryo. 19:210-214.
Morkeber, R., Carlsen, M. and Neilsen, J. 1995. Induction and repression of α-amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiology. 141:2449-2454.
Neidleman, S. L. 1991. Historical perspective on the industrial uses of biocatalysts. In“Biocatalysts for Industry”. pp. 21-33. (Edited By Tonathan S.D.) Plenum Press, New York.
Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylaminde at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophoresis 9: 255-262.
Ockerman, H. W. 1991.Food Science Source Book. Van Nostrand Reinhold, New York.
Oyaizu M. 1988. Antioxidaive activity of browming products of glucosamine fractionated by organic solven and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 46: 571-575.
Pan, T. and Lin, S. H. 1991. Fermentative production of alkaline protease as detergent additive . J. Chinese Biochem. Soc. 20(1):49-60.
Pena-Ramos, E. A., and Xiong, Y. L. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. Journal of Food Science. 67: 2952–2956.
Priest, F. G. 1993. Systematics and ecology of Bacillus. American Society for Micribiology. Washington. 3-16.
Quaglia, G. B. and Orban, E. 1987. Enzymic solubilisation of sardine (Sardina pilchardus) by commercial proteases. J. Sci. Food Agric. 38: 263-269.
Rahman, R. N. Z. A., Razak, C. N., Ampon, K., Basri, M., Yunus, W. M. Z. W. and Salleh, A. B. 1994. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1. Appl Microbiol Biotechnol. 40:822-827.
Rao, M. B., Tanksale, A. M., Chatge, M. S. and Deshpande, V. V. 1998. Molecular and Biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62(3): 597-635.
Reed, G. 1975. Enzymes in food processing. 2nd ed a. pp.130 b. pp. 263 Academic Press.
Rukhaiyar, R. and Srivastava, S. K. 1995. Effect of various carbon substrate on α-amylase production from Bacillus sp. J. Microbiol Biotechnol. 10:76-82.
Saiga, A., Tanabe, S. and Nishimura, T. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51: 3661-3667.
Sakanaka, S., Tachibana, Y., Ishihara, N. and Juneja, L. R. 2004 Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. 86:99-103.
Sandsted, P. M. and Mattern, P. J. 1958. The relation of proteolysis to the characteristics of oxidation and reduction in doughs. Evidence obtained through baking procedure . 32:33-35.
Schaich, K. M. and Karel, M. 1975. Free radicals in lysozyme reacted with peroxidizing methyl linoleate. J. Food Sci. 40:456-459.
Shimada, K. Fujikawa, K. Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion . J. Agric. Food Chem. 40:945-948.
Shimizu, M. 1992. Purification and characterization of phytase form Bacillus subtilis (natto) N-77. Biosci. Biotechnol. Biochem. 56:1266-1269.
Slinkard, K. and Singleton, V. L. 1977. Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic. 28: 49-55.
Sikorski, Z. E. and Ruiter, A. 1994. Changes in proteins and nonprotein nitrogen compounds in crude fermented and dried seafood. In “Seafood protein”, PP. 113-126. Eds. Zdzislaw, New York.
Stohs, S. J. and Bagchi, D. 1995.Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18: 321-336.
Sung, W. L., Luk, C. K., Zahab, D. M. and Wakarchuk, W. 1993. Overexpression of the Bacillus subtilis and circulans xylanases in Escherichia coli. Protein Expr. Purif. 4:200-206.
Takamatsu, S., Hodges, T. W., Rajbhandar, I., Gerwick, W. H., Hamann, M. T. and Nagle, D. G. 2003. Marine natural products as novel antioxidant prototypes. J. Natural Prod. 66: 605-608.
Tatterson, I. N. 1982. Fish silage-preparation, properties and uses. Animal Feed Sci. Technol. 7:153-159.
Tonomura, K., Suzuki, H., Nakamura, N., Kuraya, K. and Tanabe, O. 1961. On the inducers of α-amylase formation in Aspergillus oryzae. Agric. Biol. Chem.. 25:1-6.
Thomas, S. R., Neuzil, J., Mohr, D., Stocker, R. 1995. Coantioxidants make tocopherol an efficient antioxidant for low-density lipoprotein. Am J Clin Nutr 62: 1357-1364.
Ueno, S., Miyama, M., Ohashi, Y., Izumiya, M. and Kusaka, I. 1987. Secretory enzyme prodiction and of Aspergillus oryzae in submerged liquid culture. Appl Microbiol Biotechnol. 26:217-221.
Viikari, L., Ranua, M., Kantelinen, A., Linko, M. and Sundquist, J. 1986. Bleaching with enzyme . Biotechnology in the Pulp and Paper Industry. 67-69.
Wergedahl, H., Liaset, B., Gudbrandsen, O. A., Lied, E., Espe, M., Muna, Z., Mork, S. and Berge, R. K. 2004. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats. J Nutr. 134(6):1320-1327.
Wier, P., Keynan, A., Halvorson, H. O. and Hamlett, N. V. 1983. Germination requirements of an aerobic spore forming marine bacterium. FEMS Microbiol. Lett. 20:27-30.
Witvrouw, M., Desmyter, J.and De Clercq, E., 1994a. Antiviral portrait series: Polysulfates as inhibitors of HIV and other enveloped viruses. Antiviral Chem. Chemother. 5: 345–359.
Wu, H. C., Chen, H. M. and Shiau, C. Y. 2003 Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International. 36:949-957.
Wu, W. X., Mabinadji, J., Betrand, T. F. and Wu, W. X. 1999. Effect of culture conditions on the production of an extracellular thermostable alpha-amylase from an isolate of Bacillus sp. J. Zhejiang Univ Agric Life Sci. 25:404-408.
Yang J. K., Shih, I. L. Tzeng, Y. M. and Wang S. L. 2000. Production and purification of protease from Bacillus subtilis that can deproteinize crustacean wastes. Enzyme and Microbial Technology. 26: 406-413.
Yashiro, A., Oda, S. and Sugano, M. 1985. Hypocholesterolemic effect of soybean protein in rats and mice after peptic digestion. J. Nutr. 115: 1325-1336.
Yoshizawa, Y., Tsunehiro, J., Nomura, K., Itoh, M., Fufui, F., Ametani, A. and Kaminogawa, S. 1996. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine algae(Gracilaria verrucosa). Bioscience biotechnology and biochemistry. 60(10):1667-1671.
Yin, L. J., Lu, M. C., Pan, C. L. and Jiang, S. T. 2005. Effect of Monascus fermentation on the characteristics of mackerel mince. J. Food Sci. 70(1): 66-72.
Yin, L. J., Pan, C. L. and Jiang, S. T. 2002. Effect of lactic acid bacterial fermentation on the characteristics of minced mackerel. J. Food Sci. 67(2): 786-792.
Yin, L. J., Tong, Y. L. and Jiang, S. T. 2005. Improvement of the functionality of minced mackerel by hydrolysis and subsequent lactic acid bacterial fermentation. J. Food Sci. 70:172-178.
Yin, L. J., Tong, Y. L. and Jiang, S. T. 2005. Effect of combining proteolysis and lactic acid bacterial fermentation on the characteristics of minced mackerel. J. Food Sci. 70:186-192.
Zhang, C., Xing, X. H. and Liu, M. S. 2004. Production of multienzymes consisting of alkaline amylase and cellulase by mixed alkalophilic culture and their potential use in the saccharification of sweet potato.19:181-187.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top