跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝吉彥
研究生(外文):Chi-yen Hsieh
論文名稱:不同添加物與低溫儲藏對卡德蘭膠製品之物性影響
論文名稱(外文):Effects of Different Additives and Cold Storage on Physical Properties of Curdlan Gel Products
指導教授:蔡震壽蔡震壽引用關係
指導教授(外文):Jenn-Shou Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:94
中文關鍵詞:卡德蘭膠離水率質感特性
外文關鍵詞:curdlansyneresistextural characteristics
相關次數:
  • 被引用被引用:6
  • 點閱點閱:3526
  • 評分評分:
  • 下載下載:230
  • 收藏至我的研究室書目清單書目收藏:0
摘要
卡德蘭膠以不同溶液(蒸餾水與中和液)攪拌水合後經98℃加熱成膠,以蒸餾水製備的膠體經-20℃低溫貯藏後,有較高質感特性值及較低的離水率。當攪拌水溫以35℃所製備的卡德蘭膠體之破斷力(148.6 g)、膠強度(1154.9 g×mm)及剛硬度(19.1 g/mm)較佳,且經過冷藏(4℃)或凍藏(-20℃)後,亦可得到最高的質感特性值。以35℃水溫攪拌製備卡德蘭水合膠中,分別添加2 % 的澱粉(糯性玉米澱粉與預糊化玉米澱粉)、0.3 % 的多醣類(鹿角菜膠、關華豆膠玉米醣膠)、2 % 的蛋白質 (濃縮乳清蛋白粉、分離大豆蛋白粉與卵蛋白粉)及25 %紅豆餡等添加物。製成的膠體經低溫4℃或-20℃貯藏一週後,與經低溫4℃冷藏一天做比較,其膠體質感特性與離水率之間的關係分別如下:添加澱粉組中,添加2%糯性玉米澱粉者於-20℃貯藏後,膠體強度由978.1下降至801.1 (g×mm),但離水率可減少35%,品質較佳。添加多醣類組中,添加0.3 % 的鹿角菜膠於-20℃貯藏後,膠強度改變最小。而添加0.3 %的關華豆膠之離水率可降低41.9 % 為最佳。添加蛋白質組中添2 % 的分離大豆蛋白粉經-20℃凍藏後,膠體強度下降達25 %,但離水率可減少14.9 %。
在5 % 的卡德蘭水合膠中,添加25 % 的紅豆餡製得的膠體,經冷凍貯藏後,其膠強度(1238.4 g×mm)與控制組相同,但離水率可減少27.1 %。3%的卡德蘭水合膠中將pH值調整於4.0與4.4,並以不同加熱時間(30,45,60 min)製得膠體,其中以pH 4.0加熱60 min組,在-20℃凍藏一週後,其膠強度由4159.8增至6781.2 (g×mm),離水率由12.1增至15.8 %為效果最佳。當卡德蘭水合膠(3,4,5 %)添加紅豆餡,並將pH調至4.0,以不同加熱時間(30,45,60 min)製得膠體,經低溫貯藏一週後 以5 %加熱60 min組的剛硬度(43.9 mm/g)最大,離水率隨卡德蘭膠濃度增加及加熱時間減少而降低。
Abstract
Curdlan was first mixed and hydrated with various solutions (distilled water and neutralized water) followed by heating at >98oC to form heat-irreversible gel. Curdlan gel was prepared by distilled water to obtain higher textural characteristics and lower syneresis rate after the gel was stored at -20℃. The breaking force (148.6 g), gel strength (1154.9 g×mm) and rigidity (19.1 g/mm) of the resulting gel were increased when curdlan was mixed and hydrated at 35℃with agitation. These results were similar to that gel after stored at 4℃ or -20℃. Fully hydrated curdlan suspension at 35℃ mixed individually or in combination with 2% starch (waxy corn starch or pregelatinized corn starch), 0.3% polysaccharides (carrageenan, guar gum and xanthan gum), 2% protein (whey protein concentrate, isolated soy protein and egg white powder) or 25% red bean paste. After heating of suspensions, the resulting curdlan gel was stored at 4℃ or -20℃for one week. The textural characteristics and lower syneresis rate were compared to the gel stored at 4℃ for one day. The curdlan gel containing waxy corn starch (0.2%) with -20℃storage resulted in decrease of gel strength (from 978.1 to 801.1 g×mm) and 35% reduction in syneresis rate. Addition of κ-carrageenan (0.3%) with -20℃storage, the gel showed minimal change on gel strength. Guar gum-added (0.3%) had significant effect on syneresis rate with 41.9% reduction. Addition of isolated soy protein (2%) with -20℃storage reduced the resulting curdlan gel strength by 25% but also decreased the syneresis rate by 14.9%.
The addition of 25% red bean paste in 5% Curdlan formed a gel with the gel strength at 1238.4 g×mm after stored at -20℃. Its syneresis rate was reduced by 27.1% as compared to Control of 5% curdlan alone. The curdlan-red bean paste mixture was heated for 30, 45 and 60mins with pH 4.0 and 4.4. The gel with pH4.0 was heated for 60 min, the gel strength increased from 4159.8 to 6781.2 (g×mm) and also increased syneresis rate from 12.1 to 15.8% after stored at -20℃ for one week. Addition of red bean paste to various curdlan suspension(3, 4 and 5%) at pH 4.0 followed by heating for various time (30, 45 and 60mins ) and then stored at -20℃ for one week. The rigidity of the resulting gel is the highest (43.9mm/g) with 5% curdlan after heating for 60mins. Syneresis rate was also reduced with the increase of concentrations of curdlan or decrease of heating time.
目錄
頁次
中文摘要……………………………………………………................... i
英文摘要……………………………………………………….……...... iii
壹、前言…………………………………………………….…..……… 01
貳、文獻整理………………………………………………...………… 03
一、多醣類的分類……………………………………………………… 03
二、卡德蘭膠(Curdlan)………………………………………………… 03
1. 來源及製法………………………………………………………….. 04
2. 化學構造及成分…………………………………………………….. 05
3. 水溶液溶解及特性………………………………………………… 05
4. 懸浮液分散及特性………………………………………………….. 06
5. 凝膠機制…………………………………………………………….. 06
6. 加熱溫度對卡德蘭膠水分散液成膠特性的影響………………….. 08
7. 加熱處理後對卡德蘭膠粒子的影響……………………………….. 09
8. 膠體特性…………………………………………………………….. 10
(1) 耐熱性……………………………………………………………… 10
(2) 耐酸性……………………………………………………………… 10
(3) 耐凍性……………………………………………………………… 10
(4) 離水性……………………………………………………………… 10
(5) 濃度………………………………………………………………… 10
9. 生理及腸道功能…………………………………………………….. 11
10. 食品應用……………………………………………………………. 12
三、 添加物間的交互作用及在食品上的應用………………………. 13
1.多醣類和蛋白質……………………………………………………… 13
2.多醣類與多醣類……………………………………………………… 15
3. 澱粉和多醣類……………………………………………………….. 16
參、材料與方法…………………………………………………………. 19
(一)、實驗材料…………………………………………………………. 19
(二)、實驗方法…………………………………………………………. 20
1. 不同條件的膠體製備……………………………………………….. 20
(1) 不同溶液處理……………………………………………………… 20
(2) 不同水溫…………………………………………………………… 20
2. 卡德蘭膠混合添加物的的製備…………………………………….. 21
3. 卡德蘭膠仿羊羹膠體的製備……………………………………….. 21
4. 蒸煮離水率( cooking loss )之測定…………………………………. 22
5. 膠體膠體質感特性的測定………………………………………….. 22
6. 儲藏後離水率( syneresis )之測定………………………………….. 23
7. 統計分析…………………………………………………………….. 23
肆、結果與討論………………………………………………………… 25
一、膠體之質感特性的測定…………………………………………… 25
二、不同攪拌條件對卡德蘭膠體經低溫貯藏後物性的影響………… 25
1、不同的溶液攪拌的影響……………………………………………. 25
2、不同攪拌水溫的影響………………………………………………. 26
3、不同添加物的影響………………………………………………….. 27
a、 澱粉的影響…………………………………………………………. 27
b、多醣類的影響………………………………………………………. 28
c、添加多醣類與澱粉的影響…………………………………………. 29
d、添加蒟蒻膠和澱粉的影響………………………………………….. 31
e、添加蛋白質的影響…………………………………………………. 32
f、添加紅豆餡的影響………………………………………………….. 33
四、新產品的開發……………………………………………………… 36
伍、結論………………………………………………………………… 39
陸、參考文獻…………………………………………………………… 40
圖表……………………………………………………………………... 51



















表目錄

表一、以不同混合溶液攪拌對卡德蘭膠低溫貯藏後對其質感特性… 51
表二、不同攪拌溫度對卡德蘭膠在低溫貯藏後對其質感特性之影響. 52
表三、澱粉的添加對卡德蘭膠在低溫貯藏後對其質感特性之影響… 53
表四、多醣類的添加對卡德蘭膠在低溫貯藏後對其質感特性之影響. 54
表五、多醣類與澱粉的添加對卡德蘭膠體在低溫貯藏後質感特性之
影響……………………………………………………………..
55
表六、蒟蒻精粉與澱粉的添加對卡德蘭膠體在低溫貯藏後質感特性
之影響 ………………………………………………………….
56
表七、蛋白質的添加對卡德蘭膠體在低溫貯藏後質感特性之影響… 57
表八、蛋白質的添加對卡德蘭膠體在低溫貯藏後質感特性之影響… 58
表九、不同比例的紅豆餡對卡德蘭膠體在低溫貯藏後質感特性之影
響………………………………………………………………...
59
表十、不同卡德蘭膠比例與紅豆餡混合對卡德蘭膠體在低溫貯藏後
質感特性之影響………………………………………………..
60
表十一、加熱時間對紅豆餡混合膠體在低溫貯藏後質感特性之影響 61
表十二、不同pH與加熱時間對卡德蘭膠體質感特性之影響……… 62
表十三、不同pH與加熱時間對卡德蘭膠體在低溫貯藏後對其質感
特性與離水率之影響………………………………………...
63
表十四、加熱時間與卡德蘭膠比例對膠體質感特性之影響………… 64
表十五、加熱時間與卡德蘭膠比例對膠體於低溫貯藏後質感特性與
離水率之影響………………………………………………...
65






















圖目錄
圖一、不同溶液混合卡德蘭膠凝膠後其蒸煮與低溫貯藏後離水率之
影響(蒸煮溫度98±1℃) ……………………………………………….
66
圖二、不同攪拌溫度對卡德蘭膠體於蒸煮與低溫貯藏後離水率之影
響(蒸煮溫度98±1℃) ………………………………………………….
67
圖三、澱粉的添加對卡德蘭水合膠經蒸煮後與其膠體低溫貯藏後離
水率之影響(蒸煮溫度98±1℃) ……………………………………….
68
圖四、多醣類的添加對卡德蘭水合膠經蒸煮後與其膠體低溫貯藏後
離水率之影響(蒸煮溫度98±1℃) …………………………………….
69
圖五、多醣類與澱粉的添加對卡德蘭膠水合膠經蒸煮後與其膠體低
溫貯藏後離水率之影響(蒸煮溫度98±1℃)…………………………..
70
圖六、蒟蒻精粉與澱粉的添加對卡德蘭水合膠經蒸煮後與其膠體低
溫貯藏後離水率之影響(蒸煮溫度98±1℃)…………………………..
71
圖七、蛋白質的添加對卡德蘭水合膠經蒸煮後與其膠體低溫貯藏後
離水率之影響(蒸煮溫度98±1℃)……………………………………..
72
圖八、蛋白質的添加對卡德蘭水合膠經蒸煮後與其膠體低溫貯藏後
離水率之影響(蒸煮溫度98±1℃)……………………………………..
73
圖九、不同比例的紅豆餡添加對卡德蘭水合膠經蒸煮後與其膠體低
溫貯藏後離水率之影響(蒸煮溫度98±1℃)…………………………..
74
圖十、不同卡德蘭膠比例與紅豆餡混合對水合膠經蒸煮後與其膠體
低溫貯藏後離水率之影響(蒸煮溫度98±1℃)………………………..
75
圖十一、加熱時間對紅豆餡混合卡德蘭水合膠經蒸煮後與其膠體低
溫貯藏後離水率之影響(蒸煮溫度98±1℃)…………………………..
76
圖十二、加熱時間與卡德蘭膠比例對膠體於低溫貯藏後膠強度之影
響(蒸煮溫度98 ±1℃)………………………………………………….
77
附圖一、卡德蘭膠的分子結構……………………………………….. 78
附圖二、卡德蘭膠的黏度與凝膠型態之關係……………………….. 79
附圖三、破斷試驗曲線………………………………………………… 80
陸 、 參考文獻
邱健人、魏琬櫻。1978。膠在食品工業上之應用(一)。食品工業 10(11):36-42。
邱健人、魏琬櫻。1978。膠在食品工業上之應用(二)。食品工業 10(12):37-42。
吳鴻程、朱惠玲、林盈君、郭健民。1998。鹽、膠質種類和蔗糖對
κ-鹿角菜膠布丁機械性質的影響。嘉南學報。24:12-19。
黃瑞美、黃登冠。2002。紅豆之理化性質。台灣農業化學與食品科學40:280-287。
郭文怡。1997。一種可廣泛應用於食品中的健康食品素材。烘培工業。5:59-61。
陳淑瑾。1995。食物製備原理與運用。睿煜出版社,屏東。P. 34。
陳怡宏。1996。食品膠質配料簡介。食品市場資訊。8403:2-17。
陳俊成。2003。三先膠的製造、性質與應用。食品資訊。193:51-55。
彭翊偉。2004。多醣類之混合膠與蛋白質之交互作用對膠體質感性的影響。國立台灣海洋大學食品科學系碩士論文。
溫昭凱。1999。 影響蒟蒻膠體及卡德蘭膠低溫貯藏中離水率之因素與改進方法。 國立台灣海洋大學食品科學系碩士論文。
蔡震壽、大村浩久。1995。多糖類混合添加對分離大豆蛋白質乳化物質感特性的影響。食品科學。22(5):514-520。
蔡震壽、譚詠慧。1990。多醣類對分離大豆蛋白質乳化物的乳化特性之影響。食品科學。17(2):97-104。
劉怡佐。2000。影響混合澱粉糊化行為之因素。中國文化大學生活應用科學研究所碩士論文。
戴瑞琴、陳仁威、賴玉琪、白雅瑜、陳炯堂。1997。米澱粉-月桂醇複合物之熱性質及回凝動力學。食品科學。24(1):32-43。
大倉裕二。1994。カ-ドランによる新しい食品型態の開發。食品開發。29:5-7。
中尾行宏、田口哲也、山口武信。1994。Preparations of freezable processed tofu and freeze-dried tofu by using curdlan. 日本食品工業學會誌。41 : 141-147。
奈良潔。1991。カ-ドランの性質と食品への利用。食品工業。Jul. 30:31-40。
原田篤也。1994。カ-ドラントサクミノグリカンの物語リ。New Food Industry 。36:49-55。
Bahnassey, Y. and Breene, WM. 1994. Rapid visco-analysis (RVA) pasting profiles of wheat, corn, waxy corn, tapioca and amaranth starches (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gellan, guar, Xanthan and locust bean gums. Starch/Starke 46(4): 134-141.
Baik, B. K. and Czucjajowska, Z. 1999. Paste particle and bean size as related to sweetened azuki paste quality. Cereal Chem. 76: 122-128.
Bernal, V. M., Samajda, C.H. Smith, J. L., and Stanley, D. W. 1987. Interactions in protein/polysaccharide/calcium gel. J. Food Sci. 52(5):12-19.
Biliaderis, C. G., page, C. M., Maurice, T. J. and Juliano, B. O. 1986. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J. of Agric. and Food Chem. 34:6-14.
Burova, T. V., Grinbery, N. V., Grinbery, V. Y., Leontiev, A. L. and Tolstoguzov, V. B. 1992. Effect of polysaccharides upon the functional properties of 11S globulin of broad beans. Carbohyd. Polym. 18:101-108.
Rochas, C., Rinaudo, M. and Landry, S. 1989. “Relation between the molecular structure and mechanical properties of carrageenan gels.”, Carbohyd. Polym. 10:115-127.
Carins, P., Miles, M. J., Morris, V. J. and Brownsey, G. J. 1987. X-ray fiber-diffraction studies of synergistic, binary polysaccharide gels. Carbohyd. Res. 160:411-423.
Clark, A. H. and Ross-Murphy, S. B. 1987. Structural and mechanical properties of biopolymer gels. Adv. Polym. Sci. 83:57-192.
Dill, C. W. Brough, T., Ajgord, E. S., Gardner, F. A., Edwards, R. L. and Diehl, K. C. 1991. Rheological properties of heat-induced gels from egg clbumen subjected to freeze thaw. J. Food Sci. 30:764-768.
Eidam, D. and Kulicke, WM. 1995. Formation of maize starch gels selectively regulated by the addition of hydrocolloids. Starch/Starke. 47(10): 378-384.
Frnami, T., Frnami, M., Yada. H. and Nakao, Y. 1999. Rheological and thermal studies on gelling characteristics of curdlan. Food Hydro. 13:317-324.
Funami, T., Funami, M., Yada, H. and Nakao, Y. 2000. A rheological study on the effects of heating rate and dispersing method on the gelling characteristics of curdlan aqueous dispersions. Elsevier Food Hydro. 14:509-518.
Funami, T., Yada, H. and Nakao, Y. 1998. Curdlan properties for application in fat mimetics for meat products, J. Food Sci. 63:283-287.
Glicksman, M. 1979. Gelling Hydrocolloids in food product applications. In”Polysaccharides in Food” Blanshard, J. M. V. and Mitchell, J. R. (eds). Butterworth, London. p.12.
Handa, A., Takahashi, K., Kuroda, N. and Froning, G. W. 1998. Heat-induced egg white gels as affected by pH. J. Food Sci. 63:403-407.
Harada, T., Masada, M., Fugimori, K. and Maeda, I. 1966. Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3. J. Agric. Biol. Chem., 30:196-201.
Harada, T., Masda, M., Fugimori, K. and Maeda, I. 1996. Production of a firm, 10C3. Agric. Biol. Chem. 30:196-198.
Hatanaka, K. 1995. Perspectives of glycotechnology. High Polym. Japan. 44:558-560.
Hemar, Y., Hall, C.E., Munro, P. A. and Singh, H. 2002. Small and large deformation rheology and micro structure of K-carrageean gels containing commercial milk protein products. International Dairy J. 12:371-381.
Hirashima, M., Takaya, T. and Nishinari, K. 1997. DSC and rheoogical studies on aqueous dispersions of curdlan. Thermochimica Acta. 306:109-114.
Hollinger, G., kuniak, L. and Marchessault, R. H. 1974. Thermodynamic aspects of the gelatinization and swelling of cross-linked starch. Biopolymer. 13:879-890.
Holt, D. L., Watson, M. A. Dill, C. W., Alford, E. S., Edwards, E. S., Edwards, R. L., Diehl, K. C. and Ceardner, F. A. 1984. Correlation of the rheological behavior of egg albumen to temperature, pH and NaCl concentration. J. Food Sci. 49:137-141.
Hotta, H., Hagiwara, K., Kimura, S. and Hirata, A. 1993.augmentation of protective immune response against sandai virus infection by fungal polysaccharide schizophyllan. International J. Munopharmac-ology. 15:55-60.
Ito, W., Sugawara, K., Kimura, S., Tabata, K., Hirata, A., Kojima, T., Mori, S. and Shimada, K. 1990. Immunopharmacological study of sulfated schizophyllan (SPG) I-its action as a mitogen and Ant-HIV agent. International J. of Immunopharmacology. 12:225-233.
Kasal, N. and Harada, T. 1980. ACS symposium Series. 141’ in fiber Diffraction Methods. French. A.D., Gardner, K.H.ds, The American Chemical Society: Washington, DC. pp.363-383.
Kasapis, S., Norton, I. T., Morris, E. R. and Clark, H. 1993. Phase equilibria and gelation in gelatin/Maltodextrin system/part IV:21(4): 269-276.
Kinsella, J. E. 1976. Functional properties of proteins in foods-a survey. Crit.Rev. In Food Sci. and Nutri. 8:219.
Kinsella, J. E. 1976. Functional properties of proteins of food. CRC Rew. In Food Sci. and Nutri. 7:219-225.
Konno, A., Kimura, H., Nakagawa, T. and Harada, T. 1978. gel formation of curdlan. Nippon Nogei Kagaku, Kaishi, (in Japanese). 52:247-250.
Konno, A. and Harada, T. 1991. Thermal properties of curdlan in aqueous suspension and curdlan gel. Food Hydro. 5:427-434.
Konno, A., Okuyama, K., Koreeda, A., Harada, A., Kanazawa, Y. and Harada, T. 1994. Molecular association and dissociation in formation of curdlan gels. In K. Nishinari and E. Doi(Ed), Food Hydrocolloids, Structure, Properties, and Functions, Plenum Press. New York. pp.113-118.
Lee, C. M. 1984. Surimi process technology. Food Tech. 38:69-77.
Lee, I. Y., Seo, W., Kim, M. K., Park, C. and Park, Y. H. 1997. Production of curdlan using sucrose or sugar one molasses by two-stepfed-batch cultivation of agrobateriun species, Worls J. Micro. Bio. Bio.(4).180(4):255-322.
Lee, MH., Baek, MH., Cha, DS., Park, HJ. and Lim, ST. 2002. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydro. 16:345-352.
Lii, C. Y. and Chang, S. M. 1981. Characterization of red bean (Phaeolus radiatus var. Aurea) starch and its noodle quality. J. Food Sci. 46:78-81.
Maeda, M., Saito, I., Masada, H., Misaki, M. and Harada, T. 1967. Properties of gels formed by heat treatment of curdlan, a bacterial β-1, 3 glucan .Agric. Bio. Chem. 31:1184-1188.
Matsuhashi, T. 1990. Chapter 1 Agar. In Food Gels. P. Harris(Eds.) Elsevier Applied Science. New York. pp.1-52.
Miwa, M., Nakao, Y. and Nara, K. 1994. Food applications of Curdlan. In Food Hydrocolloids, Structures, Properties and Functions. K. Nishinari and E.Doi(Ed.). Plenum Press, New York. P.11-124.
Morris, V. J. 1986. Multicomponents gels. In “Gums and stabilizers for the Food Industry 3,1st Edition” G. O. Phillips, D.J. Wedlock and P.A. Willams(Ed.)Elsevier Applied Science, London and New York. p.87-99.
Nakao, Y., Taguchi, T., Konno, A., Tawada, T., Kasai, H., Toda, J. and Terasaki, M. 1991. Curdlan: Properties and application to foods. J. Food Sci. 56:769-776.
Nishinari, K., Hirashima, M., Miyoshi, E. and Takaya, T. 1998. ‘Rheological and DSC studies of aqueous dispersions and gels of cudlan’ in Gum and stabilizer for the Food Industry. 9, Williams. P. A., Philipps. G. O. EDS, pp. 26-23.
Post, R. C. 1997. Personal Communication. USDA Food Safety and Inspection Service, Washington, DC.
Pszcola, D.E. 1997. Curdlan differs from other gelling agents. Food Tech 51(4):30-36.
Pureglucan, TM Takeda-Kirin Brand Curdlan. Takeda-Kirin Food Corporation, Japan.
Rizzotti, R., Tilly, G. and Patterson, R. A. 1983. The use of hydrocolloids in the dairy industry. In gums and Stabilizers for the Food Industry. G. O. Phillips, D. J. Wedlock and P. A. Williams (Eds.). Pergamon Press, New York. pp.285-293.
Saito, H. 1981. Chap. 10. Conformation, dynamics, and gelation mechanism of gel-state (1→3)-β-D-glucans revealed by C-13 NMR. In Solution Properties of Polysaccharides ed. by Brant, D. A. USA. pp. 125-147.
Saito, H. 1992. Conformation and dynamics of (1-3) -β-D-glucans in the solid and gel state : high resolution solid-state C NMR spectroscopic study in Viscoelasticity of Biomaterials. Glasser, W. and Hatakeyama, H. eds, American Chemical Society, Washington, DC. USA, pp. 296-310.
Samant, S. K., Singhal, R. S., Kulkarni, P. R. and Rege, D. V. 1993. Protein-polysaccharide interactions : a new approach in food formulations. Inter. J. Food Sci. Tech. 28:547-562.
Seguchi, M. 1984. Oil-binding ability of heat-treated wheat starch. Cereal Chem. 61:248-250.
Seguchi, M. and Kusunose, C. 2001. Lipophilization of curdlan granules by heat-treatment or chlorination. Elsevier Food Hydro. 15:177-183.
Shimizu, J., Kudoh, K., Wada, M., Takita, T., Innami, S., Maekawa, A. and Tadokoro, T. 2002. Dietary curdlan suppresses dimethylydrazine -induced aberrant crypt foci formation in Sprangue-Dawley rat. Nutri. Res. 22:867-877.
Spicer, E. J. F., Goldenthal, E. I. and Ikeda, T. 1999. A Toxicological assessment of curdlan. Food and Chem. Toxicology. 37:455-479.
Stipanovic, A. J. and Giammatteo, P. J. 1989. ‘Curdlan and scleroglucan: NMR characterization of solution and gel properties’ in Polymers in Aqueous Media, Edward Glass, J, Ed. p.73-87.
Stipanovic, A. J., Giammatto, P. J. and Vasconcellos, S. R. 1987. Characterization and applications of viscoelastic solutions and water-soluble microbical polysaccharides. Poly. Mat. Sci. Eng. 57:260-264.
Su, H. S., Lu, W. and Chang, K. C. 1998. Microstructure and physiochemical characteristics of starches in six bean varieties and their bean paste products. Tech. 31:265-273.
Tada, T., Matsumoto, T. and Masuda, T. 1999. Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism and network structure of curdlan gels, Carbohy. Polym. 39:53-59.
Takashiro, F., Hideo, Y. and Yukihiro, N. 1998. Curdlan properties for application in fat mimetics for meat products. J. of Food Sci. 63:283-287.
Tako, M. and Hanashiro, I. 1997. Evidence for a conformational transition in curdlan. Pol. Gels and Networks. 5:241-250.
Thomas, W. R. 1997. Konjac gum. In “Thickening and Gelling Agent for Food, 2nd ed” Ed. Imeson, A. Blackie Academic and Professional, London, UK. P.169.
Tolstoguzov, V. B., Grinberg, V. Ya. and Gurov, A. N. 1985. Some physicochemical approaches to the problem of protein texturization. J. Agric. Food Chem. 33:151-159.
Tolstoguezov, V. B. 1991. Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydro. 4(6):429
Tye, R. J. 1991. Konjac flour properties and application. Food Tech. 45:82-85.
Usov, A. I. 1992. Sulfated polysaccharides of the red seaweeds. Food Hydro. 6:9.
Watase, M. and Nishinari, K. 1987. Rheological and thermal properties of carrageenan gels. Effect of sulfate content. Makromol. Chem. 188:2213-2221.
Xiong, Y. L. and Blanchard, S. P. 1993. Viscoelastic properties of myofibrillar protein-polysaccharide composite gels. J. Food Sci., 58:164-167.
Yamazawa, M. 1990. Effect of heating temperature on the structure and gel-reinforcing ability of starch granules in kamaboko-gel. Nippon Suisan Gakkaishi. 56:505.
Yoshida, T., Hattori, K., Sawada, Y., Choi, Y. and Uryu, T. 1996. Graft copolymerization of methyl methacrylate onto curdlan. J. of Polym. Sci., Part A: Polym. Chem. 34:3053-3060.
Zhang, H., Nishinari, K. and Ikeda, S. 2000. Hydrocolloid gels of polysaccharides and proteins, Current opinion in Colloid and Interface Sci. 5:195-200.
Zhang, H., Nishinari, K., Williams, M. A. K., Foster, T. J. And Norton, I. T. 2002. a molecular description of the gelation mechanism of curdlan. International J. of Bio.l Macromolecules. 30:7-16.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top