跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳炳承
研究生(外文):Bin-Chen Wu
論文名稱:超空化彈體之數值模擬
論文名稱(外文):Numerical Simulation of Supercavitating Projectile
指導教授:陳建宏陳建宏引用關係辛敬業辛敬業引用關係
指導教授(外文):Jiahn-Horng ChenChing-Yeh Hsin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:162
中文關鍵詞:超空化彈體空泡結尾模型邊界元素法水彈道
外文關鍵詞:supercavitating projectilecavity termination modelboundary element methodhydroballistics
相關次數:
  • 被引用被引用:3
  • 點閱點閱:466
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本研究的模擬對象是軸對稱彈體的超空化流場,並嘗試在一廣義的空化係數下進行空化空泡的計算,主要是預測其形狀,包括無攻角之軸對稱問題以及有攻角之三維非軸對稱問題。
對於空化流場模擬而言,因為空泡形狀未知,為解的一部份,因此問題為非線性,需要迭代求解。在本論文中我們假設一穩定、無旋性、無熱傳遞、無黏性且不可壓縮之勢流場來模擬片狀空泡的彈體流場,然後運用低階勢基小板法來求解。除了預測外形的迭算,由於在勢流場中並無法決定空泡長度與空化係數的關係,所以針對這個問題,我們還必須在設定的空化係數下迭算空泡長度,因此是屬直接法。片狀空化空泡尾緣的真實流況相當複雜,本研究也將對這些現象加以了解,為了盡量滿足物理現象,並在數學上求得惟一解,我們採用等切速度結尾模型,也將稍加探討文獻上現存之數種結尾模型。
最後我們發現超空化彈體在模擬上會在結尾附近產生異常大的源流分佈導致發散,而在空泡前緣也出現異常的厚度增加量使得空泡外形出現凹陷,所以本研究也將針對這些問題進行修正。
This thesis focused on the simulation of the supercavitating flow field of an axisymmetric projectile. We attempted to compute the cavity at a cavitation number based on cavity pressure, and mainly focused on their bubble shape due to the axisymmetric problem with zero angle of attack and the three-dimensional non-axisymmetric problem with an angle of attack.
In the flow field simulation, because the shape is part of the solution, the problem is nonlinear; it needed an iteration procedure for solution. We assumed that the flow field is steady, irrotational, without heat transfer, inviscid and incompressible. Under these assumptions, the simulation of the sheet bubble becomes a potential flow problem, and then we applied a low-order panel method to solve its shape and flow field. In addition to the iterations for predicting the shape, we had to iterate directly the cavity length with fixed cavitation number, due to the fact that the relation between cavity length and the cavitation number cannot be explicitly expressed. The phenomenon at the bubble tail is very complicated; we simply use the constant tangential velocity termination closure model for satisfying the uniqueness of the physical and mathematical solution.
Finally, we found an unusual source distribution at the cavity tail and the front of bubble in the simulation, the former caused the convergence in the computations and the later made for an uneven shape. Therefore the present work would discuss the improved approaches against these problems.
中文摘要.........................................................................................................................i
英文摘要........................................................................................................................ii
謝誌...............................................................................................................................iii
目錄...............................................................................................................................iv
表目錄..........................................................................................................................vii
圖目錄.........................................................................................................................viii
第一章 緒論................................................................................................................1
1.1 空化流場研究回顧........................................................................................1
1.2 邊界元素法與其空化流場的應用................................................................5
1.3 空化流場數值方法新發展..........................................................................11
1.4 入水空泡的研究..........................................................................................13
第二章 水翼與彈體空化流場..................................................................................20
2.1 空化現象的種類..........................................................................................20
2.2 真實的空化流場現象..................................................................................23
2.3 模擬空化空泡..............................................................................................33
2.4 結尾模型......................................................................................................32
2.5 穿水通氣空泡..............................................................................................42
2.6 研究目標......................................................................................................44
第三章 理論方程式與數值方法..............................................................................45
3.1 理論方程式..................................................................................................45
3.2.1 基本假設..............................................................................................45
3.2.2 統御方程式..........................................................................................46
3.2.3 邊界條件..............................................................................................48
3.2 邊界元素法..................................................................................................53
3.2.1 格林第三恆等式..................................................................................53
3.2.2 離散方程式..........................................................................................54
3.2.3 影響係數..............................................................................................57
3.2.4 離散化邊界條件..................................................................................60
3.3 空泡形狀計算..............................................................................................61
第四章 計算結果與討論..........................................................................................67
4.1 無空化彈體流場..........................................................................................67
4.2 軸對稱超空化彈體流場..............................................................................70
4.2.1 收斂條件與結尾現象..........................................................................70
4.2.2 修正結尾模型......................................................................................74
4.2.3 空泡前緣修正......................................................................................80
4.2.4 SCVA程式結構...................................................................................83
4.2.5 解之存在性、惟一性與一致性..........................................................86
4.2.6 流場模擬結果......................................................................................90
4.2.6.1 彈體幾何的影響..................................................................90
4.2.6.2 空化係數的影響..................................................................92
4.2.6.3 收斂之空泡外形與壓力分佈..............................................94
4.2.6.4 不同空泡起始點與彈頭濕表面形狀的影響......................98
4.3 非軸對稱超空化彈體流場........................................................................101
4.3.1 首尾解一致條件................................................................................101
4.3.2 空泡外形問題....................................................................................103
4.3.3 CFL條件與橫向流分佈問題............................................................105
第五章 結論與建議................................................................................................108
參考文獻...................................................................................................................110
附錄A 超空化武器發展現況................................................................................120
附錄B 空化與通氣現象........................................................................................124
附錄C 水彈道導論................................................................................................127
附錄D 數學基礎....................................................................................................134
D.1 格林恆等式........................................................................................134
D.2 奇異點................................................................................................140
D.3 多連通計算域....................................................................................144
D.4 存在性、惟一性與一致性................................................................146
附錄E 二維影響係數.............................................................................................150
附錄F 二維空泡形狀計算.....................................................................................154
附錄G SCAV程式使用手冊.................................................................................157
G.1 輸入檔說明........................................................................................157
G.2 執行過程............................................................................................159
G.3 輸出檔說明........................................................................................162
G.4 範例....................................................................................................162
Ashley, S., 2001, “Warp drive underwater”, Scientific American, 284, 5, May, 70-79.
Bal, S., 1999, “A potential based panel method for 2-D hydrofoil”, Ocean Engineering, 26, 343-361.
Bal, S., S. Kinnas, and H. Lee, 2001, “Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface”, Journal of Ship Research, 45, 1, 34-49.
Banerjee, P. K., and L. Morino, 1990, Developments in boundary element methods -6: Boundary element methods in nonlinear fluid dynamics, Elsevier applied science, London and New York.
Birkhoff, G., and E.H. Zarantonello, 1957, Jets, wakes, and cavities, Academic Press, New York.
Brennen, C. H., 1969, “A numerical solution of axisymmetric cavity flows”, Journal of Fluid Mechanics, 37, part 4, 671-688.
Brennen, C. H., 1995, Cavitation and bubble dynamics, Oxford, New York.
Chahine, G. L., and C.-T. Hsiao, 2000, “Modelling 3D unsteady sheet cavities using a coupled UnRANS-BEM code”, Proceedings of the 23rd ONR Symposium on Naval Hydrodynamics.
Chen, J.-H., and Y.-C. Weng, 1999, “Analysis of flow past a two-dimensional supercavitating hdrofoil using a simple closure model”, Proceedings of the National Science Council, ROC, 23, 411-418.
Chen, J.-H., and B.-C. Wu, 2003, “Effects of different closure models on the development of supercavitating bubbles”, American Society of Civil Engineers 16th engineering mechanics conference, Seattle, USA.
Chuang, J.-M., and W. Zhu, 2004, “Theory for predicting CPF Bow-Flare Impulsive loads”, Contract report, Defense Research and Development Canada.
Dang, J., and G. Kuiper, 1999a, “Re-entrant jet modeling of partial cavity flow on two-dimensional hydrofoils”, Journal of Fluid Engineering, 121, 773-780.
Dang, J., and G. Kuiper, 1999b, “Re-entrant jet modeling of partial cavity flow on three-dimensional hydrofoils”, Journal of Fluid Engineering, 121, 781-786.
Dobrovol’skaya, Z.N., 1969, “On some problems of similarity flow of fluid with a free surface”, Journal of Fluid Mechanics, 36, part 4, 805-829.
Doctors, L.J., 1986, “Effects of a finite froude number on a supercavitating hydrofoil”, Journal of Ship Research, 30, 1-11.
Faltinsen, M.O., 2002, “Water entry of a wedge with finite deadrise angle”, Journal of Ship Research, 46, 1, 39-51.
Fine, N.E., and Kinnas S.A., 1993, “A boundary element method for the analysis of the flow around 3-D cavitating hydrofoil”, Journal of Ship Research, 37, 3, 213-224.
Franc, J. P., 2001, “Partial cavity instabilities and re-entrant jet”, Proceedings of Fourth International Symposium on Cavitation (CAV2001), lecture.002, California, USA.
Freeman, H.B., 1942, “Calculated and observed speeds of cavitation about two- and three- dimensional bodies in water”, David Taylor Model Basin.
Frolov, V.A., 2003, “High-speed compressible flows about axisymmetric bodies”, Proceedings of the fifth international symposium on cavitation (CAV2003), Cav03-OS-7-004, Osaka, Japen.
Fu, H.-P., C.-J. Lu, and L. Wu, 2005, “Research on characteristics of flow around cavitating body of revolution”, Journal of hydrodynamics, 20, 1, 84-89. (in Simple Chinese)
Furuya, O., 1975a, “Nonlinear calculation of arbitrarily shaped supercavitating hydrofoils near a free surface”, Journal of Fluid Mechani., 68, 21-44.
Furuya, O., 1975b, “Three-dimensional theory on supercavitating hydrofoils near a free surface”, Journal of Fluid Mechanics, 68, 339-359.
Garabedian, P.R., 1955, “Calculation of axially symmetric cavities and jets”, Pacific journal of Mathematics, 6, 611-684.
Gaudet, S., 1998, “Numerical simulation of circular disks entering the free surface of a fluid”, Physical of Fluids, 10, 10, 2489-2499.
Gilbarg, D., and R.A. Anderson, 1948, “Influence of atmospheric pressure on the phenomena accompanying the entry of sphere into water”, Journal of Applied Physics, 19, 2, 127-139.
Grady, R.J., 1979, Hydroballistics design handbook: Volume I, Naval Sea Systems Command Hydromechanics Committee, SEAHAC TR 79-1, U.S.
Greenhow, M., 1987, “Wedge entry into initially calm water”, Applied Ocean Research, 9, 4, 214-223.
Greenhow, M., and S. Moyo, 1997, “Water entry and exit of horizontal circular cylinders”, Philosophical Transactions of the Royal Society of London, 355, 551-563.
Hajime, K., 2004, “Numerical modeling of flow in water entry of a wedge”, National Defense Academy, Yokosuka, Japan.
Harkins, T.K., 2001, “Hydroballistics: development, theory and some test results”, www.dtic.mil/ndia/2001gun/Harkins.pdf .
Hess, J.L., and A.M.O. Smith, 1964, “Calculation of nonlifting potential flow about arbitrary three dimensional bodies”, Journal of Ship Research, 8, 2, 22-44.
Howison, S., J. Ockendon, and S. Wilson, 1991, “Incompressible water-entry problems at small deadrise angles”, Journal of Fluid Mechanics, 222, 215-230.
Hrubes, J.D., 2001, “High-speed imaging of supercavitating underwater projectiles experiments in fluids”, Experiments in Fluids, 30, 1, 57-64.
Hunt, B., 1979, “The mathematical basis and numerical principles of the boundary integral method for incompressible potential flow over 3-D aerodynamic configurations”, Aerodynamics department document, British Aerospace, Warton.
Hsin, C.-Y., 1990, “Development and analysis of panel methods for propellers in unsteady flow”, PhD thesis, Massachusetts Institute of Technology, U.S., Sept.
Hsin, C.-Y., Y.-Z. Kehr, and C.-Y. Lu, 1996, “Calculations of the surface piercing hydrofoils by using a boundary element”, Hydrodynamics, Balkema, Rotterdam, 145-150.
Ingber, M.S., and C.E. Hailey, 1991, “Numerical approach for modeling cavitating flows”, Proceedings of the 1st International Conference on Computational Modeling of Free and Moving Boundary Problems, Southampton, England.
Ingber, M.S., and C.E. Hailey, 1991, “Numerical modeling of cavities on axisymmetric bodies at zero and none-zero angle of attack”, International Journal for Numerical Methods in Fluids, 15, 3, 251-271.
Jenkins, A.K., 2003, “The rapid airborne mine clearance system ( RAMICS ) approach to entering flight test”, 2003 Gun, Ammunition, and Missiles Symposiums & Exhibition, www.dtic.mil/ndia/2003gun/ .
Katz, J., and A. Plotkin, 1991, Low-speed aerodynamics: from wing theory to panel method, McGraw-Hill, New York.
Kehr, Y.-Z., M.-C. Lee, and S.-Y. Wang, 2004, “Experiment on resistance of a supercavitating submerged body”, Journal of Taiwan Society of Naval Architects and Marine Engineers, 23, 1, 31-38. (in Ordinary Chinese)
Kinnas, S.A., and N.E. Fine, 1993, “A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils”, Journal of Fluid Mechanics, 254, 151-181.
Korobkin, A., 1999, “Shallow-water impact problems”, Journal of Engineering Mathematics, 35, 233-250.
Kirschner, I., B. Rosenthal, and J. Uhlman, 2003, “Simplified dynamical system analysis of supercavitating high-speed bodies”, Proceedings of the fifth international symposium on cavitation (CAV2003), Cav03-OS-7-005, Osaka, Japen.
Krishnaswamy, P., 2000, “Flow modeling for partially cavitating hydrofoils”, PhD thesis, Technical University of Denmark, Denmark.
Krishnaswamy, P., P. Andersen, and S.A. Kinnas, 2001, “Re-entrant jet modeling for partially cavitating two-dimensional hydrofoils”, Proceedings of Fourth International Symposium on Cavitation (CAV2001), sessionB1.005, California, USA..
Kulkarni, S.S., and R. Pratap, 2000, “Studies on the dynamics of a supercavitating projectile”, Applied Mathematics Modelling, 24, 113-119.
Kunz, R.F., T.S. Chyczewski, D.A. Boger, D.R. Stinebring, and H.J. Gibeling, 1999, “Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodied”, Proceeding of 3rd ASME/JSME joints Fluids Engineering Conference, ASME Paper FEDSM99-7364, California, USA.
Kunz, R.F., J.W. Lindau, M.L. Billet, and D.R. Stinebring, 2001, “Multi-phase CFD modeling of developed and supercavitating flows”, RTO AVT/VKI special course: supercavitating flows.
Lindau, J.W., R.F. Kunz, D.A. Boger, D.R. Stinebring, and H.J. Gibeling, 2002, “High Reynolds number, unsteady, multiphase CFD modeling of cavitating flows”, Journal of Fluids Engineering, 124, 3, 607-616.
Lang, G., 2002, Raising the Kursk, Discvery channel Inc.
Lee, C.-S., Y.-G. Kim, and J.-T. Lee, 1992, “A potential-based panel method for the analysis of two-dimensional super- or partially-cavitating hydrofoil”, Journal of Ship Research, 36, 168-181.
Lee, M., R.G. Longoria, and D.E. Wilson, 1997, “Cavity dynamics in high-speed water entry”, Physical of Fluids, 9, 3, 540-550.
Lee, M., 2003, “On the water-entry-induced cavity closure for a wide range of entry speed”, Journal of Fluid Engineering (technical brief), 125, 927-930.
Lin, M.-C., and T.-Y. Ho, 1994, “Water-entry for a wedge in arbitrary water depth”, Engineering Analysis with Boundary Elements, 14, 179-185.
Lemonnier, H., and A. Rowe, 1988, “Another approach in modeling cavitating flows”, Journal of Fluid Mechanics, 195, 557-580.
Lewis, E.V., 1988, Principles of naval architecture 2, the Society of Naval Architects and Marine Engineers, NJ.
Liu, J.-B., C.-R. Xiao, and X.-L. Zheng, “Numerical computation of cavitating flow around axisymmetric bodies”, Journal of naval university of engineering, 16, 4, 4-7. (in Simple Chinese)
Meade, A., and M. Kokkolaras, 1997, “Enhancement of a viscous-inviscid-interaction airfoil analysis code using the parallel direct search algorithm”, Mathematical and Computer Modelling, CRPC-TR96711-S.
Mei, X., Y. Liu, and D. Yue, 1999, “On the water impact of general two-dimensional sections”, Applied Ocean Research, 21, 1-15.
Miloh, T., 1991, “On the initial-stage slamming of a rigid sphere in a vertical water entry”, Applied Ocean Research , 13, 1, 43-48.
Mogel, T.R., and R.L. Street, 1974, “A numerical method for steady-state cavity flow”, Journal of Ship Research, 18, 22-31.
Moran, J., 1984, An introduction to theoretical and computational aerodynamics, John Wily & Sons, New York.
Nennstiel, R., 1999, How do bullets fly, Pfingsbornstr. 33, D65207 Wiesbaden, Germany, http://www.povn.com/~4n6/bullfly.zip .
Oliver, J.M., 2002, “Water entry and related problems”, PhD thesis, St Ann’s College, University of Oxford, U.S.
Rand, R., R. Pratap, D. Ramani, J. Cipolla, and I. Kirscher, 1997, “Impact dynamics of a supercaitating underwater projectile”, Proceedings of the 1997 ASME Design Engineering Technical Conferences (DETC 97) , Sacramento, CA.
Rowe, A., and O., Blottiaux, 1993, “Aspects of modeling partially cavitating flows”, Journal of Ship Research, 37, 34-48.
Salvatore, F., and P.G. Esposito, 2001, “An improved boundary element analysis of cavitating three-dimensional hydrofoils”, Proceedings of Fourth International Symposium on Cavitation (CAV2001), sessionB1.006, California, USA.
Savchenko, Y.N., 2001, “Supercavitation - problems and perspectives”, Proceedings of Fourth International Symposium on Cavitation (CAV2001), lecture.003, California, USA.
Savineau, C., and S. Kinnas, 1995, “A numerical formulation applicable to surface piercing hydrofoils and problems”, 24th American Towing Tank Conference, College Station, TX.
Senocak, I., and W. Shyy, 2001, “A pressure-based method for turbulent cavitating flow computations”, 31st AIAA Fluid Dynamics Conference & Exhibit, Anaheim, AIAA2001-2907, CA.
Serebryakov, V.V., 2001, “Some models of prediction of supercavitation flows based on slender body approximation”, Proceedings of Fourth International Symposium on Cavitation (CAV2001), session B3.001, California, USA.
Serebryakov, V.V., and G. Schnerr, “Some problems of hydrodynamics for sub- and supersonic motion in water with supercavitation”, Proceedings of the fifth international symposium on cavitation (CAV2003), Cav03-OS-7-015, Osaka, Japen.
Shi, H.-H., M. Itoh, and T. Takami, 2000, “Optical observation of the supercavitation induced by high-speed water entry”, Journal of fluids engineering, 122, 4, 806-810.
Stinebring, D., M. Billet, J. Lindan, and R. Kunz, 2001, “Developed cavitation-cavity dynamics”, VKI Supercavitating Flows Lecture Series.
Takinaci, A.C., M. Atlar, and E. Korkut, 2003, “A practical surface panel method to predict velocity distribution around a three-dimensional hydrofoil including boundary layer effects”, Ocean Engineering, 30, 163-183.
Terentiev, A.G., and K.E. Afanasiev, “Numerical study of cavitational flows”, Proceedings of the 1st International Conference on Computational Modeling of Free and Moving Boundary Problems, Southampton, England.
Tulin, M.P., 1964, “Supercavitating flows – small perturbation theory”, Journal of Ship Research, 7, 16-37.
Tulin, M.P., 1998, “On the shape and dimensions of three-dimensional cavities in supercavitating flows”, Applied Scientific Research, 58, 51-61.
Tulin, M.P., 2003, “On the theory and modeling of real cavity flows”, Proceedings of the fifth international symposium on cavitation (CAV2003), Cav03-IL-7, Osaka, Japen.
Uhlman, J.S., 1999, “The surface singularity or boundary integral method applied to supercavitating hydrofoils”, Journal of Ship Research, 33, 16-20.
Vlasenko, Y.D., 2003, “Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds”, Proceedings of the fifth international symposium on cavitation (CAV2003), CAV03-GS-6-006, Osaka, Japen.
Varghese, A., J. Uhlman, and I. Kirschner, 2003, “high-speed bodies in partially cavitating axisymmetric flow”, Proceedings of the fifth international symposium on cavitation (CAV2003), CAV03-OS-7-016, Osaka, Japen.
Vaz, G., Bosschers, J., and de Campos, J. F., 2003, “Two-dimensional modeling of Partial cavitation with BEM. Analysis of several models”, Proceedings of the fifth international symposium on cavitation (CAV2003), Osaka, Japan.
Von Kármán, T., 1929, “The impact on seaplane floats during landing”, N. A. C. A. Technical note 321, Washingtion.
Waugh, J., and G. Stubstad, 1972, Hydroballistcs modelling, Naval Undersea Center, San Diego, California, U.S.
Wrobel, L.C., 2002, “Boundary element simulation of axisymmetric cavity flow problems”, Proceedings of the 1st International Conference on Computational Modeling of Free and Moving Boundary Problems, Southampton, England.
Wrobel, L.C., 2002, The boundary element method: volume 1: application in thermo-fluids and acoustics, Wiley, UK.
Xü, H., 1991, “Potential flow solution for a yawed surface-piercing plate”, Journal of Fluid Mechanics, 226, 291-317.
Yang, S.A., 2000, “A numerical method for the evaluation of hydrodynamic forces of translating bodies under a free surface”, International Journal for Numerical Methods in Fluids, 32, 465-493.
Ye, Q.Y., and Z. Cheng, 1996, “Effects of inclined gravity on a supercavitating flow past an axisymmetric body”, Hydrodynamics, Balkema, Rotterdam, 1355-1360.
Yim, B., 1974, “Linear theory on water entry and exit problems of a ventilating thin wedge”, Journal of Ship Research, 18, 1-11.
Young, F.R., 1999, Cavitation, Imperial Collage Press, London.
Young, Y.-L., and S.A. Kinnas, 2001, “Numerical modeling of supercavitating and surface-piercing propeller”, Proceedings of Fourth International Symposium on Cavitation (CAV2001), sessionB9.006, California, USA.
Young, Y.-L., and S.A. Kinnas, 2003, “Numerical analysis of surface-piercing propeller”, Propellers/Shafting 2003 Symposium , Society of Naval Architects and Marine Engineers, Virginia Beach, VA.
Zhao, R., and O. Faltinsen, 1993, “Water entry of two-dimensional bodies”, Journal of Fluid Mechanics, 246, 593-612.
辛敬業、陳建宏、吳炳承,2004,「超高速體入水超空化水動力特性研究(I)」,國防科技學術合作研究計劃,93-2623-7-019-003。
吳炳承,2003,「不同結尾模型對二維空化空泡所造成的影響」,國科會大專生計劃,NSC-91-2815-C-019-013-E。
柯永澤,2002,推進系統設計,課程講義,台灣海洋大學。
徐友明,2004,高等外彈道學,高等教育出版社。
陳正宗,洪宏基,1992,邊界元素法,新世界出版社,台灣。
陳建宏,2002,高等工程數學,課程講義,台灣海洋大學。
陳建宏,2004,「軸對稱體的空化現象研究」,第16屆中國造船暨輪機工程研討及國科會成果發表會論文集,台南,台灣。
翁英傑,1999,「空化水翼流場之邊界元素法分析」,碩士論文,台灣海洋大學。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 古宜靈、廖淑容(2004),〈文化產業政策發展的趨勢與問題〉,《都市與計劃》,第31卷第2期,頁91-111。
2. 李佩芬、胡學彥(2001),〈地方產業活化對居住環境影響之初探—以台南縣白河鎮蓮花產業為例〉,《中國房地產研究》,第1期,頁74-88。
3. 延藤安弘著,曾英敏譯(1999),〈個人的自律性、市民的共同性、行政的公共性--一個創造性的社區營造過程中居民所應扮演的日常生活角色〉,《城市與設計學報》,9/10,頁215-234
4. 廖淑容、古宜靈、周志龍(2000),〈文化政策與文化產業之發展—西歐城市經驗的省思〉,《理論與政策》,第14卷第2期,頁165-197。
5. 卓玲妃、陳乃菁(2003),〈文化產業設計與創意〉,《歷史月刊》,第187期,頁110-114。
6. 官有垣、李宜興(2002),〈地方民間組織與政府在社區營造的夥伴關係--以嘉義新港文教基金會推動淨港計畫為例〉,《研考雙月刊》,第26卷,第3期,頁87-99。
7. 范以欣、馮煜(2005),〈國內文化創意產業推行之現況—以埔里為例〉,《工業設計》,第33卷第1期,頁46-53。
8. 楊敏芝(2000),〈文化產業理論思潮初探與發展省思〉,《環境與藝術學刊》,
9. 蔣玉嬋(2004),〈地方文化產業與社區發展〉,《社區發展季刊》,第107期,
10. 倪再沁(2005),〈文化創意產業的認識與挑戰〉,《藝術家》,356期,頁334-337。
11. 于國華(2003),〈文化.創意.產業—十年來台灣文化政策中的「產業」發展〉,《典藏今藝術》,第128期,頁46-49。
12. 翁註重(2001),〈試論地場性產業—文化產業的地方特性與時空意義〉,《工業設計》,第29卷第二期,頁160-167。
13. 黃世輝(1998),〈談日本區域文化產業振興政策〉,《空間雜誌》,第106/107期,頁58-63。
14. 李翠瑩,(2003),〈台灣已經不便宜了-「台灣文化創意產業交流考察團」赴英國、丹麥〉,《文化視窗》,第49期,頁49-52。
15. 陳錦煌(2002),〈建構社區營造為基礎的生態旅遊〉,《臺灣林業》,28:3,頁3-8。