跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林雨欣
研究生(外文):Yu-Hsin Lin
論文名稱:文旦皮精油之成分組成及其乳化物對S.aureus及E.coli的抗菌活性之探討
論文名稱(外文):Study on Constituents of Pummelo Peel Oil and Antibacterial Activity of It's Emulsion for S. aureus and E. coli
指導教授:洪良邦洪良邦引用關係蔡震壽蔡震壽引用關係
指導教授(外文):Lang-Bang HungJenn-Shou Tasi
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:145
中文關鍵詞:文旦精油抗菌活性
外文關鍵詞:pummeloessential oilantibacterial activity
相關次數:
  • 被引用被引用:15
  • 點閱點閱:1123
  • 評分評分:
  • 下載下載:325
  • 收藏至我的研究室書目清單書目收藏:1
摘要

利用蒸氣蒸餾萃取文旦果皮之精油,並以GC-MS分析其成分組成,共鑑定出33個化合物,主要成分為limonene(940.07 mg/g),其次為myrcene(23.65 mg/g),次之為β-pinene(13.53 mg/g)。在自體酵素試驗,文旦果皮於30 oC反應15天,並以水蒸餾法萃取精油,其萃取率明顯的由2.50下降至2.04%,而精油中主要碳氫萜烯類化合物由911.68降低至828.19 mg/g,主要含氧萜烯類化合物由9.46增加至12.43 mg/g。然而利用蒸氣蒸餾萃取,於50 oC反應2天的文旦皮精油,其萃取率亦明顯的由2.48下降至1.64%,精油中主要碳氫萜烯類化合物由原來的982.15減少至864.35 mg/g,而主要含氧萜烯類化合物則由10.95增加至13.92 mg/g。
以未經均質(0 rpm)的精油乳化物(0.1、0.2及0.4%)對S. aureus及E. coli 的抗菌效果皆隨著精油濃度的增加而提高。濃度為0.4%時比控制組分別降低了1.03及0.85 Log CFU/mL。以24000 rpm轉速均質之精油乳化物對S. aureus及E. coli的抑制效果皆高於13500 rpm。然而經24000 rpm均質之精油乳化物對E. coli的抗菌效果比未均質的高,MIC值可由0.49降低至0.25%,明顯提高其抑制E. coli之效果。精油乳化物(0.1、0.2及0.4%)經微射流1次及3次循環處理後,粒徑大小平均分別為1383.5及216.6 nm。然而以0.4%精油乳化物經1次循環處理後對S. aureus之抑制效果最佳,比控制組降低了1.13 Log CFU/mL。以相同濃度之乳化精油經1次及3次循環處理後對E. coli亦具有明顯的抑制效果,且比控制組分別降低了1.12及1.16 Log CFU/mL。且經微射流1次循環處理後可提高低濃度(0.1%)之精油對S. aureus及E. coli 的抗菌效果,比控制組分別下降0.88及1.02 Log CFU/mL。
僅添加水溶性幾丁聚醣(DA=54.8%)的抗菌效果隨著濃度的增加而上升,濃度於500 ppm時,對S. aureus具最佳抑制效果,比控制組降低了1.12 Log CFU/mL。然而水溶性幾丁聚醣濃度為1000 ppm時,E. coli的菌數則比控制組降低了1.07 Log CFU/mL,因此明顯的表示幾丁聚醣對S. aureus的抑制效果高於E. coli。於0.4%的文旦皮精油乳化物(經 24000 rpm均質)中添加不同濃度之幾丁聚醣(100、300、500及1000 ppm)相較於僅含幾丁聚醣及精油乳化物的抗菌效果,對S. aureus及E. coli之抑制效果皆具明顯的增加,分別以300及500 ppm時,比控制組降低了2.40及2.55 Log CFU/mL。在不同pH值時,文旦皮精油乳化物(0.4%)對S. aureus的抑制率則隨著pH值上升而增加,而幾丁聚醣(300 ppm)於pH 5.5下對S. aureus及E. coli 之抑制率高於pH 7.4及8.5。然而在pH 7.4時,將300 ppm之幾丁聚醣添加入0.4%之文旦皮精油乳化物對此兩株菌種皆具最佳的抗菌效果,其抑制率分別為99.48和99.06%。
Abstract

Pummelo peel oil was extracted by steam distilation and the constituents were analyzed by GC-MS. There were thirty-three compounds identified from the essential oil. The main compound was limonene (940.07 mg/g), the second was myrcene (23.65 mg/g), and the third was β-pinene (13.53 mg/g). In order to find the effect of endogenous enzymes on composition of pummelo peel oil, the oil was extracted by water distillation after reacting with endogenous enzymes for 15 days at 30oC. The yield of the essential oil decreased from 2.5 to 2.04%. The amount of hydrocarbon monoterpenes in the essential oil decreased from 911.68 to 828.19 mg/g, while the oxygenated terpenes increased from 9.46 to 12.43 mg/g. If the pummelo peel oil was extracted by steam distillation after reacting with endogenous enzymes for 2 days at 50oC, the yield of the essential oil significantly decreased from 2.48 to 1.64%. The hydrocarbon monoterpenes in the oil decreased from 982.15 to 864.35 mg/g and the oxygenated terpenes increased from 10.95 to 13.92 mg/g.
The antibacterial effect of emulsified pummelo peel oil (without homogenization) on S. aureus and E. coli increased as the concentration of the oil raised. The plate counts of S. aureus and E. coli were lower (1.03 and 0.85 CFU/mL, respectively) than the control when 0.4% essential oil was used. The antibacterial effects of emulsified pummelo peel oil, which had been homogenized at 24000 rpm, on S. aureus and E. coli were higher than that homogenized at 13500 rpm as well as that without homogenization for E. coli. The MIC (minimum inhibitory concentration) value for E. coli decreased from 0.49 to 0.25%. The mean partical size of the emulsified pummelo peel oil was 1383.5 nm after being homogenized with 1 time of microfluidizing treatment. The size decreased to 216.6 nm while the microluidizing treatment increased to 3 times. The inhibitory effect of S. aureus was the best when 0.4% emulsified pummelo peel oil was homogenized with 1 time of microfluidizing treatment, of which the plate count of S. aureus was 1.13 Log CFU/mL lower than the control. The same concentration of emulsified pummelo peel oil also had significant inhibitory effect on E. coli after the essential oil was homogenized with 1 and 3 times of microfluidizing treatments, of which the plate counts of E. coli were respectively 1.12 and 1.16 Log CFU/mL lower than the control. The emulsified pummelo peel oil with lower concentration (0.1%) could increase its inhibitory effects on both S. aureus and E. coli after the essential oil was homogenized with 1 time of microfluidizing treatment, of which the plate counts of S. aureus and E. coli were respectively 0.88 and 1.02 Log CFU/mL lower than the control.
The antibacterial effect raised by adding water-souble chitosan (DA=54.8%) alone when the concentration increased. The inhibitory effect on S. aureus reached to the maximum when the concentration of water-souble chitosan was 500 ppm, of which the plate count of S. aureus was 1.12 Log CFU/mL lower than the control. The plate count of E. coli was only 1.07 Log CFU/mL lower than the control as the concentration of water-souble chitosan increased to 1000 ppm; hence, the water-souble chitosan exhibited higher inhibitory effect on S. aureus than on E. coli. The 0.4% emulsified pummelo peel oil (homogenized at 24000 rpm) adding different concentrations of water-souble chitosan (100, 300, 500 and 1000 ppm) was found to have higher antibacterial effect than both water-souble chitosan and emulsified pummelo peel oil without adding chitosan. The inhibitory effects on S. aureus and E. coli increased significantly when 300 and 500 ppm of water-souble chitosan was added in 0.4% emulsified pummelo peel oil. The plate counts of S. aureus and E. coli were respectively 2.40 and 2.55 Log CFU/mL lower than the control. As for the pH effect, the inhibitory percentage of S. aureus for the 0.4% emulsified pummelo peel oil increased as the values of pH raised. The water-souble chitosan (300 ppm) had higher inhibitory percentage for S. aureus and E. coli at pH 5.5 than at pH 7.4 and 8.5. The 0.4% emulsified pummelo peel oil which had been added with 300 ppm water-souble chitosan showed the best inhibitory effects on both bacteria when the value of pH was 7.4. The inhibitory percentages were 99.48 and 99.06% for S. aureus and E. coli, respectively.
目錄
頁次
中文摘要………………………………………..……………................... i
英文摘要..................................................................................................... iii
目錄………………………………………………..…………….……...... vi
表目錄……………………………………………………….…..……….. xii
圖目錄………………………………………………………...…………. xiv
第一章 前言…...……………………………………………..………….. 1
第二章 文獻整理……...……………………………………...…...…….. 3
(一)麻豆文旦之簡介……………..…………………………………..
3
(二)精油之簡介....………………..………………………………….. 4
(三)精油之萃取方式………….…..…………………….…..……….. 5
1. 水蒸餾法……………..………….……...…………...……..... 5
2. 蒸氣蒸餾法………………………….………………….…… 5
3. 有機溶劑萃取法……..………...……….…………………… 6
4. 同時蒸氣蒸餾—有機溶劑萃取法……….……..….……….. 6
5. 冷吸法……………………..………………….…..….……… 6
6. 壓榨法……………..…………………………........………… 7
7. 超臨界流體萃取法………………..………………....……… 7
(四)精油之化學性質…………………………………………..…….. 8
1. 萜烯類化合物……………………………..…….…..………. 8
2. 文旦皮精油之成分組成……………………………..……… 9
3. limonene之轉換作用…………………………………..…….. 10
3-1. 微生物法…………….…………...................................... 10
3-2. 酵素法………………..……………...…….…….…….... 11
(五)精油抗菌活性之研究………………………..…………..…....... 12
1. 精油之抗菌活性………………………..…..……………….. 12
2. 萜烯類化合物之抗菌活…………..………..………..……… 13
3. 精油之抑菌機制……………………………..………..…….. 14
3-1. 格蘭氏陰性菌…………..………………...………..…… 15
3-2. 格蘭氏陽性菌………..……………………...…..……… 15
(六)精油對昆蟲之抑制…………………………….……..………… 16
1. 精油之抗蟲活性………………………………………..…… 16
2. 萜烯類化合物之抗蟲活性……..…………..…….………..... 17
(七)精油之應用……………………………………..…….……........ 17
1. 食品方面………………………………..……..…….……..... 17
2. 化妝品工業方面……………………..………..…..………… 18
3. 醫藥方面……………………..………..…………………….. 18
4. 其它………………………………..…..…………………….. 18
(八)水溶性幾丁聚醣之製備………………..………………………. 19
1. 酸水解法…………………..…………………..…..………… 19
2. 鹼水解法……………..………………………..….……......... 19
3. 酵素水解法……………..……………………..…..………… 20
4. 物理方法………………………..……………..……..……… 21
5. 化學修飾法……………………………………..…………… 21
(九)水溶性幾丁聚醣之應用……………………………..….……..... 22
1. 食品方面…………….…………………………..……..…..... 22
2. 生物醫學方面…………………………………………..…… 23
3. 工業方面………………………………………….……......... 24
4. 化妝品方面……………………..………………..………..… 24
(十)幾丁聚醣之抑菌機制…………………..……………………..… 25
1. 幾丁聚醣結構上之陽離子對細胞表面上陰電荷的干擾..… 25
2. 幾丁聚醣結合DNA以抑制mRNA的合成………….......... 26
(十一)幾丁聚醣—精油之抗細菌活性………………....................... 27
第三章 材料與方法…………………………...………………………… 28
一、實驗材料……………………………….…..…………………….. 28
(一)樣品………………………………………..…………………….. 28
(二)標準品……………………..………………..…………………… 28
(三)藥品………..….……………………………..……….………….. 28
(四)培養基…………….…………………………..…….…………… 29
(五)菌株……………………………..……………..………………… 29
(六)層析管柱……….…..…………………………..……………....... 29
(七)透析膜………….………….……………………..……..……...... 30
(八)儀器…………….…………..………………………….……........ 30
二、實驗方法………………………………………………………..… 32
(一)文旦果皮精油的萃取與分析………………………….………... 32
1. 樣品前處理…………..………………………….……............ 32
2. 自體酵素之試驗…………………..……..………….……...... 32
3. 蒸氣蒸餾法萃取文旦皮之精油…………..…………..……... 33
4. 水蒸餾法萃取文旦皮之精油………………….……..……… 33
5. 文旦皮精油的成分組成及含量之分析…………..….……… 34
5-1. 精油樣品之定性分析…...……………………………… 34
5-2. 精油標準品之配製……..…………………….………… 34
5-3. 精油樣品之定量分析………...................…….………... 35
(二)水溶性幾丁聚醣之製備及分析………………...…….….…..…. 36
1. 水溶性幾丁聚醣之製備…………...…………..…...……..…. 36
2. 幾丁聚醣乙醯化程度之測定…………………..….…..…..… 36
2-1. 標準品之配製…………………...…………...………..... 36
2-2. 樣品之分析…………………………………..…………. 37
3. 蛋白質含量之測定……………………………….………….. 39
4. 灰分含量之測定………………………………....………....... 39
5. 幾丁聚醣於tryptic soy broth(TSB)中之界面電位分析… 40
(三)文旦皮精油乳化物之製備與分析……………………...……..... 40
1. 不同均質轉速的精油乳化物之製備…………..……...…...... 40
2. 高速微射流處理之精油乳化物…………….………....…….. 41
2-1. 樣品之製備………………………….……...……...…… 41
2-2. 粒徑之分析……………………………...…………...…. 41
(四)文旦皮精油乳化物抗細菌活性之試驗……………………...…. 42
1. 菌種之保存和活化………………………..……..…….…..… 42
2. 抗菌試驗………………………..………………...…….……. 42
2-1. 菌種之培養…………..……………………...………...... 42
2-2. 肉湯稀釋法測其生菌數………..……..…….……….…. 42
2-3. MIC(minimum inhibitory concentration)值之測定….. 43
3. 統計分析…………………...…………………….…….…...... 44
(五)幾丁聚醣添加於文旦皮精油乳化物中抗細菌活性之試驗…… 44
1. 幾丁聚醣濃度之影響………………………………….…….. 44
2. pH之影響……………………………….……………………. 45
第四章 結果與討論………………..….…………………………….…… 46
(一)文旦皮精油之成分組成………………………………………… 46
1. 水蒸餾萃取文旦果皮精油的成分分析…………………....... 46
2. 文旦果皮於30 ℃下自體酵素反應不同時間後以水蒸餾萃取精油中成分變化的影響………………………………...…
47
3. 蒸氣蒸餾萃取文旦果皮精油的成分分析………...……........ 49
4. 文旦果皮於50 ℃自體酵素作用後以蒸氣蒸餾萃取精油中成分變化的影響……………………………………………...
49
5. 水蒸餾法及蒸氣蒸餾法於不同自體酵素反應條件下對文旦皮精油之萃取率的影響…………………………………...
50
(二)文旦皮精油乳化物對S. aureus及E. coli之抗細菌活性的影響………………………………………………………………....
51
1. 濃度之影響…………………………………………………... 51
2. 濃度及均質轉速之影響……………………………..………. 53
3. 濃度及粒徑之影響…………………………………..………. 54
(三)幾丁聚醣添加於文旦皮精油乳化物中對S. aureus 和E. coli之抗細菌活性的影響……………………………………..……..
55
1. 幾丁聚醣濃度之影響………………………..………………. 55
2. pH值之影響……………...………………............................... 57
第五章 結論………………………………………...…….….................... 60
第六章 參考文獻……………………………………..….……................. 61
表……………………………………….…….…..……………................ 82
圖…………………………………………………………………............ 111
附錄A………………………………………………………...…………. 124
附錄B…………………………………………………………...………. 127

























表目錄

表一、水蒸餾萃取文旦皮精油之成分組成………………………… 82
表二、文旦皮於30oC自體酵素反應5天以水蒸餾萃取之精油的成分組成…………………………………………………………
84
表三、文旦皮於30oC自體酵素反應10天以水蒸餾萃取之精油的成分組成………………………………………………………
86
表四、文旦皮於30oC自體酵素反應15天以水蒸餾萃取之精油的成分組成………………………………………………………
88
表五、文旦皮於30oC自體酵素反應20天以水蒸餾萃取之精油的成分組成………………………………………………………
90
表六、文旦皮於30oC自體酵素反應25天以水蒸餾萃取之精油的成分組成………………………………………………………
92
表七、蒸氣蒸餾萃取文旦皮精油之成分組成………………………. 94
表八、文旦皮於50 oC自體酵素反應2天以蒸氣蒸餾萃取之精油的成分組成………………………………………..………………
96
表九、萃取方法與自體酵素反應之條件對文旦皮精油成分(concentration, mg/g)之影響………………………………
98
表十、不同濃度之文旦皮精油乳化物對S. aureus及E. coli生菌數(Log CFU/mL)的影響………………………………………
99
表十一、不同均質轉速及濃度之文旦皮精油乳化物對S. aureus
生菌數(Log CFU/mL)的影響…………………………
100

表十二、不同均質轉速及濃度之文旦皮精油乳化物對E coli生菌數(Log CFU/mL)的影響…………………………………
101
表十三、不同均質轉速的文旦皮精油乳化物抑制S. aureus及 E. coli其生長的最低濃度(MIC, %)………..…………
102
表十四、不同濃度的文旦皮精油乳化物經不同循環次數之微射流處理後對S. aureus生菌數(Log CFU/mL)的影響…….
103
表十五、不同濃度的文旦皮精油乳化物經不同循環次數之微射流處理後對E. coli生菌數(Log CFU/mL)的影響……......
104
表十六、不同濃度之幾丁聚醣對S. aureus及E. coli 生菌數 (Log CFU/mL)的影響……………………………………
105
表十七、不同濃度之文旦皮精油乳化物和幾丁聚醣對S. aureus及E. coli 生菌數(Log CFU/mL)的影響…………………..
106
表十八、於0.4%文旦皮精油乳化物中加入不同濃度之幾丁聚醣對
S. aureus及E. coli生菌數(Log CFU/mL)的影響…............
107
表十九、加入文旦皮精油乳化物、幾丁聚醣及精油乳化物-幾丁聚醣於不同pH值之培養基下對S. aureus抑制率(Inhibitory percentage, %)的影響………………………………………

108
表二十、加入文旦皮精油乳化物、幾丁聚醣及精油乳化物-幾丁聚醣於不同pH值之培養基下對E. colis抑制率(Inhibitory percentage, %)的影響………………………………………

109
表二十一、不同pH值對幾丁聚醣於TSB中界面電位(mV)之影響…………………………………………………………
110

圖目錄

圖一、水蒸餾法萃取之文旦皮精油的GC-MS層析圖譜…………… 111
圖二、文旦皮於30 oC自體酵素反應5天以水蒸餾萃取之精油的GC-MS層析圖譜………………………………………………
112
圖三、文旦皮於30 oC自體酵素反應10天以水蒸餾萃取之精油的GC-MS層析圖譜………………………………………………
113
圖四、文旦皮於30 oC自體酵素反應15天以水蒸餾萃取之精油的GC-MS層析圖譜………………………………………………
114
圖五、文旦皮於30 oC自體酵素反應20天以水蒸餾萃取之精油的GC-MS層析圖譜………………………………………………
115
圖六、文旦皮於30 oC自體酵素反應25天以水蒸餾萃取之精油的GC-MS層析圖譜………………………………………………
116
圖七、蒸氣蒸餾法萃取之文旦皮精油的GC-MS層析圖譜………… 117
圖八、文旦皮於50 oC自體酵素反應2天以蒸氣蒸餾萃取之精油的GC-MS層析圖譜………………………………………………
118
圖九、萃取方法與自體酵素反應之條件對文旦皮精油中主要碳氫萜烯類及含氧萜烯類化合物之轉換率的影響………………..….
119
圖十、萃取方法與自體酵素反應之條件對文旦皮精油萃取率的影響 120
圖十一、文旦皮精油乳化物經不同均質轉速下濃度與殘留菌數之關係……………………………………………………………...
121


圖十二、文旦皮精油乳化物經不同循環次數的微射流後對粒徑響…..……….………………………….…………………….
122
圖十三、幾丁聚醣(DA=54.80%)之改良式高效能液相層析圖…… 123
井爪正人,1996,天然系列保濕劑:幾丁聚醣的衍生物,香妝品科學研究開發專門誌,24: 112-117。
李明遠,2000,醋酸乙醯化法製備水溶性幾丁聚醣之探討,國立台灣海洋大學食品科學研究所碩士論文。
何振隆,2004,四種按樹葉精油組成及生物活性之探討,國立台灣大學森林學研究所碩士論文。
阮進惠、林翰良、羅淑珍,1997,幾丁聚醣水解物連續式生產及其抑菌作用,中國農業化學會誌,35: 596-611。
吳國靜,1998,香品化妝品及皂類叢書(一)香料,徐氏基金會,102-115;257。
林麗雲,1988,陳皮香氣成分之研究,國立台灣大學農業化學研究所碩士論文。
林潔怡,2003,植物精油對空氣雜菌抑制活性之研究,大葉大學食品工程學研究所碩士論文。
范修榕,2000,水溶性幾丁聚醣在O/W/O多重乳化乳液之應用,國立台灣海洋大學食品科學研究所碩士論文。
唐佳惠、黃阿賢、楊儒民、徐信次、林芳存,2003,鄉間小路,9: 9-11。
黃士吉,1998,界面活性劑乳化精油之原理及應用,大葉大學食品工程研究所碩士論文。
陳怡傑,1998,水溶性幾丁聚醣在水產養殖廢水處理之應用,國立台灣大學食品科技研究所碩士論文。
陳思愷,2002,海菜水溶性粗多醣之流變性質及其在含微脂粒活力滋養霜之應用,國立台灣海洋大學食品科學研究所碩士論文。
陳溪潭,2000,台南區農業專訊,33: 8-12。
游士弘,1997,幾丁質與幾丁聚醣之N-乙醯化程度及純度測定方法之探討,國立台灣海洋大學食品科學研究所碩士論文。
曾蘭嵐,2000,不同機械能量對幾丁聚醣極限分子量與分子量分布之影響,國立台灣海洋大學食品科學研究所碩士論文。
張文智,2001,微生物所生產幾丁質酶於食品及農業上應用,生物資源生物技術,3: 27-31。
彭仁信,2002,醋酸酐乙醯化反之幾丁聚醣特性及幾丁聚醣酵素水解產物對微生物生長之影響之探討,國立台灣海洋大學食品科學研究所碩士論文。
經濟部中央標準局,1988,食品微生物之檢驗法-總菌落數之檢驗,中國國家標準(C.N.S.),總號10890,類號N6186。
潘懷宗、劉晉魁、周良穎、謝秉甫、李沐勳,1994,利用超臨界二氧化碳萃取肉桂中之精油成分:並與水蒸餾法進行比較,中國醫學科學雜誌,5: 199-207.
蔣玉燕,1997,中國甲殼資源研究所發展應用學術研討會論文集(下冊),pp: 22-25.
蔡政芳、林文源、李錦楓,1993,不同去乙醯度幾丁聚醣抑菌作用及澀味,中華生質能源學會會誌,12: 74。
蔡敏郎,1993,不同分子量、不同去乙醯程度的幾丁聚醣溶液的流變性質與膠囊物性的關係,國立台灣海洋大學食品科學研究所碩士論文。
蔡博仁,2001,葡萄柚皮中自體酵素轉換 d-Limonene為linalool最適條件之探討,國立台灣海洋大學食品科學研究所碩士論文。
鄭仲、林秀玲、簡文憲、陳凱俐,1998,花蓮地區文旦柚之產銷研究,花蓮區農業改良場研究彙報,16: 81-90。
鄭連英、朱江峰、孫昆山,1999,第二屆甲殼素化學與應用與研討會論文集,武漢大學,311-315。
謝瑞忠、鍾森田、王守範,1986,省產杉木精油抗菌活性之研究,台灣省林業試驗所報告,464:5。
A. O. A. C. (Association of Official Analytical Chemists). 1997. In: Official Methods of Analysis. 16th ed. Ed. Horwitz, W. Washington, D. C.
Agullo, E., Rodriguez, M. S., Ramos, V. and Albertengo, L. 2003. Present and future role of chitin and chitosan in food. Macromolecules Bioscience. 3: 521-530.
Ahmed, E. M. Dennison, R. A. and Shaw, P. E. 1978. Flavor and odor thresholds in water of selected orange juice components. Journal of Agricultural and Food Chemistry. 26: 187-191.
Amiji, M. M. 1998. Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups. Colloids and Surfaces B: Biointerfaces. 10: 263-271.
Angelo, S., J, A., Vercellott and R, J. 1989. Inhibition of warmed-over flavor and preserving of uncured meat containing materials. Patent No. US 4871556.
Asada, T., Ishimoto, T., Sakai, A. and Sumiya, K. 1989. Insecticidal and antifungalactivity in hinoki-asunaro leaf oil (In Japanese). Mokuzai Gakkaishi. 35: 851-855.
Bailer, J., Aichinger, T., Hackl, G., Hueber, K. de. and Dachler, M. 2001. Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Industrial Crops and Products. 14: 229-239.
Baydar, H., Sagdic, O., Özkan, G. and Karadoğan, T. 2004. Antibacterial activity and composition of essential oils from origanum, thymbra and satureja species with commercial importance in turkey. Food Control. 15: 169-172.
Babu, K. G. D. and Kaul, V. K. 2005. Variation in essential oil composition of rose-scented geranium (Pelargonium sp.) distilled by different distillation techniques. Flavour and Fragrance Journal. 20: 222-231.
Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S. and Croteau, R. 1999. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the tpsd gene family from Grand Fir (Abies grandis). Archives of Biochemistry and Biophysics. 368: 232-243.
Bouvier, F., Suire, C., Harlingue, A., Backhaus, R. A. and Camara, B. 2000. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthsis in plant cell. The Plant Journal. 24: 241-252.
Bowen, E. R. 1975. Potential by-products from the microbial transformation of d-limonene. Florida State Horticultural Society. 88: 305-308.
Braddock, R. J. 1995. By-products of citrus fruit. Food Technology. 49: 74-77.
Buettner, A. and Schieberle, P. 2001. Evaluation of aroma differences between hand-squeezed juices from Valencia late and Navel oranges by quantitation of key odorants and flavor reconstitution experiments. Journal of Agricultural and Food Chemistry. 49: 2387-2394.
Bullerman, L. B., Lieu, F. Y. and Seier, S. A. 1977. Inhibition of growth and aflatoxin production by cinnamon and clove oils. Archires of Biochemistry and Biophysics. 300: 535-545.
Burmeister, F., Bennett, S. and Brooks, G. 1997. Liposomes in cosmetic formulation. Cosmetics & Toiletries. 111: 49-53.
Burt, S. A. and Reinders, R. D. 2003. Antibacterial activity of selected plant essential oils against essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology. 36: 162-167.
Carson, C. F., Mee, B. J. and Riley, T. V. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-till, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy. 46: 1914-1920.
Carter, O. A., Peters, R. J. and Croteau, R. 2003. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry. 64: 425-433.
Cassel, E., Frizzo, C. D., Vanderlinde, R., Atti-Serafini, L., Lorenzo, D. and Dellacassa, E. 2000. Extraction of baccharis oil by supercritical CO2. Industrial & Engineering Chemistry Research. 39: 4803-4805.
Cheng, Y. S. and Chou, C. T. 1984. Composition of peel essential oils from eight citrus species. Journal of the Chinese Chemical Society. 31: 93-96.
Chen, C. S., Liau, W. Y. and Tsai, G. J. 1998. Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. Journal of Food Protection. 61: 1124-1128.
Chen, Y. M., Chung, Y. C., Wang, L. W., Chen, K. T. and Li, S. Y. 2002. Antibacterial properties of chitosan in waterborne pathogen. Journal of Environmental Science and Health. 37: 1379-1390.
Cho, Y. W., Jang, J., Park, C. R. and Ko, S. W. 2000. Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules. 1: 609-614.
Cimanga, K., Kambu, K., Tona, L., Apers, S., de Bruyne, T., Hermans, N., Totte, J., Pieters, L. and Vlietinck, A. J. 2002. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Ethnopharmacology. 79: 213-220.
Coelho, J. A. P., Pereira, A. P., Mendes, R. L. and Palavra, A. M. F. 2003. Supercritical carbon dioxide extraction of Foeniculum vulgare volatile oil. Flavour and Fragrance Journal. 18: 316-319.
Croteau, R. 1991. Metabolism of monoterpenes in mint (Mentha) species. Planta Medica. 57: 10-14.
Croteau, R., Wagschal, K. C., Karp, F., Satterwhite, D. M., Hyatt, D. C. and Skotland, C. B. 1991. Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Planta Medica. 96: 744-753.
Deans, S. G. and Svoboda, K. P. 1989. Antibacterial activity of summer savory (Saturejahortensis L) essential oil and its constituents. The Journal of Horticultural Science. 64: 205-210.
Dev, S., Narula, A. P. S. and Yadav, J. S. 1982. Handbook of Terpenoids. In: Monoterpenoids. Vol. II. Ed. Dev, S. Boca Raton, Florida. pp. 453.
Demetzos, C. N., Katerinopoulos, H., Kouvarakis, A., Stratigukis, N., Loukis, A., Ekomomakis, C., Spiliotis, V. and Tsaknis, J. 1997. Composition and antimicrobial activity of essential oil of Cistus creticus subsp. eriocyhalus. Planta Medica. 63: 477-478.
Demyttenaere, J. C. R. and Willemen, H. M. 1998. Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger. Phytochemistry. 47: 1029-1036.
Demyttenaere, J. C. R., Belleghem, K. V. and Kimpe, N. D. 2001. Biotransformation of (R) - (+) – and (S) - (-) – limonene by fungi and the use of solid phase microextraction for screening. Phytochemistry. 57: 199-208.
El-Ghorab, A. H., El-Massry, K. F., Marx, F. and Fadel, H. M. 2003. Antioxidant activity of Egyptian Eucalyptus Camaldulensis var. Brevirostris leaf extracts. Nahrung Food. 47: 41-45.
El-Tamer, M. K., Lücker, J., Bosch, D., Verhoeven, H. A., Verstappen, F. W. A., Schwab, W., van Tunen, A. J., Voragen, A. G. J., de Maagd, R. A. and Bouwmeester, H. J. 2003. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity. Archives of Biochemistry and Biophysics. 411: 196-203.
Fadel, H., Marx, F., El-Sawy, A. and El-Ghorab, A. 1999. Effect of extraction techniques on the chemical composition and antioxidant activity of Eucalyptus camaldulensis var. brevirostris leaf oils. Z Lebensm Unters Forsch A. 208: 212-216.
Faouzia, H., Souad, F. T. and Tantaoui-Elaraki, A. 1993. Antimicrobial activity of twenty-one Eucalyptus essential oils. Fitoterapia. 64: 71-77.
Felse, P. A. and Panda, T. 1999. Study of applications of chitin and its derivatives. Bioprocess Engineering. 20: 505-512.
Ferdous, A. J., Islam, S. M., Hasan, C. M. and Ahmed, Z. V. 1992. In vitro antibacterial activity of the volatile oil of Nigella satia seeds against multiple drug resistant isolates of Shigella, V. cholerae and E. coli. Phytother. 6: 137-140.
Gershenzon, J., McConkey, M. and Croteau, R. 2000. Regulation of monoterpene accumulation in leaves of peppermint (Mentha×piperita L.). Plant Physiology. 122: 205-213.
Ghaouth, E. A., Arul, J., Asselin, A. and Benhamou, N. 1992. Antifungal activity of chitosan on postharvest pathogens: inducting of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research 96: 769-779.
Gohtani, S. and Yamano, Y. 1990. Stability and zeta potential of soyasaponin Ⅰemulsion. Nippon Nogeikagaku Kaishi. 64: 139-144.
Griffn, G. S., Markham, L. J. and Leach, N. D. 2000. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. Journal of Essential Oil Research. 12: 149-255.
Guadagni, D. G., Buttery, R. G. and Harris, J. 1966. Odour intensities of hop oil components. Journal of the Science of Food and Agriculture. 17: 142-144.
Guenther, E. 1952. The essential oils vo1 ID Van, Nostrand Co., Inc., New York, N. Y.
Hadwiger, L. A., Kendra, D. F., Fristensky, B. W. and Wagoner, W. 1986. Chitosan Both Activates Genes in Plants and Inhibits RNA Synthesis in Fungi. In: Chitin in Nature and Tecnnology. Ed. Muzzarelli, R., Jeuniaux, C. and Gooday, C. W. Plenum Press, New York, U. S. A. pp. 209-214.
Hammouchi, M., Tantaoui-Elaraki, A., Es-Safi, N. and Agoumi, A. 1990. Mise én evidence des propriétés antibactériennes et antifongiques des huiles essentielles d’Eucalyptus. Plantes Médicinaleset Phytothérapie. 24: 278-279.
Hai, L., Diep, T. B., Nagasawa, N., Yoshii, F. and Kume, T. 2003. Radiation depolymerization of chitosan to prepare oligomers. Nuclear Instruments and Methods in Physics Research B. 208: 466-470.
Harpaz, S., Glatman, L., Drabkin, V. and Gelman, A. 2003. Effects of herbal essential oils used to extend the shelf life of freshwaterreared Asian sea bass fish (Lates calcarifer). Journal of Food Protection. 66: 410-417.
Helander, I. M., Wright, A. and Mattila-Sandholm, T. 1997. Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends in Food Science and Technology. 8: 146-150.
Helander, I. M., Alakomi, H., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M. and Wright, A. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry. 46: 3590-3595.
Hill, R. A. 2002. Dictionary of natural products on CD-ROM. Ed. Version 10:2, Chapman & Hall/CRC.
Inouye, S., Yamaguchi, H. and Takizawa, T. 2001. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. Japanese Society of Chemotherapy and the Japanese Association for Infectious Diseases. 7: 251-254.
Isman, M. B. 2000. Plant essential oils for pest and disease management. Crop Protection. 19: 603-608.
Jeon, Y. J., Park, P. J. and Kim, S. K. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers. 44: 71-76.
Jia, Z. and She, D. 2002. Effect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydrate Polymers. 49: 393-396.
Kambu, K., Di Phanzu, N., Coune, C., Wauters, J. N. and Angenot, L. 1982. Contribution àl’ etude des propriétés insecticides et chimiques d’Eucalyptus saligna du Zaýre. Plantes Médicinaleset Phytothérapie. 16: 34-38.
Kaul, P., Rajeswara, R. B., Bhattacharya, A., Singh, C. and Singh, K. 1995. Volatile constituents of three cultivars of rose-scented geranium (Pelargonium sp.) as influenced by method of distillation. PAFAI Journal. 17: 21-26.
Khallouki, F., Hmamouchia, M., Younosb C., Soulimanib, R., Bessierec, J. M. and Essassid, E. M. 2000. Antibacterial and molluscicidal activities of the essential oil of Chrysanthemum viscidehirtum. Fitoterapia. 71: 544-546.
Kim, J., Marshall, M. R. and Wei, C. 1995. Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry. 43: 2839-2845.
Kim, M. and Han, J. 2002. Evaluation of physico-chemical characteristics and microstructure of tofu containing hight viscosity chitosan. International Journal of Food Science and Technology. 37: 277-283.
Kim, M. S., Sung, M. J., Seo, S. B., Yoo, S. J., Lim, W. K. and Kim, H. M. 2002. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid β peptide and interleukin-1β. Neuroscience Letters. 321: 105-109.
Kim, S., Roh, J. Y., Kim, D. H., Lee, H. S. and Ahn, Y. J. 2003. Insecticidal activites of aromatic plant extracts and essential oil against Sitophilus oryzae and Callosobruchus chinensis. Journal of Stored Products Research. 39: 293-303.
Kim, H. O., Park, S. W. and Park, H. D. 2004. Inactivation of Escherichia coli O157: H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot. Food Microbiology. 21: 105-110.
Kim, Y. S. and Shin D. H. 2004. Volatile constituents from the leaves of callicarpa japonica thunb. and their antibacterial activities. Journal of Agricultural and Food Chemistry. 52: 781-787.
Kumar, M. N. V. R. 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers. 46: 1-27.
Kurita, K., Kojima, T., Nishiyama, Y. and Shimojoh, M. 2000. Synthesis and some properties of nonnatural amino polysaccharides: Branched chitin and chitosan. Macromolecules. 33: 4711-4716.
Lachowicz, K. J., Jones, G. P., Briggs, D. R., Bienvenu, F. E., Wan, J., Wilcock, A. and Coventry, M. J. 1998. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basil L.) against acid-tolerant food microflora. Letters in Applied Microbiology. 26: 209-214.
Lee, M. H., Liu, H., Su, N. W., Ku, K. L. and Choong, Y. M. 1998. Bioconversion of d-limonene to oxygenated compounds by endogenous enzymes of the citrus peel. Journal of the Chinese Agricultural Chemical Society. 37: 1-19.
Lemos, T. L. G., Matos, F. J. A., Alencar, J. W., Craveiro, A. A., Clark, A. M. and McChesney, J. D. 1990. Antimicrobial activity of essential oils of Brazilian plants. Phytother. 4: 82-84.
Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z. and Yao, K. D. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Biomaterials Applications. 79: 1324-1335.
Mackey, A. C. 1979. Aldrichimica acta. 12: 22.
Maeda, Y. and Kimura, Y. 2004. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. American Society for Nutritional Sciences. 134: 945-950.
Mahmoud, S. S., Williams, M. and Croteau, R. 2004. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry. 65: 547-554.
Mann, C. M. and Markham, J. L. 1998. A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology. 84: 538-544.
Mann, C. M., Cox, S. D. and Markham, J. L. 2000. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Letters in Applied Microbiology. 30: 294-297.
Marino, M., Bersani, C. and Comi, G. 2001. Impedance measurements to study the antimicrobial activity of essential oils from Lamiacea and Compositae. International Journal of Food Microbiology. 67: 187-195.
Masson, G. 1989. Advanced techniques for preparation and characterization of small unilamellar vesicles. Food Microstructure. 8: 11-14.
McConkey, M., Gershenzon, J. and Croteau, R. 2000. Developmental regulation of monoterpene biosynthesis in glandular trichomes of peppermint (Mentha×piperita L.). Plant Physiology. 122: 215-223.
Minh Tu, N. T., Thanh, L. X., Une, A., Ukeda, H. and Sawamura, M. 2002. Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour and Fragrance Journal. 17: 169-174.
Mondello, L., Dugo, P., Cavazza, A. and Dugo, G. 1996. Characterization of essential oil of pummelo (cv. Chandler) by GC/MS, HPLC and physicochemical indices. Journal of Essential Oil Research. 8: 311-314.
Muzzarelli, R. A. A., Ramos, V., Stanic, V., Dubini, B., Belmonte, M. M., Tosi, G. and Giardino, R. 1998. Osteogenesis promoted by calcium phosphate N, N-dicarboxymethyl chitosan. Carbohydrate Polymers. 36: 267-276.
Nikaido, H. and Vaara, M. 1985. Molecular basis of bacterial outer membrane permeability. Microbiological Reviews. 49: 1-32.
Nikaido, H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 264: 382-388.
Nikaido, H. 1996. Outer membrane. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. Vol. Ⅰ. Ed. Neidhardt, F. C. Washington, D. C. pp. 29-47.
No, H. K., Cho, Y. I., Kim, H. R. and Meyers, S. P. 2000. Effective deacetylation of chitin under conditions of 15 psi/121oC. Journal of Agricultural and Food Chemistry. 48: 2625-2627.
No, H. K., Park, N. Y., Lee, S. H. and Meyers, S. P. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 74: 65-72.
Ogawa, S., Decker, E. A. and Mcclements, D. J. 2003. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. Journal of Agricultural and Food Chemistry. 51: 2806-2812.
Ohno, T., Kita, M., Yamaoka, Y., Lmamura, S., Yamamoto, T., Mitsufuji, S., Kodama, T., Kashima, K. and Lmanishi, J. 2003. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter. 8: 207-215.
Oliveira de Figueiredo, R., Nakagawa, J. and Marques, M. O. M. 2004. Composition of coriander essential oil from Brazil. Acta Horticulturae. 629: 135-137.
Ottoy, M. H., Vårum, K. M. and Smidsrod, O. 1996. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydrate Polymers. 29: 17-24.
Owusu-Yaw, J., Matthews, R. F. and West P. F. 1986. Alcohol deterpenation of orange oil. Journal of Food Science. 51: 1180-1182.
Özcan, M. 1998. Inhibitory effects of spice extracts on the growth of Aspergillus parasiticus NRRL2999 strain. Zeitschrift fur Lebensmittel- Untersuchung und-Forschung A. 207: 253-255.
Pallado, P., Tassinato, G., D'Alpaos, M. and Traldi, P. 1997. Gas Chromatography/Mass Spestrometry in aroma chemistry: a comparison of essential oils and flavours extracted by classical and supercritical techniques. Rapid Communications in Mass Spectrometry. 11: 1333-1341.
Papineau, A. M., Hoover, D. G., Knorr, D. and Farkas, D. F. 1991. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnology. 5: 45-57.
Park, K., Lee, S. G., Choi, D. H., Park, J. D. and Ahm, Y. J. 2003a. Insectidal activity of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). Journal of Stored Products Research. 39: 375-384.
Park, C., Kim, S. and Ahm, Y. J. 2003b. Insectidal activity of asarones in Acorus gramineus rhizome against three coleopteran stored-product insects. Journal of Stored Products Research. 39: 333-342.
Paulson, A. T. and Tung, M. A. 1987. Solubility, hydrophobicity and charge of succinylated canola protein isolate. Journal of Food Science. 52: 1557-1569.
Peana, A. T., Moretti, M. D. L. and Juliano, C. 1999. Chemical composition and antimicrobial action of the essential oils of Salvia desoleana and S. sclarea. Planta Medica 65: 752-754.
Pichersky, E., Lewinsohn, E. and Croteau, R. 1995. Purification and characterization of s-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Archives of Biochemistry and Biophysics. 316: 803-807.
Pintore, G., Usai, M., Bradesi, P., Juliano, C., Boatto, G., Tomi, F., Chessa, M., Cerri, R. and Casanova, J. 2002. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour and Fragrance Journal. 17: 15-19.
Qin, C., Zhou, B., Zeng, L., Zhang, Z., Liu, Y., Du, Y. and Xiao, L. 2004. The physicochemical properties and antitumor activity of cellulose-treated chitosan. Food Chemistry. 84: 107-115.
Raguso, R. A. and Pichersky, E. 1999. New perspectives in pollination biology : floral fragrances. Plant Species Biology. 14: 95-120.
Remmal, A., Bouchikhi, T., Tantaoui-Elaraki, A. and Ettayebi, M. 1993. Inhibition of antibacterial activity of essential oils bij Tween-80 and ethanol in liquid medium. Journal de Pharmacie de Belgique. 48: 353-356.
Roller, S. and Covill, N. 1999. The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology. 47: 67-77.
Romanazzi, G., Nigro, F. and Ippolito, A. 2003. Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biology and Technology. 29: 73-80.
Rychlik, M., Schieberle, P., Grosch, W. 1998. Compilation of Odor Thresholds. Odor Qualities and Retention Indices of Key Food Qdorants. Deultsche Forschungsanstalt fűr Lebensmittelchemie and Institut fűr Lebensmittelchemie der Technischen Universität Műnchen: Garching, Germany.
Sağdic, O., Kuscu, A., Özcan, M. and Özcelik, S. 2002. Effects of turkish spice extracts at various concentrations on the growth of Escherichia coli O157:H7. Food Microbiology. 19: 473-480.
Shahi, S. K., Shukla A. C. and Dikshit, A. 1999. Antifungal studies of some essential oils at various pH levels for the betterment of antifungal drug response. Current Science. 77: 703-706.
Shaw, P. E. 1979. Review of quantitative of citrus essential oils. Journal of Agricultural and Food Chemistry. 27: 246-257.
Shelef, L. A., Jyothi, E. K. and Bulgarelli, M. A. 1984. Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods. Journal of Food Science. 49: 737-740.
Shimahara, K., Ohkouchi, K. and Ikeda, M. 1982. A new isolation method of crustacean chitin using a proteolytic bacterium Pseudomonas maltophilia. In: Chitin and Chitosan. Proceedings of the Second International Conference on Chitin and Chitosan. Ed. Hirano, S. and Tokura, S. The Japanese Society of Chitin and Chitosan Publishers. Tottori. pp. 10-14.
Silva, J., Abebe, W., Sousa, S. M., Duarte, V. G., Machado, M. I. L. and Matos, F. J. A. 2003. Analgesic and anti-flammatory effects of essential oils of Eucalyptus. Journal of Ethnopharmacology. 89: 277-283.
Sjöström, E. 1993. Wood Chemistry. Fundamentals and Applications. 2nd edition. Academic Press Inc., London, U.K. pp: 90-102.
Skandamis, P., Koutsoumanis, K., Fasseas, K. and Nychas, G.-J. E. 2001. Inhibition of oregano essential oil and EDTA on Escherichia coli O157:H7. Italian Journal of Food Science. 13: 65-75.
Skandamis, P. N. and Nychas, G. J. 2000. Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTC12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Applied and Environmental Microbiology. 66: 1646-1653.
Smith-Palmer, A., Stewart, J. and Fyfe, L. 1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Food Microbiology. 26: 118-122.
Sreenath, H. K., Crandall, P. G. and Baker, R. A. 1995. Utilization of citrus by-products and wastes as beverage cluding agents. Journal of Fermentation and Bioengineering. 80: 190-194.
Talsma, H. and Cromelin, D. J. A. 1992. Liposomes as drug delivery systems, part Ⅱ: Characterization. Pharmaceutical Technology. 16: 52-58.
Taniguchi, M., Tsuji, T., Shibata, M. and Kobayashi, T. 1985. Extraction of oils from wheat germ with supercritical carbon dioxide. Agricultural and Biological Chemistry. 49: 2367-2372.
Tassou, C., Koutsoumanis, K. Nychas, G. J. E. 2000. Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Food Research International. 33: 273-280.
Thanou, M., Verhoef, J. C. and Junginger, H. E. 2001. Oral drug absorption enhancement by chitosan and ists derivatives. Advanced Drug Delivery Reviews. 52: 117-126.
Tokura, S., Ueno, K. and Matsuoka, S. 1995. In Proceedings of the OUMS’95 Toyonaka, Osaka, Japan.
Tsigos, I., Martinou, A., Kafetzopoulos, D. and Bouriotis, V. 2000. Chitin deacetylases: new, versatile tools in biotechnology. Trends in Biotechnology. 18: 305-312.
Ultee, A., Bennik, M. H. and Moezelaar, R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology. 68: 1561-1568.
Uyttendaele, M., Neyts, K., Vanderswalmen, H., Notebaert, E. and Debevere, J. 2004. Control of Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated water, or thyme essential oil solution. International Journal of Food Microbiology. 90: 263-271.
van den Dool, H. and Kratz, P. D. 1963. A generalization of the retention index system including linear temperature orpgrammed gas-liquid partition chromatography. Journal of Chromatography. 11: 463-471.
van der Werf, M. J., Swarts, H. J. and de Bont, J. A. M. 1999. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Applied and Environmental Microbiology. 65: 2092-2102.
van der Werf, M. J., Keijzer, P. M. and van der Schaft, P. H. 2000. Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene. Journal of Biotechnology. 84: 133-143.
Valero, M. and Salmerón, M. C. 2003. Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. International Journal of Food Microbiology. 85: 73-81.
Vemuri, S., Yu, C., Wangsatorntanakun, P. D. and Roosdorp, N. 1990. Large-scale production of liposome by a microfluidizer. Drug Develop Industrial Pharmacy. 16: 2243-2256.
Viladot, J. L. and Moragas, M. 2002. New cosmetic delivery systems based on chitosan. In: Advances in Chitin Science (VI). Ed. By Vårum, K. M., Domard, A. and Smidsrød, O. pp181-184.
Wang, G.H. 1992. Inhibition and inactivation of five species of antifungal foodborne pathogens by chitosan. Journal of Food Protection. 55: 916-919.
Wang, M. L., Choong, Y. M. and Lee, M. H. 1994. Effects of extraction method on the determination of essential oils in citrus peels. Journal of the Chinese Agricultural Chemical Society. 32: 141-148.
Wan Ngah, W. S. and Liang, K. H. 1999. Adsorption of gold (III) ions onto chitosan and N-carboxymethyl chitosan: Equilibrium studies. Industrial & Engineering Chemistry Research. 38: 1411-1414.
Wise, M. L. and Croteau, R. 1999. Monoterpene biosynthesis. In: Comprehensive Natural Products Chemistry. Isoprenoids Including Carotenoids and Steroids. Vol. 2. Ed. Cane, D. E. Elservier Science. Oxford. pp. 97-153.
Xie, W., Xu, P., Wang, W. and Liu, Q. 2002. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydrate Polymers. 50: 35-40.
Yang, T. C., Chou, C. C. and Li, C. F. 2005. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. International Journal of Food Microbiology. 97: 237-245.
Yoneyama, S., Togashi, I., Oikawa, H. and Aoyama, M. 1990. An antifungal substance in the volatile wood-oil of todomatsu. Abies sachlinensis Mast. Mokuzai Gakkaishi. 36: 777-780.
Zhou, Y. H., Qiao, H. Y., Wang, L. S. and Liu, X. M. 2004. GC-MS analysis of essential oil from pomelo peel obtained in Rong country. Guangxi Daxue Xuebao, Ziran Kexueban. 29: 70-72.
Zivanovic, S., Chi, S. and Draughon, A. E. 2005. Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science. 70: 45-51.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top