跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳均政
研究生(外文):Chun-Cheng Chen
論文名稱:石斑魚稚魚鐵之需求及其對免疫反應之影響
論文名稱(外文):Iron requirements and its effect on immune responses of juvenile grouper, Epinephelus malabaricus
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:石斑魚硫酸亞鐵複合式胺基酸鐵免疫反應
外文關鍵詞:grouperferrous sulfateiron amino acid compleximmune response
相關次數:
  • 被引用被引用:2
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
總摘要

本研究為探討石斑魚稚魚對硫酸亞鐵(ferrous sulfate)及複合式胺基酸鐵(iron amino acid complex)之利用並以之估計鐵之需求量及其對免疫反應之影響。
研究一:石斑魚稚魚(平均初重為6.13 ± 0.11 g)餵予基礎飼料中添加硫酸亞鐵0、20、40、70、100、150、200與400 mg Fe/kg diet,其實際分析值分别為3、25、49、85、138、198、257與413 mg Fe/kg diet等,總共八組,每組三重覆,於密閉循環系統中飼養八週。石斑魚餵食85 mg Fe/kg之魚體增重百分率顯著(p < 0.05)高於餵食3、49與413 mg Fe/kg各組。魚體血紅素濃度以餵食49、85、198、257與413 mg Fe/kg各組高於3 mg Fe/kg組。肝臟鐵蓄積量以餵食413 mg Fe/kg組最高,198與257 mg Fe/kg組次之,138 mg Fe/kg組再次之,餵食≦ 85 mg Fe/kg組最低。白血球超氧陰離子產率以餵食85與138 mg Fe/kg組高於餵食413 mg Fe/kg組。溶菌酶活性以餵食85 mg Fe/kg組高於餵食25、49、198、257與413 mg Fe/kg之各組。以飼料實際鐵含量分析魚體增重百分率與白血球超氧陰離子產率,估得石斑魚稚魚之鐵最適需求量為127 mg Fe/kg diet。
研究二:石斑魚稚魚(平均初重為14.04 ± 0.03 g)餵予基礎飼料中添加複合式胺基酸鐵0、20、40、70、100、150與200 mg Fe/kg diet,其實際分析值分别為53、97、152、248、328、439與628mg Fe/kg diet,等七組;另以前研究一所得結果,即硫酸亞鐵127 mg Fe/kg (514 mg Fe/kg)作為對照。總共八個實驗組,每組三重覆,於密閉循環系統中飼養八週。石斑魚餵食97及152 mg Fe/kg之魚體增重百分率顯著高於439、628及514 mg Fe/kg各組。魚體血紅素濃度以餵食53 mg Fe/kg組顯著低於其他各組。白血球超氧陰離子產率以餵食152 mg Fe/kg組高於53、628與514 mg Fe/kg各組。溶菌酶活性以餵食97及152 mg Fe/kg組最高,其次248 mg Fe/kg組,53 mg Fe/kg組,再其次328及514 mg Fe/kg組,而以餵食≧439 mg Fe/kg各組最低。由於硫酸亞鐵對照組之成長低於其他各組,故無法估求石斑魚對複合式胺基酸鐵之需求及無法比較其與硫酸亞鐵間利用率之差異性。
Abstract

Two experiments were conducted to quantify the optimum dietary ferrous sulfate and iron amino acid complex requirements and its effect on immune response of juvenile grouper (Epinephelus malabaricus).
Experiment Ⅰ. Semi-purified basal diet supplemented with ferrous sulfate at 0, 20, 40, 70, 100, 150, 200 and 400 mg Fe/kg diet providing the actual dietary value of 3, 25, 49, 85, 138, 198, 257 and 413 mg Fe/kg diet, respectively. Each diet was fed to triplicate groups of E. malabaricus (initial body weight 6.13 ± 0.11g) in a recirculated rearing system for 8 weeks. Fish fed diet with 85 mg Fe/kg had significantly higher (p<0.05) weight gain than fish fed diets with 3, 49 and 413 mg Fe/kg. Hemoglobin concentration was higher in fish fed diets with 49, 85, 198, 257 and 413 mg Fe/kg than fish fed diet with 3 mg Fe/kg. The hepatic iron concentration was highest in fish fed 413 mg Fe/kg, followed by 198 and 257 mg Fe/kg, then 138mg Fe/kg and lowest in fish fed ≦ 85 mg Fe/kg. Leukocyte superoxide anion production ratio was higher in fish fed diets with 85 and 138 mg Fe/kg than fish fed diet with 413 mg Fe/kg. The plasma lysozyme activity was higher in fish fed the diet with 85 mg Fe/kg than fish fed diets with 25、49、198、257 and 413 mg Fe/kg. Analysis by polynomial regression (cubic) of weight gain and leukocyte superoxide anion production ratio against the analyzed dietary iron concentration indicated that the optimum dietary iron requirements for growing grouper is 127 mg Fe/kg.
Experiment Ⅱ. Semi-purified basal diet supplemented with iron amino acid complex at 0, 20, 40, 70, 100, 150 and 200 mg Fe/kg diet providing the actual dietary value of 53, 97, 152, 248, 328, 439 and 628 mg Fe/kg of diet, respectively. Diet with 127 mg ferrous sulfate/kg diet (514 mg Fe/kg diet) was also included in the study for comparison. Each diet was fed to triplicate groups of E. malabaricus (initial body weight 14.04 ± 0.03g) in a recirculated rearing system for 8 weeks. Fish fed diet with 97 and 152 mg Fe/kg had higher weight gain than fish fed diets with 439, 628 mg Fe/kg and 514 mg Fe/kg. Hemoglobin concentration was lower in fish fed diet with 53 mg Fe/kg than other dietary groups. Leukocyte superoxide anion production ratio was higher in fish fed diet with 152 mg Fe/kg than fish fed diets with 53 and 628 mg Fe/kg. The plasma lysozyme activity was highest in fish fed 97 and 152 mg Fe/kg, followed by 248 mg Fe/kg, 53 mg Fe/kg, then 328 and 514 mg Fe/kg and lowest in fish fed diets with ≧439 mg Fe/kg. The comparison between ferrous sulfate and iron amino acid complex in meeting the requirement for grouper was not made due to the exceptional low growth performance in fish fed diet with 127 mg Fe/kg from ferrous sulfate.
目 錄
總摘要(中文)•••••••••••••••••••••••i
總摘要(英文)••••••••••••••••••••••iii
文獻整理•••••••••••••••••••••••••1
研究一:石斑魚稚魚對硫酸亞鐵最適需求及其對免疫反應之影響
摘要••••••••••••••••••••••••14
前言••••••••••••••••••••••••15
材料與方法•••••••••••••••••••••17
結果••••••••••••••••••••••••34
討論••••••••••••••••••••••••47
研究二:石斑魚稚魚對複合式胺基酸鐵之利用及其對免疫反應之影響
摘要••••••••••••••••••••••••52
前言••••••••••••••••••••••••54
材料與方法•••••••••••••••••••••56
結果••••••••••••••••••••••••65
討論••••••••••••••••••••••••76
總結論•••••••••••••••••••••••••80
參考文獻••••••••••••••••••••••••81

圖目錄
文獻整理
圖一、鐵的代謝、消化與吸收••••••••••••••04
圖二、血基質鐵與非血基質鐵的代謝過程••••••••04
圖三、營養不良與疾病之間的關係•••••••••••10
研究一:石斑魚稚魚對硫酸亞鐵最適需求及其對免疫反應之影響
圖四、飼料中實際鐵含量對石斑魚稚魚增重百分率之影響•45
圖五、飼料中實際鐵含量對石斑魚稚魚白血球超氧陰離子產率之影響••••••••••••••••••••46

表目錄
文獻整理
表一、魚類缺乏鐵之症狀•••••••••••••••06
表二、魚類對鐵之需求••••••••••••••••07
表三、魚類鐵需求研究中其鐵所添加之型態•••••••12
研究一:石斑魚稚魚對硫酸亞鐵最適需求及其對免疫反應之影響
表四、研究一飼料組成••••••••••••••••18
表五、研究一飼料之一般成份•••••••••••••19
表六、以不同鐵含量餵食石斑魚稚魚八週後之增重百分率、飼料效率及存活率••••••••••••••••37
表七、以不同鐵含量餵食石斑魚稚魚八週後之蛋白質利用率及肝體比••••••••••••••••••••38
表八、以不同鐵含量餵食石斑魚稚魚八週後之體組成•••39
表九、以不同鐵含量餵食石斑魚稚魚八週後紅血球計數、血比容與血紅素濃度••••••••••••••••40
表十、以不同鐵含量餵食石斑魚稚魚八週後之平均紅血球體積、平均紅血球血紅素含量與平均紅血球血紅素濃度••••••••••••••••••••••41
表十一、以不同鐵含量餵食石斑魚稚魚八週後之血清鐵、未飽和鐵結能力、總鐵結合能力及運鐵蛋白飽和度••42
表十二、以不同鐵含量餵食石斑魚稚魚八週後之魚體與肝臟中鐵濃度•••••••••••••••••••43
表十三、以不同鐵含量餵食石斑魚稚魚八週後之白血球超氧陰離子產率與溶菌酶活性••••••••••••44
研究二: 石斑魚稚魚對複合式胺基酸鐵之利用及其對免疫反應之影響
表十四、研究二飼料組成•••••••••••••••57
表十五、研究二飼料之一般成份••••••••••••58
表十六、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後之增重百分率、飼料效率及存活率••••••••••••••••••••68
表十七、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後之蛋白質利用率及肝體比•69
表十八、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後之體組成••••••••70
表十九、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後之血液中紅血球計數、血紅素濃度及血比容••••••••••••••••71
表二十、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後之血液中平均血紅球體積、平均血紅球血紅素含量與平均血紅球血紅素濃度••72
表二十一、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後血清鐵、未飽和鐵結合能力、總鐵結合能力及運鐵蛋白飽和度•••••73
表二十二、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後魚體及肝臟中鐵濃度•74
表二十三、以不同複合胺基酸鐵含量及127 mg/kg diet之硫酸亞鐵餵食石斑魚稚魚八週後白血球超氧陰離子產率與溶菌酶活性••••••••••••••••75
參考文獻
Andersen, F., Maage, A., Julshamn, K., 1996. An estimation of dietary iron requirement of Atlantic salmon, Salmo salar L., parr. Aquacult. Nutr. 2, 41-47.
Andersen, J.W., Lorentzen, M., Waagbø, R., Maage, A., 1997. Bioavailability and interactions with other micronutrient of three dietary iron source in Atlantic salmon, Salmo salar, smolts. Aquacult. Nutr. 3, 239-246.
Ashmead, H.D., 1992. The roles of amino acid chelates in animal nutrition. Noyes Publications, New Jersey, USA, 479 pp.
Association of Official Analytical Chemists, 1995. Official Methods of Analysis, 16th ed. AOAC, Arlington, VA.
Beisel, W.R., 1982. Single nutrient and immunity. Am. J. Clin. Nutr. 35, 417-468.
Berger, J., Schneider, D., Dyck, J.L., Joseph, A., Aplogan, A., Galan, P., Hercberg, S., 1992. Iron deficiency anemia, cell-mediated immunity and infection among 6-36 month old children living in rural Togo. Nutr. Res. 12, 38-49.
Berger, L.L., 1996. Trace minerals: Key to immunity. Salt and Trace Miner. 28, 1-4.
Bhaskaram, P., 1988. Immunology of iron-deficient subjects. In: Chandra, R.K. (Ed.), Nutrition and Immunology. Alan R. Liss, New York, pp. 149-168.
Bjørnevik, M., Maage, A., 1993. Effects of dietary iron supplementation on tissue iron concentration and haematology in Atlantic salmon (Salmo salar). Fisk. Dir. Skr. Ser. Ernoering. 6, 35-45.
Bullen, J.J., and Griffiths, E., 1987. Iron and infection – Molecular, Physiological and Clinical Aspects. Chichester: Wiley, New York, 325 pp.
Calder, P.C., Yaqoob, P., 2003. The immune and inflammatory systems. In: Gibney, M.J., Macdonald, I.A., Roche, H.M. (Eds.), Nutrition and Metabolism, Blackwell Publishing Company, UK, p. 291.

Chandra, R.K., Saraya, A.K., 1975. Impaired immunocompetence associated with iron deficiency. J. Pediatr. 86, 899-902.
Chen, H.Y., Tsai, J.C., 1994. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets. Aquaculture 119, 265-271.
Cheng, A.C., Wu, J.D., Yang, S.D., Liou, C.H., 2005. Dietary phosphorus requirement of juvenile malabar grouper (Epinephelus malabaricus). J. Fish. Soc. Taiwan 32, 41-52.
Conrad, M.E., Umbreit, J.N., 1993. A concise review: iron absorption—the mucin—mobilferrin—integrin pathway. A competitive pathway for metal absorption. Am. J. Hematol. 42, 67-73.
Cowey, C.B., 1976. Use of synthetic diets and biochemical criteria in the assessment of nutrient requirement of fish. J. Fish. Res. Bd. Can. 33, 1040-1045.
Dallman, P.R., 1987. Iron deficiency and the immune response. Am. J. Clin. Nutr. 46, 329-334.
Davis, N.T., Gatlin, D.M., 1996. Dietary mineral requirements of fish and marine crustaceans. Rev. Fish. Sci. 4, 75-99.
Desjardins, L.M., 1985. The effect of iron supplementation on diet rancidity and the growth and physiological response of rainbow trout. Master’s thesis, University of Guelph, Ontario, Canada.
Desjardins, L.M., Hicks, B.D., Hilton, J.W., 1987. Iron catalyzed oxidation of trout diets and its effect on growth and physiological response of rainbow trout. Fish Physiol. Biochem. 3, 173-182.
Ellis, A.E., 1999. Immunity to bacteria in fish. Fish Shellfish Immunol. 9, 291-308.
El-Zibdeh, M., Ide, K., Furuichi, M., 1996a. Effects of deletion of Mg or Fe from semi purified diet on growth and efficiency of feed utilization of yellow croaker Nibea albiflora. J. Fac. Agr. Kyushu. Univ. 40, 391-397.
El-Zibdeh, M., Yoshimatsu, T., Matsui, S., Furuichi, M., 1996b. Effect of the deletion of K, Mg or Fe from purified diets on growth and efficiency of feed utilization of redlip mullet. J. Fac. Agr. Kyushu. Univ. 40, 383-390.
FAO Yearbooks of Fisheries Satistics, 2003. Food Agriculture Organization of the United Nations, Rome.
Fritz, J.C., Pla, G.W., Roberts, T., Boehnw, J.W., Hove, E.L., 1970. Biological availability in animals of iron from common dietary sources. J. Agr. Food Chem. 18, 647-651.
Gatlin, D.M., Wilson, R.P., 1986. Characterization of iron deficiency and the dietary iron requirement of fingerling channel catfish. Aquaculture 52, 191-198.
Grebe, G., Martinez-Torres, C., Layrisse, M., 1975. Effect of meals and ascorbic acid on the absorption of a therapeutic dose of iron as ferrous and ferric salts. Curr. Therap. Res. 17, 382-395.
Groff, J.L., Gropper, S.S., 2000. Microminerals. In: Groff, J.L., Gropper, S.S. (Eds.), Advanced Nutrition and Human Metabolism, 3rd edn., Wadsworth, USA, pp. 402-419.
Groff, J.L., Gropper, S.S., Hunt, S.M., 1995. Microminerals. In: Groff, J.L., Gropper, S.S., Hunt S.M. (Eds.), Advanced nutrition and human metabolism, 2nd edn., West publishing company, USA, p. 358.
Hallberg, L., 1981. Bioavailability of dietary iron in man. Ann. Rev. Nutr. 1, 123-147.
Hallberg, L., Rossander-Hulthén, L., Brune, M., Gleerup, A., 1992. Inhibition of haem-iron in man by calcium. Br. J. Nutr. 65, 533-540.
Harper, H.A., 1973. Review of physiological chemistry. 15th edn., Los Altos, CA: Lange Medical Publications, Los Altos, California.
Helyar, L., Sherman, A.R., 1987. Iron deficiency and interleukin 1 production by rat leukocytes. Am. J. Clin. Nutr. 46, 346-352.
Ikeda, Y., Ozaki, H., Uematsu, K., 1973. Effect of diet enriched with iron in culture of yellowtail. J. Tokyo Univ. Fish. 59, 91-99.
Joynson, D.H.M., Jacobs, A., Walker, D.M., 1972. Defect of cell-mediated immunity in patients with iron-deficiency anemia. Lancet Ⅱ, 1058.
Kaneko, J.J., 1980. Iron metabolism. In: Kaneko, J.J. (Ed.), Clinical Biochemistry of Domestic Animals. Academic Press, New York, pp. 649-669.
Kapff, C.T., Jandl, J.H., 1991. The anemias. In: Kapff, C.T., Jandl, J.H. (Eds.), Blood Atlas and Sourcebook of Hematology, 2nd edn., Little, Brown and Campany, USA, pp. 25-35.
Kawatsu, H., 1972. Studies on the anemia of fish. V. Dietary iron deficiency anemia in brook trout, Salvelinus fontinalis. Bull. Freshw. Fish. Res. Lab. 22, 59-67.
Kemahli, A.S., Babacan, E., Cavder, A.O., 1988. Cell mediated immune responses in children with iron deficiency and combined iron and zinc deficiency. Nutr. Res. 8, 129-136.
Kochan, I., 1973. The role of iron in bacterial infections with special consideration of host-tubercle bacillus interaction. Curr. Top. Microbiol. Immunol. 60, 1-30.
Koong, L.J., Wise, M.B., Barrick, E.R., 1970. Effect of elevated dietary levels of iron on performance and blood constituents of calves. J. Anim. Sci. 31, 422-427.
Krantman, H.J., Young, S.R., Ank, B.J., O’Donnell, C.M., Rachelefsky, G.S., Stiehm, E.R., 1982. Immune function in pure iron deficiency. Am. J. Dis. Child. 136, 840-844.
Lall, S.P., 1989. The minerals. In: Halver, J.E. (Ed.), Fish Nutrition, 2ed edn., Academic Press, New York, pp. 219-257.
Lemaire-Gony, S., Lemaire, P., Pulsford, A.L., 1995. Effects of cadium and benzo (a) pyrene on the immune system, gill ATPase and EROD activity of European sea bass Dicentrarchus labrax. Aquat. Toxicol. 31, 297-313.
Li, M.H., Robinson, E.H., 1996. Comparison of chelated zinc and zinc sulfate as zinc source for growth and bone mineralization of channel catfish (Ictalurus ounctatus) fed practical diets. Aquaculture 146, 237-243.
Lim, C., Klesius, P.H., 1997. Responses of channel catfish (Ictaluris punctatus) fed iron-deficient and replete diets to Edwardsiella ictaluri challenge. Aquaculture 157, 83-93.
Lim, C., Klesius, P.H., Li, M.H., Robinson, E.H., 2000. Interaction between dietary levels of iron and vitamin C on growth, hematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture 185, 313-327.
Lim, C., Sealey, W.M., Klesius, P.H., 1996. Iron methionine and iron sulfate as source of dietary iron for channel catfish Ictalurus punctatus. J. World Aquacult. Soc. 27, 290-296.
Lim, C., Klesius, P.H., Shoemaker, C.A., 2001. Dietary iron and fish health. In: Lim, C., Webster, C.D. (Eds.), Nutrition and Fish Health. Food Products Press, New York, pp. 189-190.
Lin, M.F., Shiau, S.Y., 2004. Vitamin C requirements of grouper, Epinephelus malabaricus, as determined with L-ascorbyl-2-monophosphate-Mg and L-ascorbyl-2-monophosphate-Na and effects on immune responses. Aquaculture Nutr. 10, 327-333.
Lin, M.F., Shiau, S.Y., 2005a. Dietary L-ascorbic acid affects growth, non-specific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244, 215-221.
Lin, M.F., Shiau, S.Y., 2005b. Requirements of vitamin C (L-ascorby1-2-sulfate and L-ascorby1-2-polyphosphate) and its effects on immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 11, 183-189.
Lin, Y.H., Shiau, S.Y., 2003. Dietary lipid requirement of grouper, Epinephelus malabricus, and effect on immune responses. Aquaculture 225, 243-250.
Lin, Y.H., Shiau, S.Y., 2005c. Dietary vitamin E requirements of grouper, Epinephelus malabaricus, under two lipid levels, and their effects on immune responses. Aquaculture (in press).
Lin, Y.H., Shiau, S.Y., 2005d. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture (in press)
Lorentzen, M., Maage, A., 1999. Trace element status of juvenile Atlantic salmon Salmo salar L. fed a fish-meal based diet with or without supplementation of zinc, iron, manganese and copper from first feeding. Aquacult. Nutr. 5, 163-171.
Lovell, T., 1998. Bioavailability of nutrients. In: Lovell, T (Ed.), Nutrition and Feeding of Fish, 2nd edn., Kluwer Academic Publishers, London, pp. 109-114.
Mackie, A.M., Mitchell, A.I., 1985. Identification of gustatory feeding stimulants for fish-applications in aquaculture. In: Cowey, C.B., Mackie, A.M., Bell, J.B. (Eds.), Nutrition and Feeding in Fish. Academic Press, London, pp. 177-189.
MacDougall, L.G., Anderson, R., McNab, G.M., Katz, J., 1975. The immune response in iron-deficient children: impaired cellular defense mechanisms with altered humoral components. J. Pediatr 86, 833-843.
Mai, K., Tan, B., 2000. Iron methionine (FeMet) and iron sulfate (FeSO4) as sources of dietary iron for juvenile abalone, Haliotis discus hannai Ino. J. Shellfish Res. 19, 861-868.
Masawe, A.E., Muindi, J.M., Swai, G.B., 1974. Infections in iron deficiency and other types of anemia in the tropics. LancetⅡ, 314-317.
McDowell, L.R., 1992. Iron. In: McDowell, L.R. (Ed.), Minerals in Animal and Human Nutrition. Academic Press, Inc., San Diego, pp. 152-175.
Miñoso, M.G.G., Borlongan, I.G., Satoh, S., 1999. Essentiality of phosphorus, magnesium, iron, zinc, and manganese in milkfish diet. Fish. Sci. 65, 721-725.
Morris, E.R., 1987. Iron. In: Mertz, W. (Ed.), Trace Elements in Human and Animal Nutrition. 5th edn. Academic Press. Inc. New York pp.79-142.
Murray, M.J., Murray, A.B., Murray, M.B., Murray, C.J., 1978. The adverse effect of iron repletion on the course of certain infection. Br. Med. J. 2, 1113-1115.
Murray, M.J., Murray, N.J., Murray, A.B., Murray, M.B., 1975. Refeeding - malaria and hyperferranemia. LancetⅠ, 653-654.
Nathanson, M.H., McLaren, G.D., 1987. Computer simulation of iron absorption: regulation of mucosal and systemic iron kinetics in dog. J. Nutr. 117, 1067-1075.
National Research Council (NRC), 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC.
Nose, T., Arai, S., 1976. Recent advances in studies on mineral nutrition of fish in Japan. In: Pillay, T.V.R., Dill, W.A. (Eds.), Advances in Aquaculture. Fishing News, Farnam, England, pp. 584-590.
Obach, A., Quentel, C., Laurencin, F.B., 1993. Effects of alpha-tocopherol and dietary oxidized fish oil on the immune response of sea bass Dicentrarchus labrax. Dis. Aquat. Org. 15, 175-185.
Oppenheimer, S.J., 2001. Iron and its relation to immunity and infectious disease. J. Nutr. 131, 616S-635S.
Paripatananont, T., Lovell, R.T., 1997. Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. J. World Aquacult. Soc. 28, 62-67.
Park, C.W., Shimizu, C., 1989. Quantitative requirements of aluminum and iron in the formulated diets and its interrelation with other minerals in young eel. Nippon Suisan Gakkaishi 55, 111-116.
Pick, E., Mizel, D., 1981. Rapid microassay for the measurement of superoxid and hydrogen peroxide production by macrophage in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods 46, 211-216.
Robbins, E., Fant, J., Norton, W., 1972. Iron: Its intracellular location and possible role in cell division. Proc. Natl. Acad. Sci. U.S.A. 66, 1244.
Roberts, R.J., 1989. The immunology of teleosts. In: Roberts, R.J. (Ed.), Fish Pathology. USA, pp. 92-104.
Roeder, M., Roeder, R.H., 1966. Effect of iron on growth rate of fishes. J. Nutr. 90, 86-90.
Satoh, S., 1994. Studies on the availability of trace elements to fish. Nippon Suisan Gakkaishi 60, 147-152.
Satoh, S., Takeuchi, T., Narabe, Y., Watanabe, T., 1983a. Effects of deletion of several trace elements from fish meal diets on growth and mineral composition of rainbow trout fingerlings. Bull. Jpn. Soc. Sci. Fish., 49, 1909-1916.
Satoh, S., Yamamoto, H., Takeuchi, T., Watanabe, T., 1983b. Effect on growth and mineral composition of rainbow trout of deletion of trace elements or magnesium from fish meal diet. Bull. Jpn. Soc. Sci. Fish., 49, 425-429.
Satoh, S., Yamamoto, H., Takeuchi, T., Watanabe, T., 1983c. Effect on growth and mineral composition of carp of deletion of trace elements or magnesium from fish meal diet. Bull. Jpn. Soc. Sci. Fish., 49, 431-435.
Sakamoto, S., 1978. Requirements and difficiency symptoms of dietary minerals in red sea bream. Rep. Fish. Res. Lab. Kyushu Univ. 5, 99.
Sakamoto, S., Yone, Y., 1976. Requirement of red sea bream for dietary Fe-I. Rep. Fish. Res. Res. Lab. Kyushu Univ. 3, 53-58.
Sakamoto, S., Yone, Y., 1978a. Iron deficiency symptoms of carp. Bull. Jpn. Soc. Sci. Fish. 44, 1157-1160.
Sakamoto, S., Yone, Y., 1978b. Requirement of red sea bream for dietary iron-Ⅱ. Bull. Jpn. Soc. Sci. Fish. 44, 223-225.
Sakamoto, S., Yone, Y., 1979. Availabilities of three iron compounds as dietary iron sources for sea bream. Bull. Jpn. Soc. Sci. Fish. 45, 231-235.
Secombes, C.J., Fletcher, T.C., 1992. The role of phagocytes in the protective mechanisms of fish. Ann. Rev. Fish Dis. 2, 53-71.
Sherman, A.R., 1984. Iron, infection, and immunity. In: Waston, R.R. (Ed.), Malnutrition, Disease Resistance, and Immune Function. Marcel Dekker, New York, NY.
Sherman, A.R., 1992. Zinc, copper, and iron nutriture and immunity. J. Nutr. 122, 604-609.
Shiau, S.Y., Lan, C.W., 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 145, 259-266.
Shiau, S.Y., Lin, Y.H., 2001. Carbohydrate utilization and its protein-sparing effect of grouper, Epinephelus malabaricus. Anim. Sci. 73, 299-304.
Shiau, S.Y., Lin, Y.H., 2002. Utilization of glucose and starch by the grouper Epinephelus malabaricus at 23℃. Fish. Sci. 68, 991-995.
Shiau, S.Y., Su, L.W., 2003. Ferric citrate is half as effective as ferrous sulfate in meeting the iron requirement of juvenile tilapia, Oreochromis niloticus × O. aureus. J. Nutr. 133, 483-488.
Smolin, L.A., Grosvenor, M.B., 2000. The trace minerals: Our elemental needs. In: Smolin, L.A., Grosvenor, M.B. (Eds.), Nutrition: Science and Applications. 3rd ed., Saunders College Publishing. Orlando, Fl. USA, p. 360.
Standal, H., Dehli, A., Rørvik, K.-A., Andersen, Ø., 1999. Iron status and dietary levels of iron affect the bioavailability of haem and nonhaem iron in Atlantic salmon Salmo salar. Aquacult. Nutr. 5, 193-198.
Standish, J.F., Ammerman, C.B., Simpson, C.F., Neal, F.C., Palmer, A.Z., 1969. Influence of graded levels of dietary iron, as ferrous sulfat, on performance and tissue mineral composition of steers. J. Anim. Sci. 29, 496-503.
Su. S.L., Shiau, S.Y., 2004. Requirements of dietary myo-inositol of juvenile grouper, Epinephelus malabaricus. J. Fish. Soc. Taiwan 31, 311-317.
Sunyer, J.O., Tort, L., 1995. Natural hemolytic and bactericidal activities of seabream (Sparus aurata) serum are affected by the alternative complement pathway. Vet. Immunol. Immunopath. 45, 333-345.
Swarup-Mitra, S., Sinha, A.K., 1984. Cell mediated immunity in nutritional anemia. Ind. J. Med. Res. 79, 354-362.
Tan, B., Mai, K., 2001. Zinc methionine zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture 192, 67-84.
Thomas, J.W., 1970. Metabolism of iron and manganese. J. Dairy Sci. 53, 1107.
Tom, B., 1999. Inorganic nutrients. In: Tom. B. (Ed.), Nutritional Biochemistry 2nd ed., Academic Press. San Diego USA, pp.741-742.
Tort, L., Gómez, E., Montero, D., Sunyer, J.O., 1996. Serum haemolytic and agglutinating activity as indicators of fish immunocompetence: their suitability in stress and dietary studies. Aquacult. Internat. 4, 31-41.
Ukawa, M., Takii, K., Nakamura, M., Akutsu, M., Kumai, H., Takeda, M., 1994. Effect of iron supplements on a soy protein concentrate diet on hematology of yellowtail. Fish. Sci. 60, 165-169.
Wang, C., Lovell, R.T., 1997. Organic selenium sources, selenomethionine and selenoyeas, have higher bioavaiability than inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture 152, 223-234.
Walker, L.W., Fromm, P.O., 1976. Metabolism of iron by normal and iron deficient rainbow trout. Comp. Biochem. Physiol. 55, 311-317.
Wapnir, R.A., 1990. Nutritional factors, protein and the absorption of iron and cobalt. In: Wapnir R.A. (Ed.), Protein Nutrition and Mineral absorption, CRC Press Inc., USA, p. 107.
Watanabe, T., Kiron, V., Satoh, S., 1997. Trace minerals in fish nutrition. Aquaculture 151, 185-207.
Watanabe, T., Takeuchi, T., Ogino, C., 1980. Effects on rainbow trout and chum salmon of deletion of trace elements from fish mealdiet. Bull Jpn. Soc. Sci. Fish., 46, 1521-1525.
Weinberg, E.D., 1978. Iron and infection. Microbiol. Rev. 42, 45-66.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2002. Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J. Nutr. 132, 72-79.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2003. Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus. Fish Shellfish Immunol. 14, 223-238.
Zeitoun, I.H., Ullrey, D.E., Magee, W.T., 1976. Quantifying nutrient requirement of fish. J. Fish. Res. Bd. Can. 33, 167-172.
莊健隆,鄭健雄,1990,魚類對礦物質之需求。台灣養豬科學研究所,苗栗,台灣。p. 107。
行政院農業委員會漁業署,2004。中華民國台灣地區漁業年報九十二年版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top