跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:於柏伸
研究生(外文):Bo-Shen Wu
論文名稱:牡蠣抽出物之抗氧化與其季節與產地之變動
論文名稱(外文):Antioxidative activity in extracts of oyster and the variations in season and cultured area
指導教授:邱思魁邱思魁引用關係
指導教授(外文):Tze-Kuei Chiou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:124
中文關鍵詞:牡蠣抗氧化
外文關鍵詞:oysterantioxidative activity
相關次數:
  • 被引用被引用:9
  • 點閱點閱:655
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討牡蠣肉之抽出條件、酵素水解及產地與季節變動對於抗氧化活性之影響。牡蠣原料經煮熟、均質及真空凍結乾燥製成乾物後作為實驗之用。包括熱水抽出、熱水抽出-乙醚處理、熱水抽出-80% 酒精處理、80% 酒精抽出及 80% 酒精抽出-乙醚處理等五組抽出條件,比較血紅蛋白催化亞麻油酸氧化抑制能力、α,α-diphenyl-β-picrylhydrazyl (DPPH) 自由基清除能力、還原力及亞鐵離子螯合能力等抗氧化活性。亞麻油酸過氧化抑制率、DPPH 清除力及亞鐵離子螯合能力均以熱水抽出組較高,還原力則各組間無明顯差異,顯示牡蠣抽出物中大分子物質亦具有抗氧化活性。
就酵素水解之影響,牡蠣肉乾物中分別加入消化酵素 (pepsin 及 trypsin) 及食品用酵素 (Prozyme 6、Protease A、Protease N、Flavourzyme、papain、Alcalase與Protamex) 等,並於37℃ 或50℃ 水解6及12小時,以 Prozyme 6、Protease A 及 Protease N 等三組水解液之抗氧化活性較高;其次進行水解時間 (0~12 小時) 的影響,以9小時水解為較佳的條件。
依據上述結果,經 Prozyme 6、Protease A 及 Protease N 等三種酵素水解9小時所得的水解液,以及水解液再經80%酒精沉澱處理所得低分子量區分 LMW-I 及 LMW-II 等製成乾物,亞麻油酸氧化抑制率以水解液組 (IC50 為 0.40~0.68 mg/mL) 較高,DPPH 清除力以 LMW-II 組 (IC50 為 0.97~1.34 mg/mL) 較高,還原力以 LMW-I 組 (IC50 為 2.24~3.45 mg/mL) 較高,而亞鐵離子螯合能力以水解液組 (IC50 為 0.37~0.71 mg/mL) 較高。較之分光法,以 HPLC 法分析 DPPH 清除力所得之 IC50 值低 20%~31%,可能原因為 DPPH 自由基被樣品作用後的產物在 517nm 下仍有吸光值。
牡蠣肉乾物熱水抽出液之抗氧化活性受季節與產地不同之影響大,尤其亞麻油酸過氧化抑制率,以彰化七月份樣品 (99.5%) 最高,而嘉義一月份樣品 (2.2%) 最低。整體上,以彰化產地牡蠣抗氧化活性高於嘉義產地;季節變動上則以春、夏兩季樣品的抗氧化活性較高。
This study investigates the antioxidative activity in oyster (Crassostrea gigas) meat in relation to the effects of extraction condition, enzymatic treatment, fractionation, and variation in season and cultured area. The specimens were cooked in boiling water, homogenized, and freeze-dired in vacuum to obtain a lyophilized meat powder as the sample for experiments. The extraction conditions including hot water (HW), HW-ether, HW-80% ethanol, 80% ethanol, and 80% ethanol-ether were used to prepare extracts from the meat sample. The extracts were then compared for the inhibition on hemoglobin-induced linoleic acid (C18:2) peroxidation, scavenging α,α-diphenyl-β-picrylhydrazyl (DPPH) radical, reducing power, and Fe2+-chelating effect. Among the five extracts, the HW extract exhibited a higher inhibition on C18:2 peroxidation, scavenging DPPH effect, and Fe2+-chelating effect. However, there was no significant difference in reducing power. The data showed that the high-molecular-weight substances in oyster meat extract also contributed to antioxidative activity.
To oyster meat powder, the digestive enzymes (pepsin and trypsin) and proteases from commercial sources (Prozyme 6, Protease A, Protease N, Flavourzyme, papain, Alcalase, and Protamex) were added and hydrolyzed at 37℃ or 50℃ for 6 and 12 hours. Among the enzymes used, the Prozyme 6, Protease A, and Protease N hydrolysates were relatively high in antioxidative activity. The effect of hydrolysis time (0-12 hours) by Prozyme 6, Protease A, and Protease N was examined further. The data showed that the hydrolysis is for 9 hours was a better condition..
Accordingly, the 9-hour hydrolysates of Prozyme 6, Protease A, and Protease N together with their low-molecule-weight fractions (LMW-I and LMW-II) separated by 80% ethanol extraction wereprepared and lyophilized to measure in antioxidative activity at different concentrations. In comparison, the hydrolysates were the highest in the inhibition on C18:2 peroxidation IC50 0.40~0.68 mg/mL and Fe2+-chelating effect IC50 0.37~0.71 mg/mL, LMW-IIs were the highest in scavenging DPPH effect IC50 0.97~1.34 mg/mL, and LMW-Is were the highest in reducing power IC50 0.37~0.71 mg/mL. The IC50 values of scavenging DPPH radical determined by HPLC method decreased by 20~31% as compared with that by photometric method. The difference might be due to a reaction product of DPPH radical after being scavened is absorbance at 517 nm , it maybe caused error on photometric method.
The oyster specimens collected from different seasons and cultured areas were also measured for antioxidative activity using their HW extracts. The antioxidative activities varied largely, Especially the inhibition on C18:2 peroxidation in Chang-Hua samples ranged from the highest in Jul. (99.5%) to the lowest in Jan. (2.2%). On the whole, the Chang-Hua sample than Chia-Yi sample, the sample in spring and summer than other seasons tended to be high in antioxidative activity.
中文摘要 I
英文摘要 III
目錄 V
壹、研究背景與目的 1
貳、文獻回顧 3
一、牡蠣之簡介 3
(一) 牡蠣之生態與養殖現況 3
(二) 化學成分與季節變化 6
二、蛋白質酵素水解物的性質與利用 8
(一) 抗氧化的功能 9
(二) 其他生理活性 10
三、影響蛋白質水解之因子 11
(一) 水解的方式 11
(二) 酵素的種類 12
(三) pH值與溫度 13
(四) 酵素濃度 14
(五) 其他 14
四、胜肽與胺基酸於腸道的吸收作用 14
(一) 細胞間路徑 15
(二) 細胞路徑 15
五、氧化作用與自由基 16
(一) 自由基的來源 16
(二) 氧化作用與生物體的關係 17
(三) 氧化作用與食品的關係 19
(四) 抗氧化劑 21
參、材料與方法 27
一、實驗原料 27
二、實驗方法 28
(一) 不同抽出條件對牡蠣抽出物抗氧化活性之影響 29
(二) 酵素水解對牡蠣抽出物抗氧化活性之影響 30
1. 酵素種類之影響 30
2. 水解時間之影響 31
3. 水解液及低分子量區分乾物不同濃度之抗氧化活性 31
(三). 離子交換樹脂層析分離 32
(四). 季節與產地不同之牡蠣抽出物抗氧化活性 33
三、分析方法 33
(一) 抗氧化活性測定 33
1. 抑制血紅蛋白催化亞麻油酸過氧化之能力 33
2. DPPH自由基清除能力測定 34
3. 還原力測定 34
4. 亞鐵離子螯合能力 35
(二) 可溶蛋白質含量測定 35
(三) 胺基含量測定 35
四、統計分析 35
肆、結果與討論 37
一、不同抽出條件對牡蠣抽出物抗氧化活性之影響 37
二、酵素水解對牡蠣抽出物抗氧化活性之影響 40
(一) 酵素種類之影響 40
(二) 水解時間之影響 45
(三) 水解液及低分子量區分乾物不同濃度之抗氧化活性 49
三、離子交換樹脂層析分離 52
四、季節與產地不同之牡蠣抽出物抗氧化活性 54
伍、結論 58
陸、參考文獻 59
柒、表 75
捌、圖 85
附表一、臺灣保健食品的分類 113
附表二、本實驗用酵素之性質一 114
附表三、本實驗用酵素之性質二 115
丁雲源。1995。貝類養殖(一)牡蠣。臺灣農家要覽漁業篇:241-244。豐年社。台北。
于名振。2001。動物系統分類綱要。水產出版社。基隆。
于守洋,崔洪彬。2003。新世紀保健食品全集。九州書局。台北。
王朝富。2002。電透析鹹鴨蛋蛋白液酵素水解物之抗氧化能力之探討。國立嘉義大學食品科學系碩士論文。嘉義。
江文章。1999。以薏仁為例談建立保健食品產業之策略。海峽兩岸健康食品研發及管理之現況與展望論文集,pp. 18-22。
巫文隆。1980。臺灣重要食用雙殼貝類研究。貝類學報,7:101-114。
吳蕙君。1998。魚貝類抽出物抗氧化性之探討。國立台灣海洋大學水食品科學系碩士學位論文。基隆。
林國泰。2005。蜆抽出物之抗氧化活性與其季節及產地之變動。國立台灣海洋大學水食品科學系碩士學位論文。基隆。
林瑞堂,蕭泉源,劉玉茹與邱思魁。2000。市售與生鮮牡蠣化學組成之差異。臺灣農業化學與食品化學,38:199-204。
林讚峰。1995。利用酵母菌生產麩胱甘肽的最新發展。製酒科技專論彙編,17:99-119。
涂汝祝。2003。日本鰻與歐洲鰻肌肽分解之差異及其對鰻肉抗氧化之
影響。國立台灣海洋大學食品科學系碩士學位論文。基隆。
孫寶年、翁秀貞與陳素功。1986。臺灣地區常見食用貝類圖說。行政院衛生署編制,正中書局。台北。
郭仁杰與陳鴻議。2000。牡蠣養殖經濟現況及投資人評估(上)。養魚世界,9:59-66。
陳志遠與陳孟仙。2003。臺灣地區之台西,七股及大鵬灣產牡蠣的鋅、銅、鎘及汞含量之探討。藥物食品分析,11:32-38。
陳孟仙。2001。牡蠣重金屬蓄積與食用安全性。漁業推廣工作專刊,19。
陳冠丞。2002。闊葉大豆(金門一條根)之抗氧化特性及其有效多酚類化合物之分離。國立台灣海洋大學食品科學系碩士學位論文。基隆。
陳紫媖、鄭金華、陳淳禎、柯惠青、蘇茂森與廖一久。1996。巨牡蠣Crassostrea gigas之受精及早期胚胎發育。水產研究,4(1):21-31。
曾吉偉。2001。酵素水解魚肉生產胜肽及其抗氧化特性之研究。國立台灣海洋大學食品科學系碩士學位論文。基隆。
漁業署。2004。中華民國臺灣地區漁業年報。台北。
蔡英亞、張英與魏若飛。1997。軟體動物貝類學概論。水產出版社。基隆。
蔡政霖。2004。台灣牡蠣養殖產業之經濟分析。國立台灣海洋大學水 產養殖學系碩士學位論文。基隆。
劉富光。2000。雲嘉南地區主要魚貝類繁養殖技術彙集。漁業輔導專刊:125-135。
劉怡青。2004。文蛤抽出物之抗氧化活性與其季節及產地之變動。國立台灣海洋大學食品科學系碩士學位論文。基隆。
顏國欽。1993。食品安全學。藝軒出版社。台北。
行政院衛生署。2004。食品添加物使用範圍及用量標準。
葉政霖。2002。鰺魚水解物中胜肽鑑定與降高血壓的效果。國立台灣海洋大學食品科學系碩士學位論文。基隆。
饒家麟與柯文慶。2001。鮪魚蒸煮液蛋白質水解物之抗氧化特性。臺灣農業化學與食品科學,39:363-369。
Abe, H. 1995. Histidine-related dipeptides: distribution, metabolism, and physiological function. In“Biochemistry and Molecular Biology of Fishes”, Vol. 4. Hochachka, P. W. and Mommsen, T. P.(Ed.), pp. 309-333, Elsevier, Amsterdam.
Alder-Nissen, J. 1986. Enzymatic hydrolysis of food proteins. Elsevier Applied Sci. Publ. London.
Azuma, N., Yamauchi, K. and Mitsuoka, T. 1984. Bifidus growth-promoting activity of a glycomacropeptide derived from human κ-casein. Agric. Biol. Chem. 48: 2159–2162.
Bauer, K. and Schulz, M. 1994. Biosynthesis of carnosine and related peptides by skeletal muscle cells cells in primary culture. Eur. J. Biochem. 219: 43-47.
Bishov, S. J. and Henick, A. S. 1972. Antioxidant effect of protein hydrolysates in freeze-dried model system. J. Food Sci. 37: 873-875.
Boldyrev, A. A., Stvolinsky, S. L., Tyulina, O. V., Koshelev, V. B., Hori, N. and Carpenter, D. O. 1997. Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell. Mol. Neurobiol. 17: 259-271.
Boldyrev, A., Dupin, A., Pindel, E. and Severin, S. 1988. Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89B(2): 245-250.
Branen, A. C. 1975. Toxicologes and biochemistry of BHA and BHT. JAOCS. 52: 59-63.
Brown, C. E. 1981. Interaction among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88: 245-256.
Brown, M. L. and Goldstein, J. L. 1983. Lipoprotein metabolism in the macrophage;implications for cholesterol deposition in atherosclerosis. Ann. Rev. Biochem. 52: 223-261.
Cadenas, E. 1995. Mechanisms of oxygen activation and reactive oxygen species detoxification. In Chapman and Hall (Eds.) Oxidative Stress and Antioxidant Defenses in Biology, pp: 1-61. New York. USA.
Calonge, M. L., Ilundain, A. and Bolufer, J. 1990. Glycyl-L-sarcosine transport by ATP-depleted isolated enterocytes from chicks. Am. J. Physiol. 259: 775-780.
Carbonneau, M. A., Leger, C. L., Descomps, B., Michel, E. and Monnier, L. 1998. Improvement in the antioxidant status of plasma and low-density lipoprotein in subjects receiving a red wine phenolics mixture. JAOCS. 75: 235-240.
Chen, H. M., Muramoto, K. and Yamauchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43: 574-578.
Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptides isolated from digests of a soybean protein. J. Agric. Food Chem. 44: 2619-2622.
Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46: 49-53.
Chen, H. M., Muramoto, K., Yamauchi, F., Ochi, H. and Nokihara, N. 1997. Characterization of antioxidative peptides from soybean. In Food Factors for Cancer Prevention, pp. 639-641. Eds. Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., Ypshikawa, T., Springer-Verlag, Tokyo.
Chung, Y. C., Kim, Y. S., Shadchehr, A., Garrido, A., Macgregor, I. L. and Sleisenger, M. H. 1979. Protein digestion and absorption and in human small intestine. . Gastroenterology 76: 1415-1421.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. I. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66: 1219-1227.
Corvol, P., Ewilliams, T. A. and Soubrier,F. 1995. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 248: 283-305.
Davies, M. B., Austin, J. and Partridge, D. A. 1991. Vitamin C: Its Chemistry and Biochemistry. Royal Society of Chemistry. Cambridge.
Decker, E., Crum, A. and Calvert, J. 1992. Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40: 756-759.
Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315, 161–169.
Diniz, E. M. and Martin, A. M. 1997. Effect of the extract of enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensm. Wiss. Technol. 30: 266-272.
Dίaz, M. and Decker, E. A. 2004. Antioxidant mechanisms of caseinophopeptides and casein hydrolysates and their application in ground beef. J. Agnic. Food Chem. 52: 8208-8213.
Fagbenro, O. and Jauncery. K. 1993. Chemical and nutritional quality of raw, cooked and salted fish silage. Food Chem. 48: 331-335.
Fasano, A. 1998. Innovative strategies for the oral delivery of drugs and peptides. Trend in Biotech. 16: 152-157.
Dziezak, J. D. 1986. Preservatives: antioxidant. Food Techol. 40: 94-102.
Fennema, O. R. 1985. “Food Chemistry”, 2nd ed. Marcel Dekker, Inc., New York.
Frankel, E. N. 1980. Lipid oxidation-review.Progress-in-Lipid-Research 19(1/2): 1-22.
Frokjaer, S. 1994.Use of hydrolysates for protein supplementation. Food Technol. 10: 86-88.
Gabriela V., Géraldine C., Inés B. A., Eduardo S. and Bertrand F. 2004. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch. Biochem. Biophys. 427: 197-203.
Gardner, M. L. G. 1984. Intestinal assimilation of intact peptides and proteins from the diet- a neglected field? Biol. Rev. Camb. Phil. Soc. 59: 289-331.
Genigeorgis, C. A. 1985. Microbial and safety implication of the use of modified atmospheres to extend the storage life of fresh meat and fish. J. Food Microbiol. 1: 237-251.
Gieseg, S. P., Cuddihy, S., Hill, J. V. and Davison, W., 2000. A comparison of vitamin C and E levels in two Antarctic and two temperate water fish species. Comp. Biochem. Physiol. 125B: 371-378.
Gildberg, A., Hermes, J. E. and Orejana, F. M. 1984. Acceleration of autolysis during fish sauce fermentation by adding acid and reducing the salt content. J. Sci. Food Agr. 35: 1363-1369.
Gildberg, A.1993. Enzymatic processing of marine raw materials. Process Biochem. 28: 1-15.
Gill, I., Lopez-Fandino, R., Jorba, X. and Vulfson, E. N. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microbial Technol. 18: 162-183.
Godfrey, T. and West, S. 1996. “Industrial Enzymoloy”. Macmillan Press, London.
Grace, P. A., 1994. Ischaemia-reperfusion injury. Brit. J. Surg. 81: 637–647.
Grimble, G. K. and Silk, D. B. Peptides in human nutrition. 1989. Nutr. Res. Rev. 2: 87.
Grisham, M. B. and Granger, N., 1989. Metabolic sources of reactive oxygen metabolites during oxidant stress and ischemia with reperfusion. Clin. Chest Med. 10: 71–81.
Halliwell, B. 1994. Free readicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 344: 721-724.
Halliwell, B., Murcia, M. A., Chirico, S. and Aruoma, O. I. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 35: 7-20.
Denham, H. 1956. Aging: a theory based on free radical and radiation cemistry. J. Gerontol. 11: 298-300.
Haki, G. D. and Rakshit, S. K. 2003. Developments in industrially important thermostable enzymes:: a review. Bioresource Technol. 89: 17-34.
Halliwell, B. 1991. Drug antioxidant effects. A basis fir drug selection? Drugs 42: 569-605.
Hartley, B. S. 1960. Proteolytic enzymes. Annu. Rev. Biochem. 29: 45-72.
Hausladen, A. and Alscher, R. G. 1985. Glutathione. Ch. 1. In Antioxidants in highter Plants, Alscher, R. G. and Hess, J. L. (Ed.), pp. 1-30. CRC PRESS, Inc., US.
Heather, J., Jane, C., Alizan, K., Joan, B., Rosalie, D. M. and John, C. H. 2003. Basic Science Review: Glutathione. ANZ J. Surg. 73: 517-522.
Hess, J. L. 1993. Vitamin E, α-Tocopherol. Ch. 5. In Antioxidants in Higher Plants Alscher, R. G. and Hess, J. L. (Ed.), pp. 111-134. CRC Press, Inc., US.
Higashi-Okai, K., Kanbara, K., Amano, K., Hagiwara, A., Sugita, C., Matsumoto, N. and Okai, Y. 2004. Potent antioxidative and antigenotoxic activity in aqueous extract of Japanese rice bran-association with peroxidase activity. Phytother. Res. 18: 628-633.
Hiromasa, Y., Akio, N., Noriko, N., Etsuo, N. and Hartmut, K. 1999. Oxidation of low density lipoprotein and plasma by 15-lipoxygenase and free radicals. Fed. Eur. Biochem. Soc. 445: 287-290.
Hwang, J. Y., Shue, Y. S. and Chang, H. M. 2001. Antioxidative activity of roasted and defatted peanut kernels. Food Res. Intern. 34: 639-647.
Höllt, V. 1983. Multiple endogenous opioid peptides. Trends Neurosci. 6: 24-26.
Imre, B., Ederlinda, C. P., Stéphanie, D., Laurent, B. F., Richard, H. S., Chahan, Y. and Bernard, A. G. 2002. Degradation of the coffee flavor compound furfuryl mercaptan in model fenton-type reaction systems. J. Agric. Food Chem. 50: 2356-2364.
Jeffrey, L. C. and Charles, S. C. 1996. Protein Engineering. Wiley-Liss.
Jeng, S. S., Hsu, S. Y. and Wang, G. S. 1979. Chemical composition of Taiwan’s oysters and clams. Bull. Inst. Zool., Academia Sinica 18: 1-10.
Ishikawa, Y. 1992. Development of new types of antioxidants from microbial origin. J. Jpn. Oil Chem. Soc. 41: 762-767.
Kakkar, P., Mehrotra, S. and Viswanathan P. N. 1998. Influence of antioxidants on the peroxidative swelling of mitochrondria in vitro. Cell Biol. Toxicol. 14: 313-321.
Kanner, J., German, J. B. and Kinsella, J. E. 1987. Intiation of lipid peroxidation in biological systems. CRC Crit. Rev. Food Sci. Nutr. 25: 317-363.
Kawashima, K., Itoh, H., Miyoshi, M. and Chibata, I. 1979. Antioxidant properties of branched-chain amino acid derivatives. Chem. Pharm. Bull. 27: 1912-1916.
Kehrer, J. P. 1993. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23: 21-48.
Kemal, K., Pearl, L. F., Rosita, K. O. and Andrew, L. S. 1987. Reductive inactivation of soybean lipoxygenase-1 by catecholo: A possible mechanism for regulation of lipoxygenase activity. Biochem. 26: 7064-7069.
Kloczewiak, M., Timmons, S., Lukas, T. J. and Hawiger, J. 1984. Platelet receptor recognition sites on human fibrinogen: synthesis and structure function relation ship of peptides corresponding to the carboxyterminal segment of the γ-chain. Biochem. 23: 1767-1774.
Korycka-Dahl, N. B. and Richardson, T. 1978. Activated oxygen species and oxidation of food constituents. CRC Crit. Rev. Food Sci. 10: 209-241.
Kowltovsky, A. J. and Vercesi, A. E. 1999. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26: 463-471.
Krishna, A. G. and Prabhakar, J. V. 1992. Effect of water activity on secondary products formation in autoxidizing methyl linoleate. JAOCS. 69: 178-183.
Kuo, J. M., Yen, D. B. and Pan, B. S. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47: 3206-3209.
Kyoichi, O., Minako, T., Shinichi, H., Masao, N., Shingo, N. and Michihiro, S. 2001. Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comp. Biochem. Physiol. Part C 128: 153-164.
Lahl, W. J. and Braun, S. D. 1994. Enzymatic production of protein hydrolysates for food use. Food Technol. 48: 68-71.
Lao, B. S., Sheng, G. Y., Fu, J. M., Wen, K. W., Zhang, G., Min, Y. S. and Li, K. C. 2000. Stability of fatty acids in stored oyster. Se Pu 18: 340-342.
Larson, R. A. 1988. The antioxidants of higher plant. Phytochem. 27: 969-978.
Lee, B. J., Hendricks, D. G. and Cornforth, D. P. 1998. Antioxidant effects of carnosine and phytic acid in a model beef system. J. Food Sci. 63: 394-398.
Levy, J. 1998. Immunonutrition: the pediatric experience. Nutri. 14: 641-647.
Linehan, L. G., O’Connor, T. P. and Burnell G. 1999. Seasonal variation in the chemical composition and fatty acid profile of Pacific oysters (Crassostrea gigas). Food Chem. 64;211-214.
Liu, F., Ooi V. E. C. and Chang S. T. 1997. Free radical scavenging activites of polysaccharide extracts. Life Sci. 60: 763-771l.
Lowery, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
Lugasi, A., Hovari, J., Dworschak, E., Neszlenyi, K., Lebovics, V. and Zsinkz, A. 1995. Effects of UV irradiation on lipid peroxidation in edible fats. ACTA Aliment. Hung. 24: 269-276.
Mackie, I. M. 1982. Fish protein hydrolysates. Process Biochem. 31: 26-31.
Mahmoud, M. I. 1994. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol. 48: 89-95.
Malamas, M. S., Carlson, R. P., Grimes, D., Howell, R., Claser, K., Gunawan, I., Nelson, J. A., Kanzelberger, M., Shah, U. and Hartman, D. A. 1996. Azole phenoxy hydroyureas as selective and orally active inhibitors of 5-lipoxygenase. J. Med. Chem. 39: 237-245.
Manley, C. H., McCann, J. S. and Swaine, R. L. 1981. The chemical bases of the taste and flavor enhancing properties of hydrolyzed protein. In ”The Quality of foods and Beverages”, pp. 1-61. Eds. Charalambous, G. and Inglett, G., Academic Press, Inc., New York.
Manley, C. H. and Ahmedi, S. 1995. The development of process flavors. Trends Food Sci. Tech. 6: 16-51.
Marie, L. G. and Erik, S. 1997. Effect of mucosal amino acids on SCC and Na and Cl fluxes in the porcine small intestine. Comp. Biochem. Physiol. 118: 233-237.
Masatomi, H., Satoshi, K., Masako, T., Haruhiko, T. and Isao, H. 2003. Effect of salinity change on free amino acid content in Pacific oyster. Fisheries Sci. 69: 395-400.
McDonagh, D. and FitzGerald, R. J. 1998. Production of caseinophosphopeptides(CPPs) from sodium caseinate using arrange of commercial protease preparations. Intern. Dairy J. 8: 39-45.
Migliore-Samour, D., Floch, F. and Jolles, P. 1989. Biologically active casein peptide implicated in immunomodulation. J. Dairy Res. 56: 357-362.
Min, D. B., Lee, S. H. and Lee, E. C. 1988. Singlet oxygen oxidation of vegetable oils. In “Flavor Chemistry of Lipid Foods”, Min, D. B. and Smouse, T. H. (Ed.), pp: 57-97. American Oil Chemists`Society, Champaign, U. S. A.
Minami, H., Morse, E. L. and Adibi, S. A. 1992. Characteristics and mechanism of glutamine-dipeptide absorption in human intestine. Gastroenterology 103: 3-11.
Mistry, B. S. and Min, D. B. 1992. Oxidized flavor compounds in edible oils. In “Off-Flavors in Foods and Beverages”, Charalambous, G. (Ed.), pp. 171-209. Elsevier, Amsterdam, the Netherlands.
Modlinger, P. S., Wilcox, C. S. and Aslam, S. 2004. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin. Nephrol. 24:354-65.
Moyer, M. S., Goodrich, A. L., Rolfes, M. M. and Suchy, F. H. 1988. Ontogenesis of intestinal taurine transport: evidence for a β-carrier in developing rat jejunum. Am. J. Physiol. 254: 870-877.
Nalwaya, N. and Deen, W. M. 2004. Peroxynitrite exposure of cells cocultured with macrophages. Ann. Biomed. Eng. 32: 664-676.
Namiki, M. 1990. Antioxidants/antiimutagens in foods. CRC Cr. Rev. Food Sci. 29: 273-300.
Neufeld, D. and Wright, S. 1996. Response of cell volume in mytilus gill to acute salinity change. J. Exp. Biol. 199: 473-484.
Ng T. B., He J. S., Niu S. M., Zhao L., Pi Z. F., Shao W. and Liu F. 2004. A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. J. Pharm. Pharmacol. 56: 537-545.
Obrosova, I. G., Fathallah, L. and Stevens, M. J. 2003. Taurine ounteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp. Neurol. 172: 211-219.
Orejana, F. M. and Liston, L. 1982. Agents of proteolysis and its inhibition in patis (fish sauce) fermentation. J. Food Sci. 47: 198-203.
Oyaizu, M. 1988. Antioxidative activities of browning productsof glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775.
Palma, J. M., Pastori, G. M., Bueno, P., Distefano, S. and Rio, L. 1997. Purification and properties of cytosolic copper, zinc superoxide distmutase from watermelon (citrullus vularis Scrad.) cotyledons. Free Rad. Res. 26: 83-91.
Patel, B. and Ganguly, A. K. 1973. Occurrence of 75 Se and 113 Sn in oysters. Health Phys. 24: 559-562.
Peña-Ramos, E. A. and Xiong, Y. L. 2003. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat sci. 64: 259-263.
Peterson, G. L. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal. Biochem. 100: 201-220.
Pietta, P. G. 2000. Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042.
Pihlanto-Leppälä, A. 2001. Bioactive peptide derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 11: 347-356.
Qiong, G., Baolu, Z., Shengrong, S., Jingwu, H., Jungai, H. and Wenjuan, X. 1999. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim. Biophys. Acta 1427: 13-23.
Quinn, P., Boldyrev, A. and Formazuyk, V. 1992. Carnosine: its properties, functions and potential therapeutic applications. Mol. Aspects Med. 13: 379-444.
Rankin, S. M., Parthasarathy, S. and Stcincerg, D. 1991. Evidence for a dominant role of lipoxygenase(s)in the oxidation of LDL by mouse peritoneal. J. Lipid Res. 32: 449-456.
Rebeca, B. D., Pena-Vera, M. T. and Diaz-castaneda, M. 1991. Production of fish protein hydrolysates with bacterial protease, yield and nutritional value. J. Food Sci. 56: 309-314.
Rendleman, J. A. 1987. Complexation of calcium by melanoidin and its role in determining bioavailability. J. Food Sci. 52: 1699–1705.
Roberto, A. B. and Claudio, C. F. 2004. Coffee Flavour: an overview. Flavour Fragr. J. 19: 99-104.
Saito, K., Jin, D. H., Ogawa, T., Muramoto, K., Hatakeyama. E., Yasuhara, T. and Nokihara, K. 2003. Antioxidative Properties of Tripeptide Libraries Prepared by the Combinatorial Chemistry. J. Agric. Food Chem. 51: 3668-3674.
Sakanaka, S., Tachibana, Y., Ishihara, N. and Juneja, L. R. 2004. Antioxidant activity of egg-yolk protein hydrolysates in a linoleic acid oxidation system. Food Chem. 86: 99-103.
Sanders, L M., Henderson, C. E., Hong, M. Y., Barhoumi, R., Burghardt, R. C., Carroll, R. J., Turner, N. D., Chapkin, R. S. and Lupton, J. R. 2004. Pro-oxidant environment of the colon compared to the small intestine may contribute to greater cancer susceptibility. Cancer Lett. 208: 155-61.
Shigenaga, M. K., Hagen, T. M. and Ames B. N. 1994. Oxidative damage and mitochondris decay in aging. Proc. Natl. Acad. Sci. 91: 10771-10778.
Silvestre, M. P. C. 1997. Review of methods for the analysis of protein hydrolysates. Food Chem. 60: 263-271.
Stadtman, E. R. 1992. Protein oxidation and aging. Science. 257: 1220-1224.
Suetsuna, K. 2000. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Mar. Biotechnol. 2: 5-10.
Tadatoshi. K., Shoichi, I., Yoko, M., Yasuko, U. M., Hideki, N., Yuji, N., Masahiko, T., Katsumi, T., Masatomo, W., Masashi, I., Hisao, M., Shigeo, T., Hiroyuki, K., Toshiro, H., Koichi, S. and Yasuo, K. 2004. Mammalian D-aspartyl endopeptidase: a scavenger for noxious racemized proteins in aging. Biochem. Bioph. Res. Co. 314: 730-736.
Takeshi, N. and Takakiyo, Y. 2003. Preparation and functional properties of beverages made from sea algae. Food Chem. 81: 327-332.
Thomas, H., Michael, C., Sonia, C. and Peter, S. 2001. Model Studies on the influence of coffee melanoidins on flavor volatiles of coffee beverages. J. Agric. Food Chem. 49: 2382-2386.
Toshikazu, Y., Yuji, N., Yasunari, M., Takaaki, F., Yoshio, B., Norimasa, Y. and Motoharu, K. 1999. Antioxidant properties of Crassostera gigas oyster extract. Antioxidant Food Supplements in Human Health. Academic Press. New York.
Tsugawa, N., Okano, T., Higashino, R., Kimura, T., Oshio, Y., Teraoka, Y., Igarashi, C., Ezawa, I. and Kobayashi, T. 1995. Bioavailability of calcium from calcium carbonate, DL-calcium lactate, L-calcium lactate and powdered oyster shell calcium in vitamin D-deficient or -replete rats. Biol. Pharm. Bull. 18: 677-682.
Tsuda, T., Fujii, M., Watanabe, M., Nakakuki, H., Ohshima, K., Osawa, T. and Kawakishi, S. 1994. Antioxidative activity of red bean extract and its application to food. Nippon Sho. Kog. Gak. 41(7): 475-480.
Velasquez Rodriguez, C. M., Uscategui Penuela, R. M. and Burgos Herrera, L. C. 2004. Lipid peroxidation and plasma vitamin E concentration in hypercholesterolemic children from Medellin (Colombia). An Pediatr. (Barc). 61(1): 16-22.
Whysner, J., Wang, C. X., Zang, E., Iatropoulos, M. J. and Williams, M. 1994. Dose response of promotion by butylated hydroxyanisole in chemically initiated tumours of the rat forestomach. Food Chem. Toxicol. 32: 215-222.
Wijewickreme, A. N., Kitts, D. D. and Durance, T. D. 1997. Reaction conditions influence the elementary composition and metal chelating of non-dialyzable model Maillard reaction products. J. Agric. Food Chem. 45: 4577–4583.
Wong, D. W. S. 1995. Food Enzymes: structure and mechanism. Chapman and Hall press. New York, USA.
Woo, R. A. and Poon, R. Y. 2004. Gene Mutations and Aneuploidy: The Instability that Causes Cancer. Cell Cycle 3.
Xiaojun, Y., Tadahiro, N. and Xiao, F. 1998. Antioxidative activities in some common seaweeds. Plant Food Hum. Nutr. 52: 253-262.
Yamaguchi, N., Yokoo, Y. and Fufimaki, M. 1979. Antioxidant activities of protein hydrolyzates. Nippon Shokuhin Kogyo Gakkaishi 26: 65-70.
Yamaguchi, T., Takamura, H., Matoba, T. and Terao, J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 62:1201-1204.
Yamashoji, S. and Kajimoto, G. 1980. Antioxidant effect of Gly-Gly-His on Cu(II)-catalyzed autoxidation and photosensitized oxidation of lipids. Agric. Biol. Chem. 44:2735-2736.
Yamauchi, K., Tomita, M., Giehl, T. J. and Ellison, R. T. 1993. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728.
Yang, C. Y., Dantzig, A. H. and Pidgeon, C. 1999. Intestinal peptide transport systems and oral drug availability. Pharma. Res. 16: 1331-1343.
Yen, G. C. and Chen, H. Y. 1995. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 43: 27-32.
Yee, J. J. Shipe, W. F. and Kinsella, J. E. 1980. Antioxidant effects of soy protein hydrolysates on copper-catalyzed methyl linoleic acid oxidation. J. Food Sci. 45: 1082-1083.
Yoshimichi, S., Masahiro, K., Ikumi, T., Makoto, K., Jun, W., Tateaki, W. and Akira, T. 1998. Bioorg. Med. Chem. 6: 841-848.
Yoshimura, Y., Iijima, T., Watanabe, T. and Nakazawa, H. 1997. Antioxidative effect of Maillard reaction products using glucose–glycine model system. J. Agric. Food Chem. 45: 4106–4109.
Yoshinaka, R., Sato, M., Tsuchiya, N. and Ikeda, S. 1983. Production of fish sauce by utilization of its viscera enzyme. Bull. Jap. Soc. Sci. Fish 49: 463-469.
Je, J. Y., Park, P. J. and Kim, S. K. 2004. Antioxidant activity of a peptide isolated from Alaska pollack(Theragra chalcogramma) frame protein hydrolysate. Food Res. Intern. 38: 45-50.
Zastawny, T. H., Dabrowska, M., Jaskolska, T., Klimarczyk, M. Kulinski, L., Koszela, A., Szczeniewicz, M., Sliwiniska, M., Witkowski, P. and Olinski, R. 1998. Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Rad . Biol. Med. 24: 722-725.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top