跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾方薇
研究生(外文):Fang-Wei Tzeng
論文名稱:利用訊號子空間投影法於高頻譜影像目標物之偵測
論文名稱(外文):Signal Subspace Projection Approach to Target Detection for Hyperspectral Images
指導教授:張麗娜張麗娜引用關係
指導教授(外文):Lena Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:導航與通訊系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:95
中文關鍵詞:高頻譜衛星影像訊號子空間投影法Wiener濾波器雜訊子空間投影法
外文關鍵詞:Hyperspectral imageSignal subspace projectionWiener filter
相關次數:
  • 被引用被引用:3
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
高頻譜衛星影像具有大量的頻譜資訊,提供了更精確的物體辨識,比其他類型的遙測影像資料更為豐富,因此廣泛的應用於偵測與地圖顯示的辨識上,像是地質學,大氣學、生態學、以及農業學等方面。但高頻譜影像的高解析度,相對的要處理的資料量也變的相當的龐大。如何在這樣龐大的資料量裡,能夠正確的達到目標物辨識,就變得相當重要。本論文針對高頻譜影像的資料模式做一簡單的分析,並提出一個結合訊號子空間投影法與部分濾波法來偵測目標物。
本論文首先取得影像資料頻帶間的相關性,利用此關聯性,將頻帶切割為數個群組,並提出以部分濾波器的合成方法來取代原本的濾波器偵測。接著,我們將部分濾波法結合訊號子空間投影法,藉由訊號與雜訊之分離,來抑除雜訊干擾,以提升目標物偵測之效能。
由模擬的結果顯示本論文所提之結合訊號子空間投影法與部分濾波法,除了可以改善高頻譜影像偵測之運算複雜度,也可以提高目標物偵測之效能。與現有的目標物偵測法,如Wiener濾波法或是雜訊子空間投影法比較,本論文所提之方法即使對於非訓練影像都有極佳的偵測效能。
關鍵字:高頻譜衛星影像、訊號子空間投影法、Wiener濾波器、雜
訊子空間投影法
Abstract

As new sensor technology has emerged over the past few years, hyperspectral images with hundreds of bands have become available. Increasing the number of spectral bands potentially provides more information and offers a better spectral resolution. Therefore, hyperspectral images have been extensively applying to target detection and classification. The positive effect of high resolution provided by hyperspectral imagery is diluted by the huge computations required in the data processing. One of the major issues of hyperspectral image classification is how to improve the accuracy of target detection with less computation complexity. In the thesis, we propose a novel classifier to detect and extract target signatures in unknown background by signal subspace projection (SSP) approach. The SSP-based classifier can be implemented as an adaptive filter combined by some partial filters.
We first analyze the correlations between the hyperspectral image bands. Some bands with highly correlated features are grouped into a small set. By the way, the hyperspectral image is partitioned into several groups. We then design a partial filter to extract the corresponding signatures for each image group by signal subspace projection approach. The SSP partial filter can be designed to extract or detect target signatures for each image group without no priori knowledge of signatures or background required. Finally, the SSP partial filters are combined to be a target detector, called a combined SSP partial filter (CSSPF). Simulations validate the proposed CSSPF can eliminate the interference efficiently and improve the accuracy of the target detection with less computation complexity than conventional target detection schemes. Generally, the proposed detector requires only 1/K2 computations of conventional Wiener filter, if image is partitioned into K groups.

Keyword :Hyperspectral image、Signal subspace projection、Wiener
filter。
目錄
第一章 緒論.........................................11
1.1 簡介............................................11
1.2 研究背景與動機 .................................13
1.3 各章節內容概述 ...............................16
第二章 高頻譜影像簡介...............................17
2.1高頻譜影像簡介...................................17
2.2 AVIRIS 概念.....................................21
第三章 高頻譜影像資料模式及基本原理簡介.............27
3.1 線性混合模型....................................27
3.2 目標物偵測法之簡介..............................29
3.3 電腦模擬........................................37
第四章結合訊號子空間投影法和部份濾波之目標物偵測法..39
4.1 部份濾波法......................................40
4.2 訊號子空間投影法於目標物之偵測..................44
4.3 多目標特徵之目標物偵測..........................48
4.4 結合訊號子空間投影法和部份濾波偵測法............53
4.5 電腦模擬........................................55
4.6 討論............................................88
第五章 結論與建議...................................90
參考文獻............................................92
[1] P. Swain and S. Davis, Ed., Remote Sensing: The Quantitative Approach. New
York: McGraw-Hill, 1983.
[2] A. S. Mazer, M. Martin et al., “Image Processing Software for Imaging
Spectrometry Data Analysis,” Remote Sensing Environ, Vol. 24, No. 1, pp.
201 – 210, 1988.
[3] J. B. Lee, A. S. Woodyatt, and M. Berman, “Enhancement of High Spectral
Resolution Remote Sensing Data by a Noise-Adjusted Principal Components Transform,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, Vol. 28, pp. 295 – 304, May 1990.
[4] Joseph C. Harsanyi, and Chein-I Chang, “Hyperspectral Image Classification an-
d Dimensionality Reduction: An Orthogonal Subspace Projection Approach,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, Vol. 32, No. 4, pp. 779-785, July 1994.
[5] Qian Du, Hsuan Ren, and Chein-I Chang, “A Comparative Study for Orthogonal
Subspace Projection and Constrained Energy Minimization,” IEEE TRANSAC-
TIONS ON GEOSCIENCE AND REMOTE SENSING, Vol. 41, No. 6, pp. 1525
-1529, June 2003.
[6] Te-Ming Tu, Chin-Hsing Chen, and Chein-I Chang, “A Noise Subspace Project-
ion Approach to Target Signature Detection and Extraction in an Unknown Ba-
ckground for Hyperspectral Images,” IEEE TRANSACTIONS ON GEOSCIE-
NCE AND REMOTE SENSING, Vol. 36, No. 1, pp. 171-181, January 1998.
[7] Palph O. Schmidt, “Multiple Emitter Location and Signal Parameter
Estimation”, IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION, Vol. AP-34, No. 3, pp. 276-280, March 1986.
[8] R. Birk, T. McCord, “Airborne Hyperspectral Sensor Systems.” Proc. of 47th
National Aerospace and Electronics Conference, Dayton OH, 1994.
[9] W. Porter, H. Enmark. “A System Overview of The Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS),” Proc. SPIE, Vol. 834, pp. 22, 1987.
[10] A. Goetz, G. Vane, “Imaging Spectrometry of Earth Remote Sensing”, et. al.,
Science, Vol. 228, No. 4704, pp.1147, 1985.
[11] Birk, R.J.; McCord, “Airborne Hyperspectral Sensor System” T.B.; IEEE AES
Magazine, Volume 9, Issue 10, pp.26 – 33, October 1994.
[12] http://aviris.jpl.nasa.gov
[13] Simon Haykin, Adaptive Filter Theory, Prentice-Hall, Inc. Fourth Edition,.2002
[14] Van Veen, B.D.; Buckley, Kevin M. Buckley, “Beamforming: A Versatile
Approach to Spatial Filtering,” IEEE ASSP Magazine, Vol. 5, No. 2, pp. 4 – 24, April 1988.
[15] Lena Chang and C.C Yeh, “Performance of DMI and Eigenspace-Based
Beamformers”, IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION, Vol. 40, No. 11, pp. 1336 – 1347, Nov. 1992.
[16] Yoram Bresler, Vellenki Umapathi Reddy, Thomas Kailath, “Optimum
Beamforming for Coherent Signal and Interference,”IEEE TRANSACTIONS
ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Vol. 36, No. 6,
pp. 883-843, June 1988.
[17] Lena Chang, and C.C. Yeh, “The Effect of Random Steering Vector Errors in
the Eigenspace-based Beamformer.” IEEE TRANSACTION ON
ANTENNAS AND PROPAGATION, Vol. 41, No. 8, pp. 1045-1056, Aug.
1993

[18] K. M. Buckley, “Spatiallspectral Filtering With Linearly Constrained
Minimum Variance Beamformers,” IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Vol. 35, No. 3, pp.
249 – 266, March 1987.
[19] Jung-Lang Yu and Chien-Chung Yeh , “Generalized Eigenspace-Based Beamformers”, IEEE TRANSACTIONS ON SIGNAL PROCESSING, Vol.
43, No. 11, November 1995.
[20] Mati Wax and Thomas Kailath, “Detection of Signals by Information Theoretic Criteria” IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Vol. ASSP-33, No. 2, pp. 387-392, April
1985.
[21] Andrew Barron, Jorma Rissanen, and Bin Yu, “The Minimum Description Length Principle in Coding and Modeling”, IEEE TRANSACTIONS ON
INFORMATION THEORY, Vol. 44, No. 6, October 1998.
[22] Liu, Y.; Soraghan, J.J.; Durrani, T.S., “Detection of Number of Harmonics by Maximum Eigenvalue Varied rate Criteria,” proc. of ICASSP-90, Vol. 5, pp.
2543 – 2546, April 1990.
[23] D. Landgrebe, “Hyperspectral image data analysis”, IEEE SP Magazine, Vol. 19, Issue 1, pp. 17-28, Jan. 2002.
[24] Xiuping Jia, J.A. Richards, “Segmented Principal Components
Transformation for Efficient Hyperspectral Remote-Sensing Image
Display and Classification”, IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING, Vol. 37, Issue 1,pp. 538-542,Jan. 1999.

[25] P. Comon, “Independent Component analysis , A New Concepts? ”, Signal Processing Vol. 36,No.3,Special issue on High-Order Statistics, Apr. 1994
[26] A Hyvarinen, “Survey on Independent Component Analysis”, Neural
Computing Surveys , Vol. 2,pp. 94-128, 1999.
[27] G Vane et al., “The airborne visible/infrared imaging spectrometer
(AVIRIS)”, Remote Sensing Environment, Vol. 44,No. 2/3,pp.
127-143, May/June 1993.
[28] N. Keshava, J.F. Mustard, “Spectral Unmixing”, IEEE SP Magazine, Vol. 19,
Issue 1, pp. 44-57, Jan. 2002
[29] S. Kaewpijit, J Le Moigne, T. El-Ghazawi, “Automatic Reduction of
Hyperspectral Imagery Using Wavelet Spectral Analysis”, IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, Vol. 41,
Issue 4,pp. 863-871,Apr. 2003
[30] R. A. Schowengerdt, “Remote Sensing – Model and Methods for Image
Processing”, 2nd edition, Academic Press.
[31] C. Elachi, “Introduction to Physics and Techniques of Remote Sensing”, a
Wiley- Interscience Publication, John Wiley & Sons.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top