跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俞伶
研究生(外文):Yu-Ling Chen
論文名稱:發酵豆乳中活性胜月太之生產
指導教授:蔡震壽蔡震壽引用關係
指導教授(外文):Jenn-Shou Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:93
語文別:中文
論文頁數:83
中文關鍵詞:乳酸菌發酵豆乳活性胜月太γ-胺基丁酸血管升壓素轉換酉每
外文關鍵詞:Lactic acid bacteriaFermentSoymilkBioactive peptideGABAACE
相關次數:
  • 被引用被引用:18
  • 點閱點閱:1132
  • 評分評分:
  • 下載下載:252
  • 收藏至我的研究室書目清單書目收藏:0
摘要

以市售大豆為原料製成豆乳,利用五種混合乳酸菌於42℃下發酵30小時(F30)作為控制組,另添加蛋白酶對大豆蛋白質進行水解,即混合發酵與水解進行30小時(FH30)或先水解2小時後發酵30小時(H2F30)作為實驗組,而將發酵豆乳中之乳清以凍結乾燥法製成粉末,以探討各種處理之乳清粉末對血管升壓素轉換酶(ACE)的抑制活性,及其生理活性物質的變化。豆乳經乳酸菌發酵30小時後(F30),pH值由6.55降至4.08,而酸度從0.06增加至0.92%;FH30組之pH值降為4.20,酸度為0.81%;F2H30組的pH值降為4.28,酸度為0.69%。豆乳發酵30小時後,乳清中(F30)可溶性蛋白質由62.2降低至39.9 mg/g,胜肽由26.0些微增加至26.8 mg/g;而FH30與H2F30組,可溶性蛋白質分別增加至221.2 mg/g與323.2 mg/g,胜肽分別為379.5 mg/g與248.8 mg/g。游離胺基酸總量則以FH30組之13342.08 mg/100g為最高,且其γ-aminobutyric acid (GABA) 含量504.3 mg/100g亦為最高。各種豆乳乳清粉末經腸胃道消化酵素 pepsin及pancreatin各水解4小時後,F30組之胜肽由26.8增加至62.5 mg/g,抑制ACE活性之IC50值由0.54增加至1.79 mg of powder/mL;FH30組之胜肽由379.5些微增加至381.7 mg/g,IC50值由0.39減少至0.31 mg of powder/mL;而H2F30組之胜肽由248.8增加至307.7 mg/g,IC50值由0.45減少至0.41 mg of powder/mL。在抑制ACE類型方面,F30、FH30及H2F30三者皆為混合型抑制劑,ki值分別為0.020 mg/mL、0.106 mg/mL及0.234 mg/mL。FH30組之乳清分子量分布在1680-480 Da之間,可得到四個主要的劃分區域,其中以分子量530-480 Da之劃分物對抑制ACE能力最強,其有效抑制百分比 (IER)為705%/mg/mL,經逆相層析HPLC純化及鑑定,C4-1之胜肽序列為Thr-Trp-Asn,其IC50為900μM。
Abstract

Soymilk was fermented with five lactic acid bacteria for up to 30 h at 42℃ (F30) as control. Protease P was added at start of fermentation then fermentation for 30 h (FH30) or fermentation for 30 h after protease P hydrolysis for 2 h (H2F30) as experiment. The whey was separated from the fermented soymilk and then freeze-dried. Different treatment of whey powder on inhibitory activity against angiotensin I converting enzyme (ACE) and change of bioactive substances were investigated. As the fermentation time extended to 30 h, pH decreased from 6.55 to 4.08 (F30), acidity increased from 0.06 to 0.92%, pH of FH30 decreased to 4.20, acidity increased to 0.81%, pH of F2H30 decreased to 4.28, acidity increased to 0.69%. Soluble protein content of F30 decreased from 62.2 to 39.9mg/g, peptide content increased from 26.0 to 26.8mg/g, while FH30 and H2F30, soluble protein increased to 221.2 and 323.2mg/g, peptide content were 379.5 and 248.8 mg/g, respectively. Free amino acid content and γ-aminobutyric acid (GABA) of FH30 were the highest being 13342.08 and 504.3mg/100g, respectively, in all experiment. The different whey powders were further hydrolyzed by gastrointestinal proteases of pepsin for 4 h followed by panceratin for 4 h. Peptide content of F30 increased from 26.8 to 62.5 mg/g, the IC50 of ACE increased from 0.54 to 1.79 mg of powder/mL, peptide content of FH30 increased from 379.5 to 381.7 mg/g, the IC50 decreased from 0.39 to 0.31 mg of powder/mL. Peptide content of F2H30 increased from 248.8 to 307.7 mg/g, the IC50 decreased from 0.45 to 0.41 mg of powder/mL. The kinetics inhibition of the whey(F30, FH30 and H2F30) on ACE produced mixed inhibition and their Ki were 0.020, 0.106 and 0.234 mg/mL, respectively. The molecular weight distribution of whey(FH30) was between 1680-480 Da by size exclusion chromatography on a Sephadex G-15 column.A fraction of 530-480 Da was found with the highest inhibitory efficiency ratio (IER) being 705%/mg/mL。This fraction was further purified and identified by reversed-phase HPLC. The amino acid sequences of peptide was Thr-Trp-Asn, of which the IC50 were 900μM.
目錄
頁次
中文摘要……………………………………………………………….. i
英文摘要……………………………………………………………….. iii
目錄…………………………………………………………………….. v
表目錄………………………………………………………………….. xi
圖目錄………………………………………………………………….. xiii
一、前言………………………………………………………………… 1
二、文獻整理…………………………………………………………... 3
(一)、大豆的功能特性…..……..………………..……………….. 3
1、大豆蛋白質…………………………………….…............… 3
2、異黃酮……………………………………………………… 4
3、皂素..……...…………………………………….…....…….. 5
(二)、改善豆乳品質的方法…....………………………………… 5
1、改善脹氣因子的方法…..………………………………...… 6
(1)酵素水解………………………………………………….. 6
(2)全豆蒸煮………………………………………………….. 6
(3)等電點沉澱分離黃豆蛋白……………………………….. 6
(4)乳酸菌發酵……………………………………………….. 7
2、改善豆臭味的方法……………………………………...….. 7
(1)加熱.…………..……………...…………………………... 7
(2)發酵….…...……………………….….…....……………… 7
(三)、乳酸菌的特性…………………………………………….... 8
1、乳酸菌之分類………………………………………………. 8
2、乳酸菌對碳水化合物之代謝………………………………. 8
3、乳酸菌發酵期間影響蛋白酶活性之因子…….………..…. 9
(1)發酵溫度………………………………………………….. 9
(2)發酵菌種………………………………………………….. 10
(3)發酵時間………………………………………………….. 10
(四)、發酵豆製品的特性……………………………………..….. 10
1、增進消化吸收性………………………………………..….. 10
(1)蛋白質…………………………………………………….. 10
(2)糖類……………………………………………………….. 11
(3)異黄酮…………………………………………………….. 11
2、生理活性物質的增加…………………………………..….. 12
(1)胜肽…..…….……...…………………………….……....... 12
(2)異黃酮..……....……………………..…….…....………… 12
(3)γ-aminobutyric acid (GABA).….……………….……… 13
3、風味的改善…………………………………………………. 14
(五)、蛋白質水解的影響……………………………………….... 15
1、蛋白質的水解方式...……………….………….…………… 15
2、蛋白質水解之蛋白酶…...………………………………….. 15
3、蛋白質水解物之特性………………………………………. 15
(六)、高血壓的定義…………………………………………..….. 16
1、定義…………………………………………………………. 16
2、分類…………………………………………………………. 17
(七)、血管升壓素轉換酶(ACE)的生理活性………………...….. 19
1、ACE的生化特性及其降血壓的影響………………………. 19
2、抑制原理….……..………………………...….…....……….. 21
3、抑制劑來源………...………………………...….…....…….. 22
(1)豆製品及發酵製品………………………….……………. 22
Ⅰ.醬油…………………………………………………… 22
Ⅱ.納豆…………………………………………………… 22
Ⅲ.發酵大豆糊漿………………………………………… 22
Ⅳ.大豆蛋白水解物……………………………………… 23
Ⅴ.豆腐乳………………………………………………… 23
(2)發酵牛乳…………………...….…....…………………… 24
4、抑制ACE活性胜肽之抑制類型…………………………… 25
(1)抑制型………………….……….………………………… 25
(2)前趨物型….………………………...….…………………. 25
(3)基質型…………………….………………………………. 26
三、材料與方法……...….….................................................................. 27
(一)、實驗材料……….…………………………...………..…….. 27
(二)、實驗方法…….….……………………………...………....… 27
1、乳酸菌發酵豆乳之製備…...……………………....….…..... 27
2、酸度之測定…………………………………………………. 28
3、可溶性蛋白質含量之測定……….……………...….…....… 29
4、胜肽含量之測定………….…………...….…....................... 29
5、游離胺基酸含量之測定……............................................... 30
(1)萃取物之製備…………………………………………….. 30
(2)胺基酸之分析…………………………………………….. 30
6、發酵豆漿之乳清粉末對ACE抑制能力之測定…………... 30
7、IC50值的測定………………………………………..……… 31
8、發酵豆乳乳清經腸胃道消化酵素水解之影響…...….…..... 32
(1)乳清經腸胃道消化酵素水解之水解物製備…………….. 32
(2)水解物對ACE抑制能力之測定………………………… 32
9、發酵豆乳乳清對ACE抑制類型之評估及Ki值之測…... 33
10、ACE抑制胜肽的純化與鑑定…………………….………. 33
(1)膠體過濾………………………………………………….. 33
(2)各劃分收集物對ACE抑制活性之測定………………… 34
(3)高效能液相層析………………………………………….. 34
(4)胺基酸序列分析………………………………………….. 35
11、統計分析…………………………………………………... 35
四、結果與討論........................................................................................ 36
(一)、不同處理之乳酸菌發酵豆乳中pH值、酸度及官能品評的變化..................................................................................
36
(二)、不同處理之乳酸菌發酵豆乳乳清粉末中成份的性質........ 37
1、可溶性蛋白……………...………….……………...….…..... 37
2、胜肽含量……………………………………………………. 37
3、游離胺基酸……….……………...…….…....……………… 38
4、γ-aminobutyric acid (GABA)含量………...…..................... 38
(三)、發酵豆乳乳清對血管升壓素轉換酶(ACE)之抑制能力及其抑制形態之判定……………………………………….
39
1、抑制血管升壓素轉換酶之IC50值………………………… 39
2、抑制類型與ki值…………………………………………… 39
(四)、腸胃道酵素水解後對其抑制ACE活性之影響………….. 40
1、胜肽含量的變化……………………………………………. 40
2、抑制血管升壓素轉換酶之IC50值………………………… 41
(五)、發酵豆乳乳清之劃分收集物主要胜肽的分離及純化…… 42
1、分子量分布…………………………………………………. 42
2、各劃分物對ACE抑制能力的關係………………………... 42
3、豆乳乳清之劃分收集物主要胜肽的分離與純化…………. 43
五、結論………………………………………………………………... 44
六、參考文獻…………………………………………………………... 45
七、表…………………………………………………………………... 63
八、圖………………………………………………………………...… 76



表目錄
頁次
表一、不同處理之乳酸菌發酵豆乳乳清對pH值、酸度與官能品評之影響…………………………………………………………..
63
表二、不同處理之乳酸菌發酵豆乳乳清粉末對可溶性蛋白質及胜肽含量的影響……………………………………………………..
64
表三、不同處理之乳酸菌發酵豆乳乳清粉末之游離胺基酸含量…... 65
表四、不同處理之乳酸菌發酵豆乳乳清粉末對GABA含量的影響.. 66
表五、不同處理之乳酸菌發酵豆乳乳清粉末對ACE抑制活性的影響………………………………………………………………..
67
表六、不同處理之發酵豆乳乳清對ACE之IC50值、Ki值與抑制類型………………………………………………………………..
68
表七、腸胃道消化酵素水解對乳酸菌發酵豆乳乳清粉末胜肽含量之影響……..………………………………………………………
69
表八、腸胃道消化酵素水解對乳酸菌發酵豆乳乳清粉末IC50值之影響………………………………………………………………..
70
表九、純發酵(F30)豆乳乳清粉末之各劃分收集物與抑制ACE能力之關係…………………..………………………………………
71
表十、混合發酵與水解(FH30)豆乳乳清粉末之各劃分收集物與抑制ACE能力之關係………….…………………………………….
72
表十一、水解2小時後發酵30小時(H2F30)豆乳乳清粉末之各劃分收集物與抑制ACE能力之關係…………………………….
73
表十二、C4-1之胺基酸序列與IC50值……………………………… 74
表十三、C4-1之ACE有效抑制百分比………….…………………... 75












圖目錄
頁次
圖一、F30組豆乳乳清粉末之抑制類型……………………………... 76
圖二、FH30組豆乳乳清粉末之抑制類型…………………………… 77
圖三、H2F30組豆乳乳清粉末之抑制類型…………………………... 78
圖四、不同處理之乳酸菌發酵豆乳乳清之膠體層析圖譜…………... 79
圖五、混合發酵與水解(FH30)之劃分物(C4)中胜肽分離的高效能液相層析圖譜……………………………………………………..
80
圖六、混合發酵與水解(FH30)之劃分物(C4)中主要波峰(1)分離的高效能液相層析圖譜……………………………………………..
81
圖七、混合發酵與水解(FH30)之劃分物(C4)中主要波峰(2)分離的高效能液相層析圖譜……………………………………………..
82
圖八、混合發酵與水解(FH30)之劃分物(C4)中主要波峰(3)分離的高效能液相層析圖譜……………………………………………..
83
六、參考文獻
林子青,2004。貝類熱水抽出物與水解物中胜肽對血管升壓素轉換酶之抑制與其純化。
林寅申,2003。發酵豆漿之乳清對血管升壓素轉換酶及脂氧合酶之抑制及其降低高血壓之效果。國立台灣海洋大學食品科學系碩士學位論文。
陳冠文,2001。發酵牛乳中之乳清對血管升壓素轉換酶之抑制及其降高血壓的效果。國立台灣海洋大學食品科學系碩士學位論文。
陳臺榕,2004。發酵牛乳乳清中活性胜肽之分離與鑑定。國立台灣海洋大學食品科學系碩士學位論文。
廖啟成,1998。乳酸菌之分類利用。食品工業,30: 1-10
Abe, Y., Umemura, S., Sugimoto, K. I., Hirawa, N., Kato, Y., Yokoyama, N., Yokoyama, T., Iwai, J., and Ishii M. 1995. Effect of green tea rich in γ-aminobutyric acid on blood pressure of dahl salt sensitive rats. American Journal of Hypertension. 8: 74-79.
Alder-Nissen, 1986. “Enzymatic Hydrolysis of Food Proteins”. Elsevier Applied Science Pub. New York.
Alderman, C. P. 1996. Adverse effects of the angiotensin-converting enzyme inhibitors. The Annals of Pharmacotherapy. 30(1): 55-61.
Anderson, J. W., Johnstone, B. M., and Cook-Newell, M. E. 1995. Meta-analysis of effects of soy protein intake on serum lipids in humans. The New England Journal of Medicine. 333: 276-282.
Anderson, J. J. B., and Garner, S.C. 1997. Phytoestrogens and human function. Nutrition Today. 32(6): 232-239.
Aoki, H., Furuya, Y., Endo, Y., and Fujimoto, K. 2003. The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation wih Rhizopus. Bioscience, Biotechnology, and Biochemistry. 67(5): 1018-1023.
Aoki, H., Uda, I., Tagami, K., Furuya, Y., Endo, Y. 2003. Effect of γ-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry. 67(8): 1806-1808.
Barnes, S., Kirk, M. and Coward, L. 1995. Rationale for the use of genistein-containing soy martrixes in chemoprevention trails for breast and prostate cancer. Journal of cell science. Supplement. 22: 181-187.
Beto, J. A. 1992. Quality of life in treatment of hypertension. Ameta analysis of clinical trials. American Journal of Hypertension. 5: 125-129
Braudin, B., and Beneteau-Burnat, B. 1999. Mixed-type inhibition of pulmonary angiotensin I-converting enzyme by captopril, enalaprilat and ramiprilat. Journal of Enzyme Inhibition. 14: 447-456.
Chen, H. M., Muramoto, K., and Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. Journal of Agricultural and Food Chemistry. 43: 574-578.
Cheung, H. S., Wang, F. L., Ondetti, M. A., Sabo, E. F., and Cushman, D. W. 1980. Binding of peptide substrates and inhibitors of angiotensin- converting enzyme. The Journal of Biological Chemistry. 255(2): 401-407.
Chiou, R. Y. Y., and Cheng, S. L. 2001. Isoflavone transformation during soyean Koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. Journal of Agricultural and Food Chemistry. 49: 3656-3660.
Chou, C. C., and Hou, J. W. 2000. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. International Journal of Food Microbiology, 56: 113-121.
Church, F. C., Swaisgood, H. E., Porter, D. H., and Catignani, G L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science. 66: 1219-1227.
Corvol, P., Ewilliams, T. A., and Soubrier, F. 1995. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods in Enzymology. 248: 283-305.
Curis J. M., Dennes, D., Waddell, D. S., Macgillivray, T., and Ewart, H.S. 2002. Determination of angiotensin-converting enzyme inhibitory peptide Leu-Lys-Pro-Asn-Met (LKPNM) in bonito muscle hydrolysates by LC-MS/MS. Journal of agricultural and food chemistry. 50: 3919–3925.
Cushman, D. W., and Cheung, H. S. 1971. Spectrophotometeric assay and properties of the angiotensin I-converting enzyme. Methods in Enzymology. 248:283-305.
Desmazeaud, M. J., and El-Soda, M. 1982. Les peptides hydrolates des lactobacillus du group thermobacterium. Mise enevoence de ces activities chez lactobacillus helveticus, L. acidophilus, L. lactis et L. bulgaricus. Canadian journal of microbiology. 28: 1181-1188.
Donnell, M. M., Fitgerald, R., Fhaolain, I. N., Jennings, P.V., and O’Cuinn, G. 1997. Purification and characterization of aminopeptidase P from Lactococcus lactis subsp. cremoris. Journal of dairy research. 64: 399-407.
Eich, R. H., Peters, R. J., Cuddy, R. P., Smulyan, H., and Lyons, R. H. 1962. The hemodynamics in labile hypertension. The American Heart Journal. 63: 188-195.
Elsoda, M., and Desmazeaud, M. J. 1982. Les peptides hydrolates des Lactobacillus du groupe thermobacterium. Mise enevoence de ces activities chez Lactobacillus helveticus, L. acidophilus, L. lactis et L. bulgaricus. Canadian Journal of Microbiology. 28: 1181-1188.
Erdös, E. G. 1975. Angiotensin-I converting enzyme. Circulation Research. 36: 247-255.
Erdös, E. G., and Skidgel, R. A. 1987. The angiotensin I-converting enzyme. Laboratory Investigation. 56: 345-348.
Farmakalidis, E., and Murphy, P. A. 1985. Isolation of 6”-O-acetylgenistin and 6”-O-acetyldaidzin from toasted defatted soyflakes. Journal of Agricultural and Food Chemistry. 33: 385-389.
Fernandez-Espia, M. D., and Rul, F. 1999. PepS from Streptococcus thermophilus. A new member of the aminopeptidase T family of thermophilus bacteria. European Journal of Biochemistry. 263: 502-510.
Finkielman, S., Worgel M., and Agrest, A. 1965. Hemodynamic patterns in essential hypertension. Circulation. 31: 356-368.
Frazier, W. C., and Westhoff, D. C. 1998. Microorganisms important in food microbiology. In: Frazier W. C., Westhoff D. C., eds. Food Microbiology. 4th edn. New York: McGraw-Hill Book Co.
Frohlich, E. D., Kozu, J. V., Tarazi, R. C., and Dustan, H. P. 1970. Physiologic comparison of labile and essential hypertension. Circulation Research. 26 (supp1 I): 155-169.
Fuglsang, A., Nilsson, D., and Nyborg, N. C. B. 2002. Cardiovascular effects of fermented milk containing angiotensin-converting enzyme inhibitors evaluated in permanently catheterized, spontaneously hypertensive rats. Applied and Environmental Microbiology. 68(7): 3566-3569.
Fujita, H., Sasaki, R., and Yoshikawa, M. 1995. Potentiation of the antihypertensive activity of orally administered ovokinin, a vasorelaxing peptide derived from ovalbumin, by emulsification in egg phosphatidylcholine. Bioscience Biotechnology and Biochemistry. 59(12): 2344-2345.
Fujita H., Yokoyama K., and Yoshikawa M. 2000. Classification and antihypertensive activity of angiotensin I–converting enzyme inhibitory peptides derived from food proteins. Journal of Food Science. 65: 564-569.
Fujita, H., Yamagami, T., and Ohshima, K. 2001. Effects of an ace- inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutrition Research. 21: 1149-1158.
Furushiro, M., Sawada, H., Hirai, K., Motoike, M., Sansawa, H., Kobayashi, S., Watanuki, M., and Yokokura, T. 1990. Blood pressure-lowering effect of extract from Lactobacillus casei in Spontaneously hypertensive rats (SHR). Agricultural and Biological Chemistry. 54(9): 2193-2198.
Gibbs, B. F., Alexandre, Z., Masse, R., Mulligan, C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy fermented food. Food Research International. 37: 123-131.
Gomez-Ruiz, J. A., Ramos, M., Recio, I. 2002. Angiotensin-converting enzyme inhibitory peptides in Manchego cheeses manufactured with different starter cultures. International Dairy Journal. 12: 697-706.
Harvey, R. A., and Champe, P. C. 1997 .“Lippincott’s Illustrated Reviews Pharmacology.”J. B. Lippincott-Raven Publishers. Washington, pp. 239-251, 501-508.
Hata, Y., Yamamoto, M., Ohni, M., Nakajima, M., Nakamura, Y., and Takano, T. 1996. Placebo-controlled study of the effect of sour milk on blood-pressure in hypertensive subjects. American Journal of Clinical Nutrition. 64: 767-771.
Hayakawa, K., Kimura, M., and Kamata K. 2002. Mechanism underlying γ-aminobutyric acid induced antihypertensive effect in spontaneously hypertensive rats. European Journal of Pharmacology. 438: 107-113.
Hernández-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. 2004. Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry. 52: 1504-1510.
Hooper, N. M., and Turner, A. J. 1987. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme)from pig brain: a re-evaluation of their role in neuropeptide metabolism. The Biochemical Journal. 241: 625-633.
Hooper, N. M. 1991. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. The International Journal of Biochemistry. 23: 641-647.
Hou, J. W., Yu, R. C., and Chou, C. C. 2000. Changes in some components of soymilk during fermentation with bifidobacteria. Food Research International. 33: 393-397.
Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Kayakawa, K., Kimura, M., and Sansawa, H. 2003. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition. 57: 490-495.
Ishikawa, K., and Saito, S. 1978. Effect of intraventricular γ-aminobutyric acid (GABA) on discrimination learning in rats. Psychopharmacology. 56: 127-132.
Jacobucci, H. B., Sgarbieri, V. C. 2001. Impact of different dietary protein on rat growth, blood serum lipids and protein and liver cholesterol. Nutrition Research. 21: 905-915
Julius, S., and Conway, J. 1968. Hemodynamic studies in patients with borderline blood pressure elevation. Circulation. 38: 282-288.
Kao, T. H., Lu, Y. F., Hsieh, H. C., Chen. B. H. 2004. Stability of isoflavone glucosides during processing of soymilk and tofu. Food Research International. 37 , 891-900.
Katayama, K., Tomatsu, M., Kawahara, S., Yamauchi, K., Fuchu, H., Kodama, Y., Kawamura, Y., and Muguruma, M. 2004. Inhibitory profile of nonapeptide derived from porcine troponin C against angiotensin I�{ converting enzyme. Journal of Agricultural and Food Chemistry. 52: 771-�{775
Kern, M., Ellison, D., Marroquin, Y., Ambrose, M., and Mosier, K. 2002. Effect of Soy Protein Supplemented With Methionine on Blood Lipid and Adiposity of Rats. Basic Nutrition Investigation. 18: 654-656
Kim, J. S., and Kwon, C. S. 2001. Estimated dietary isoflavone intake of Korean Population Based on National Nutrition Survey. Nutrition Research. 21: 947-953.
Kinoshita, E., Yamakoshi, J., and Kikuchi, M. 1993. Purification and indentification of an angiotensin I-converting enzyme inhibitor from soy sauce. Bioscience, Biotechnology, and Biochemistry. 57(7): 1107-1110.
Kono, I., and Himeno, K., 2000. Changes in γ-aminobutyric acid content during beni-koji making. Bioscience, Biotechnology, and Biochemistry. 64(3): 617-619.
Konosu, S., Watanabe, K. and Shimizu, T. 1974. Distribution of nitrogenous constituents in the muscle extracts of eight species of fish. The Japanese Society of Scientific Fisheries. 40: 909.
Kuba, M., Tanaka, K., Tawata, S., Takeda, Y. 2003. Angiotensin I-converting enzyme inhibitor from Tofuyo fermented soybean food. Bioscience, Biotechnology, and Biochemistry. 67(6): 1278-1283.
Kuba, M., Tana, C., Tawata, S., and Yasuda, M. 2005. Production of angiotensin I-converting enzyme inhibitor from soybean protein with Monascus purpureus acid proteinase. Process Biochemistry. 40: 2191-2196.
Lahl, W. T., and Grindstaff, D. A. 1989. Spices and Seasonings: Hydrolyzed proteins in proceeding of the 6th SIFST Symposium on Food Ingredients-Application, Status and Safety. pp. 51-65. Singapore Institute of Food Science and Technology. Singapore, 27-29 April.
Li, G. H., Le, G. W., Shi, Y. H., and Shresyha, S. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. 24: 469-486.
Lineweaver, H., and Burk, D. 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society. 56: 658-666.
Lo, W. M. Y., and Chan, E. C. Y. L. 2005. Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein.
Maeno, M., Yamamoto, N., and Takano, T. 1996. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. Journal of dairy science. 79: 1316–21.
Matsuura, M., and Obata, A. 1993. β-glucosidase from soybeans hydrolyze daidzein and genistein. Journal of Food Science. 50: 144-147.
Mattick L. R., and Hand D. B. 1969. Identification of a volatile component in soybeans that contributes to the raw bean flavor. Journal of Agricultural and Food Chemistry. 17: 15-17.
Meahashi, K., Matsuzaki, M., Yamamoto, Y., and Udaka, S. 1999. Isolation of peptides from an enzymatic hydrolysate of food proteins and characterization of their taste properties. Bioscience, Biotechnology, and Biochemistry. 63(3): 555-559.
Mital, B. K., Shallenberger, R. S., and Steinkraus, K. H. 1973. α-galactosidase activity of lactobacilli. Applied Microbiology. 26: 783-788.
Murti T. W., Bouillanne C., Landon M., and Desmazeaud M. J. 1993. Bacterial growth and volatile compounds in yogut-type products from soymilk containing Bifidobacterium ssp. Journal of Food Science. 58: 153-156.
Mustakas, G. C., Kirk, L. D., Griffin, E. L., and Clanton, D. C. 1968. Crambe seed processing. Improved feed meal by soda ash treatment. Journal of the American Oil Chemists' Society. 45: 1-5.
Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K., and Kuwata, T. 2001. Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochemical and Biophysical Research Communications. 281: 11-17.
Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., and Takano, T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme . Journal of Dairy Science. 78: 1253-1257.
Nakamura, Y., Masuda, O., and Takano, T. 1996. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry. 60(3): 488-489.
Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto, O., Takahashi, R., and Takahashi, T. 2000. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi (in Japanese). 47: 596-603.
Peterson, D. W. 1950. Effect of sterols on the growth of chicks fed high alfalfa diets or a diet containing quillaja saponin. Journal of Nutrition. 42: 597-603.
Peterson, G. L. 1979. Review of the Folin phenol protein quantitation mothod of Lowry, Rosebrough, Farr, and Randall. Analytical biochemistry. 100: 201-220.
Pfeffer, M. A., and Frohlich, E. D. 1973. Hemodynamic and myocardial function in young and old normotensive and spontaneously hypertensive rats. Circulation research. 32, 33(suppl I): I-28-I-35.
Pickering, G. W. 1995. The classification of hypertension. In high blood
pressure. Grune and Stratton Chirchill. New York. pp.: 122-130.
Potter, S. M. 1996. Soy protein and serum lipid. Current Opinion in Lipidology. 7: 260-264.
Rubinstein, I., Houmsse, M., Dacvis, R. G., and Visfhwanatha, J. K. 1992. Tissue angiotensin I-converting enzyme activity in spontaneously hypertensive hamsters. Biochemical and biophysical research communications. 183(3): 1117-1123.
Safar, M. E., Weiss, Y. A., Levenson, J. A., London G. M., and Milliez, P. L. 1973. Hemodynamic study of 85 patients with borderline hypertension. The American Journal of Cardiology. 31: 315-319.
Saha, B. C., and Hayashi, K. 2001. Debittering of protein hydrolyzate. Biotechnology Advances. 19: 355-370.
Sandrine, G. R., Silvia, F., Carmen, G. B., and Harry, J. W. 2001. Caseins and casein hydrolysates. 1. lipoxygenase inhibitory. Journal of agricultural and food chemistry. 49: 287-294.
Sannerstedt, R. 1966. Hemodynamic response to exercise in patients with arterial hypertension. Acta medica Scandinavica. 458: 1-83.
Sarkar, P. K., Jones, L. J., Craven, G. S., Somerset, S. M., and Palmer, C. 1997. Amino acid profiles of kinema, a soybean fermented food. Food Chemistry. 59: 69-77.
Sarwar, G., and Ratnayake, N. 2000. Effect of amino acid supplementation of dietary protein on serum cholesterol and fatty acid in rats. Nutrition Research. 20(5): 665-674
SAS., 1988. SAS user’s guide: Statistics. SAS Institute Inc., Cary, NC.,pp.584
Scalabrini, P., Spettoli, P., and Matteuzzi, D. 1998. Characterization of Bifidobacterium strains for use in soymilk fermentation. International Journal of Food Microbiology. 39: 213-219.
Shelp, B. J., Bown, A. W., and Mclean, M. D., 1999. Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science. 4(11): 446-452.
Shun, K., Wei, L. S., Steinberg, M. P., Nelson, A. L., and Hymowitz, T. 1976. Extraction if oligosaccharides during cooking of whole soybean. Journal of Food Science. 41: 361-364.
Shin, Z. I., Ahn, C. W., Nam, H. S.,Lee, H. J., and Moon, T. H. 1995. Fractionation of angiotensin converting enzyme inhibitory peptide from soybean paste. Korean journal of food science and technology. 27: 230-234.
Shin, Z. I., Yu, R., Park, S. A., Chung, D. K., Ahn, C. W., Nam, H. S., Kim, K. S., and Lee,H. J. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. Journal of Agricultural and Food Chemistry. 49: 3004-3009.
Skeggs, L. T., Kahn, J. E., and Shumway, N. P. 1956. The preparation and function of the angiotensin-converting enzyme. Journal of Experimental Medicine. 103: 295-299.
Smith, K. J., and Huyser, W. 1987. World distribution and significance of soybean. In: Wilcox JR ed. Soybeans: improvement, production and uses, 2ed edn. Madison, WI: American Society of Agronomy, p.1-22
Smith, A. K., and Circle, S. J. 1972. Vol. 1 Protein. In: Soybean: Chemistry and Technology. Westport. Connecticut: The AVI Publishing Company. Inc. pp. 1-26.
Stiles, M. E., Holzapfel, W. H. 1997. Lactic acid bacteria of foods and their current taxonomy. International journal of food microbiology. 36: 1-29.
Suetsuna, H. 1998. Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. Journal of Marine Biotechnology. 6: 163-167.
Tavaria, F. K., Franco, I., Carballo, F. J., Malcata, X. 2003. Amino acid and soluble nitrogen evolution throughout ripening of Serra da Estrela cheese. International Dairy Journal. 13: 537-545.
Thananunkul D., Tanaka M., Chichester C. O., and Lee T.C. 1976. Degradation of raffinose and stachyose in soybean milk by α-galactosidase from Mortierella vinacea. Entrapment of α-galactosidase within polyacrylamide gel. Journal of Food Science. 41: 173-175.
Thomas, T. D., and Pritchard. 1987. Proteolytic enzymes of dairy starter cultures. FEMS. 46: 245.
Tonstad, S., Smeud, K., and Hoie, L. 2002. A comparison of the effects of 2 doses of soy protein or casein on serum lipoproteins, and plasma total homocysteine I hypercholesterolemic subjects. The American Journal of Clinical Nutrition. 76: 78-84.
Tsangalis, T., Ashton, J. F., Stojanovska, L., Wilcox, G., Shah, N. P. 2004. Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food Research International. 37. 301–312.
Tsuchida, T., Mashiko, K., Yamada, K., Hiratsuka, H., Shimada, T., Itagaki, Y., Fujinuma, H., Samejima, K., Nakamura, T., Hasegawa, T., and Matsubayashi, T., 2003. Clinical study of γ-aminobutyric acid-rich Chlorella for subjects with high-normal blood pressure and mild hypertension. Journal of the Japanese Society for Food Science and Technology eng. 56(2): 97-102.
Ueno, Y., Hayakawa, K., Takahashi, S., and Oda, K. 1997. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO12005. Bioscience, Biotechnology, and Biochemistry. 61(7): 1168-1171.
Ur-Rehman Shakeel, Bank, J. M., McSweeney, P. L. H., and Fox, P. F. 2000. Effect of ripening temperature on the growth and significance of non-starter lactic acid bacteria in Cheddar cheese made from raw or pasteurized milk. International Dairy Journal. 10: 45-53.
Vermeirssen, V., Bent, A. V. D., Camp, J. V., Amerongen, A. V., and Verstraete, W. 2004. A quantitative in silico analysis calculate the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie. 86: 231-239.
Wang, C., Ma, Q., Pagadala, S., Sherrard, M.S., and Kishnan, P.G. 1998. Changes of isoflavones during processing of soyprotein isolates. Journal of the American Oil Chemists' Society. 75(3): 337-341.
Wang, Y. C., Yu, R. C., and Chou, C. C. 2002. Growth and survival of bifidobacteria and lactic acid bacteria durind the fermentation and storage of cultured soymilk drinks. Food Microbiology. 19: 501-508
Wang, Y. C., Yu, R. C., Yang, H. Y., Chou, C. C. 2003. Suger and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food microbiology. 20: 333-338
Watanabe, K., Nishio, T. Mori, C., Kihara, M., and Yamori, Y. 1985. Changes in hemodynamics with advancing age in conscious spontaneously hypertensive rats. Japanese Circulation Journal. 49: 446-450.
Welling, R.G. 1986. First-pass metabolism, enterohepatic circulation, and phytochemical factor affecting absorption. In: pharmacokinetics- processes and methematics. Weklling, R.G. sd. pp. 35-44. American chemical society, Washington, D.C.
Wright, S. M., and Salter, A. M. 1998. Effect of soy protein on plasma cholesterol and bile acid excretion in hamsters. Comparative Biochemistry and Physiology. 119B(2): 247-254.
Wu, J., and Ding, X. 2001. Hypotensive and physiological effect of angiotensin coverting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry. 49: 501-506.
Wu, J., and Ding, X. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International. 35: 367-375.
Yin, L. J., Li. L.T., Tatsumi, E., Saito, M. 2004. Changes in isoflavone contents and composition of sufu(fermented tofu) during manufacturing. Food Chemistry. 87: 587–592.
Yokoyama H, Chiba H, and Yoshikawa M. 1992. Peptide inhibitors for angiotensin I–converting enzyme from thermolysin digest of dried bonito. Bioscience, Biotechnology, and Biochemistry. 56: 1541–1545.
Yamamoto, N., Akino, A., and Takano, T. 1994. Antihypertensive effects of different kinds of fermented milk on spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry. 58(4): 776-778.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top