跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴勇成
研究生(外文):Yung-Cheng Lai
論文名稱:鈦酸鉛鈣焦電薄膜紅外線陣列式熱影像感測元件之製作研究及特性分析
論文名稱(外文):The Fabrication and Characterization of (Pb,Ca)TiO3 Pyroelectric Thin Film Infrared Array Thermal Image Sensors
指導教授:張 忠 誠
指導教授(外文):Chun-Chen Chan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:163
中文關鍵詞:紅外線熱影像感測元件鈦酸鉛鈣焦電係數電壓響應射頻磁控濺鍍法
外文關鍵詞:PIR thermal image sensorPCT thin filmpyroelectric coefficientvoltage responsivityRadio-Frequency sputtering methods
相關次數:
  • 被引用被引用:5
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要

本實驗以射頻磁控濺鍍法沉積焦電性之鈣鈦酸鉛Pb1-xCaxTiO3(PCT)(x=0、0.25、0.3、0.4、0.5)薄膜沉積於Pt/Ti/SiO2/Si基板上,並且針對不同鈣(Ca)含量及不同退火溫度,量測焦電式紅外線陣列感測元件特性,且利用蝕刻技術提昇元件之特性並以此技術製作焦電式紅外線陣列感測器,進型初步熱影像偵測分析。
在PCT薄膜材料分析方面其鈣鈦酸鉛薄膜為鈣鈦礦的結構,當退火溫度為650℃且15分鐘時,特性較佳。在PCT薄膜電性量測方面其隨著鈣含量的增加,相對介電常數及焦電係數也隨著增加,而矯頑電場及殘留極化量則有下降之趨勢。
在PIR熱影像感測元件特性方面,當PCT薄膜鈣含量達到30mol%時,可得最大感測元件電壓響應為678.9V/W,元件最大歸化偵測率為2.99×106 cmHz1/2W-1。利用所得結果,我們也成功製作了二維8 × 8陣列式PIR熱影像感測元件。
Abstract

This research used the radio-frequency sputtering methods to deposit lead titanate thin film with different calcium contents on Pt/Ti/SiO2/Si substrates to form Pb1-xCaxTiO3(PCT)(X=0,0.25,0.3,0.4,0.5) thin film. The PCT thin film were added with different calcium contents and underwent annealing with temperature changes to probe the influence of the process parameters on the thin film. Further investigations include the property analysis of PIR thermal image sensor etched as V-groove structure and research on the thermal image.
From the PCT thin film material analysis, we found out that it has better perovskite structure when annealed at 650�aC for 15 minutes. For the analysis of PCT thin film electrical properties, the relative permittivity and pyroelectric coefficient of PCT thin film all shows a tendency to increase when the calcium contents are increased. The coercive field and remnant polarization decrease as the calcium contents increase.
When the pyroelecytric materials of the PIR sensor is PCT(30), it has maximum voltage response at 678.9(VW-1) and maximum specific detectivity at 0.299 107cmHz1/2W-1. This findings were successfully applied in producing 8X8 array PIR thermal image sensors.
Chapter 1 Introduction………………………………………………1
Chapter 2 Fundamental Principle of the Pyroelectric Infrared Image Sensor………………………………………………5
2-1 Review of infrared………………………………………………5
2-2 Pyroelectric Characteristics…………………………………6
2-3 Pyroelectric Material…………………………………………8
2-4 Brief Introduction of Calcium-Modified Lead Titanate,PCT……………………………………………………………9
2-5 The performance of PIR image sensor……………………11
2-5-1 Responsivity……………………………………………………12
2-5-2 Noises……………………………………………………………14
2-5-3 Noise equivalent power (NEP) and Specific detectivity (D*)………………………………………………………………………16
2-5-4 Merit of Figures………………………………………………17
Chapter 3 Ca-Modified Lead Titanate Thin Films Growth System and Process……………………………………………………19
3-1 Deposited pyroelectric thin film [PCT(0), PCT(25), PCT(30), PCT(40) and PCT(50)]……………………………………20
3-2 V-groove devices structure………………………………21
3-3 PIR thin films sensors processes………………………22
Chapter 4 Results and Discussions………………………………24
4-1 PCT thin film materials analysis……………………………24
4-1-1 Surface microstructure analyses…………………………24
4-1-2 Crystal structure analyses…………………………………27
4-1-3 Depth analyses…………………………………………………29
4-1-4 Chemical composition analyses……………………………30
4-2 PCT thin film electrical properties analysis………31
4-2-1 Dielectric parameters measurement………………………31
4-2-2 P-E hysteresis loop measurement…………………………33
4-2-3 Pyroelectric coefficient measurement…………………35
4-2-4 Figures of merit behaviort………………………………36
4-3 The PIR sensor properties measurement analysis……38
4-3-1 Responsivity…………………………………………………38
4-3-2 Noises voltage………………………………………………39
4-3-3 Noise equivalent power (NEP)……………………………40
4-3-4 Detectivity……………………………………………………41
4-3-5 Specific detectivity(D*)…………………………………42
Chapter 5 Application of Pyroelectric Infrared Thin Film Sensor…………………………………………………………………44
5-1 Overview……………………………………………………44
5-2 Experiment Process………………………………………44
5-3 Results and Discussion…………………………………45
Chapter 6 Conclusion……………………………………………47
Reference……………………………………………………………51

List of tables
Table 2-1 Physical properties and Figures of merit……60
Table 4-1 The average surface roughness of PCT(40) and PCT(50) films at different annealing temperature for 15 minutes (unit:nm)………………………………………………86
Table 4-2 The average surface roughness of PCT films annealing temperature of 650°C for 15 minutes with different calcium contents (unit:nm)………………………86
Table 4-3 A list of binding energy of elements and compounds……………………………………………………………113
Table 4-4 A list of binding energies (eV) XPS valence band spectrum for PCT based films after Ar+ sputtering………114
Table 4-5 and of the PCT(40) thin film at annealing temperatures of 550�aC, 600�aC, 650�aC and 700�aC for 15 minutes………………………………………………………………133
Table 4-6 and of the PCT(50) thin film at annealing temperatures of 550�aC, 600�aC, 650�aC and 700�aC for 15 minutes………………………………………………………………133
Table 4-7 and of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents……………………………………………………………133

List of figures
Fig.1-1 The wavelength versus the intensity of radiation at different temperature……………………………………………59
Fig.2-1 Electron spontaneous polarization in pyroelectric ceramic with the temperature changes…………………………61
Fig.2-2 The system for measuring pyroelectric coefficient properties……………………………………………………………62
Fig.2-3 The relationship between spontaneous polarizations…………………………………………………………63
Fig.2-4 (a) top view diagram (b)cubic diagram of the Lead titanate for perovskite structure………………………………64
Fig.2-5 The frequency dependence of voltage response and current response……………………………………………………65
Fig.3-1 The (a) top view and (b) cross section of the V-groove etched structure……………………………………………66
Fig.3-2 The 8X8 array PIR image sensor mask pattern………67
Fig.3-3 (a) The steps for fabrication of the PIR image sensor…………………………………………………………………68
Fig.3-3 (b) The steps for fabrication of the PIR image sensor…………………………………………………………………68
Fig.3-3 (c) The steps for fabrication of the PIR image sensor…………………………………………………………………69
Fig.3-3 (d) The steps for fabrication of the PIR image sensor…………………………………………………………………69
Fig.3-3 (e) The steps for fabrication of the PIR image sensor…………………………………………………………………70
Fig.3-3 (f) The steps for fabrication of the PIR image sensor…………………………………………………………………70
Fig.3-4 The top views of the PIR thermal image sensor as follows: (a) Total detector diagram; (b) Area detector diagram displayed by SEM…………………………………………71

Fig.4-1(a) EDS analysis results of PbTiO3 film………………72
Fig.4-1(b) EDS analysis results of Pb0.75Ca0.25TiO3 film…73
Fig.4-1(c) EDS analysis results of Pb0.7Ca0.3TiO3 film……74
Fig.4-1(d) EDS analysis results of Pb0.6Ca0.4TiO3 film…75
Fig.4-1(e) EDS analysis results of Pb0.5Ca0.5TiO3 film…76
Fig.4-2 The surface morphology of PCT(25) film on Pt/Ti/Si substrate annealed at 650℃ for 15 minutes…………………77
Fig.4-3 The SEM cross section of PCT(25) film on Pt/Ti/Si substrate………………………………………………………………77
Fig.4-4 The surface morphology of PCT(30) film on Pt/Ti/Si substrate annealed at 650℃ for 15 minutes…………………78
Fig.4-5 The SEM cross section of PCT(30) film on Pt/Ti/Si substrate………………………………………………………………78
Fig.4-6 The SEM cross section of PCT(40) film on Pt/Ti/SiO2/Si substrate……………………………………………79
Fig.4-7 The surface morphology of the PCT(40) film on Pt/Ti/SiO2/Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃…………………………………………………………………………80
Fig.4-8 The surface morphology of the PCT(50) film on Pt/Ti/SiO2/Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃…………………………………………………………………………81
Fig.4-9 The surface morphology of the PCT film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes with different calcium contents (a)PCT(0),(b)PCT(25),(c)PCT(30),(d)PCT(40),(e)PCT(50)…………………………………………………………………………82
Fig.4-10 The AFM 3D image of the PCT(40) film on Pt/Ti/SiO2/Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃…………………………………………………………………………83
Fig.4-11 The AFM 3D image of the PCT(50) film on Pt/Ti/SiO2/Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃…………………………………………………………………………84
Fig.4-12 The AFM 3D image of the PCT film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes with different calcium contents (a)PCT(0),(b)PCT(25),(c)PCT(30),(d)PCT(40),(e)PCT(50)……………………85
Fig.4-13 The XRD pattern of PCT(25) thin film on Pt/Ti/Si substrate annealed at 650℃ for 15 minutes…………………87
Fig.4-14 The XRD pattern of PCT(30) thin film on Si substrate annealed at 650℃ for 15 minutes…………………88
Fig.4-15 The XRD pattern of the PCT(40) film on Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃………………………89
Fig.4-16 The XRD pattern of the PCT(50) film on Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃………………………90
Fig.4-17 (a)The FWHM of the (110) XRD Bragg peak at different annealing temperature for 15 minutes,PCT(40) and PCT(50) on Si substrate……………………………………………91
Fig.4-17 (b)The FWHM of the (110) XRD Bragg peak PCT films annealing temperature of 650°C for 15 minutes with different calcium contents on Si substrate…………………91
Fig.4-18 The XRD pattern of the PCT film on Si substrate at an annealing temperature of 650°C for 15 minutes with different calcium contents………………………………………92
Fig.4-19(a) The SIMS analysis result of the PCT(0) film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………93
Fig.4-19(b) The SIMS analysis result of the PCT(25) film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………94
Fig.4-19(c) The SIMS analysis result of the PCT(30) film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………95
Fig.4-19(d) The SIMS analysis result of the PCT(40) film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………96
Fig.4-19(e) The SIMS analysis result of the PCT(50) film on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………97
Fig.4-20 XPS surveys for the PCT(0) film on Si substrate at an annealing temperature of 650°C for 15 minutes (a)before and (b) after sputtering…………………………………………98
Fig.4-21(a) XPS valence band spectrum(Pb,Ti) of PCT(0) film on Si substrate at an annealing temperature of 650°C for 15 minutes…………………………………………………………………99
Fig.4-21(b) XPS valence band spectrum (O,C) of PCT(0) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………………100
Fig.4-22 XPS surveys for the PCT(25) film on Si substrate at an annealing temperature of 650°C for 15 minutes (a)before and (b) after sputtering………………………………101
Fig.4-23(a) XPS valence band spectrum (Pb,Ca,Ti) of PCT(25) film on Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………102
Fig.4-23(b) XPS valence band spectrum (O,C) of PCT(25) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………………103
Fig.4-24 XPS surveys for the PCT(30) film on Si substrate at an annealing temperature of 650°C for 15 minutes (a)before and (b) after sputtering………………………………104
Fig.4-25(a) XPS valence band spectrum (Pb,Ca,Ti) of PCT(30) film on Si substrate at an annealing temperature of 650°C for 15 minutes……………………………………………………105
Fig.4-25(b) XPS valence band spectrum (O,C) of PCT(30) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………………106
Fig.4-26 XPS surveys for the PCT(40) film on Si substrate at an annealing temperature of 650°C for 15 minutes (a)before and (b) after sputtering………………………………107
Fig.4-27(a) XPS valence band spectrum (Pb,Ca,Ti) of PCT(40) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………108
Fig.4-27(b) XPS valence band spectrum (O,C) of PCT(40) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………………109
Fig.4-28 XPS surveys for the PCT(50) film on Si substrate at an annealing temperature of 650°C for 15 minutes (a)before and (b) after sputtering………………………………110
Fig.4-29(a) XPS valence band spectrum (Pb,Ca,Ti) of PCT(50) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………111
Fig.4-29(b) XPS valence band spectrum (O,C) of PCT(50) film on Si substrate at an annealing temperature of 650°C for 15 minutes………………………………………………………………112
Fig.4-30 The relative dielectric constant of PCT(25) film dielectric material at annealed 650℃ for 15 minutes……115
Fig.4-31 The relative dielectric constant of PCT(30) film dielectric material annealed at 550℃ ~ 700℃ for 15 minutes…………………………………………………………………116
Fig.4-32(a)The relative permittivity versus frequency of the PCT(40) film at different annealing temperature for 15 minutes…………………………………………………………………117
Fig.4-32(b)The relative permittivity versus frequency of the PCT(50) film at different annealing temperature for 15 minutes…………………………………………………………………117
Fig.4-32(c)The relative permittivity at 0.3KHz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents………………………………………………………………118
Fig.4-33 The loss tangent versus frequency of PCT(25) dielectric material at annealed 650℃ for 15 minutes……119
Fig.4-34 The loss tangent versus frequency of PCT(30) dielectric material at annealed 550℃ ~ 700℃ for 15 minutes…………………………………………………………………120
Fig.4-35(a)The loss tangent versus frequency of the PCT(40) film at different annealing temperature for 15 minutes…121
Fig.4-35(b)The loss tangent versus frequency of the PCT(50) film at different annealing temperature for 15 minutes…121
Fig.4-35(c)The loss tangent at 0.3KHz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents………………………………………122
Fig.4-36 P-E curve of ferroelectric materials………………123
Fig.4-37 Sawyer and Tower circuits……………………………124
Fig.4-38 P-E hysteresis loop of the PCT(40) film on Pt/Ti/SiO2/Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃…………………………………………………………………………125
Fig.4-39 P-E hysteresis loop of the PCT(50) film on Pt/Ti/SiO2/Si substrate at different annealing temperature for 15 minutes (a)550℃,(b)600℃,(c)650℃,(d)700℃…………………………………………………………………………126
Fig.4-40(a) P-E hysteresis loops for PCT(0), PCT(25), PCT(30), PCT(40) and PCT(50) thin films on Pt/Ti/SiO2/Si at an annealing temperature of 650�aC for 15 minutes…………………………………………………………………127
Fig.4-40(b) The relationship between the coercive field (Ec) and the remnant polarization (Pr) of PCT thin films on Pt/Ti/SiO2/Si substrate at an annealing temperature of 650°C for 15 minutes with different calcium contents…………128
Fig.4-41 Pyroelectric coefficient of PCT(25) thin at annealed 650 ℃ for 15 minutes…………………………………129
Fig.4-42 Pyroelectric coefficient of PCT(30) thin film at annealed 550℃ ~ 700 ℃ for 15 minutes………………………130
Fig.4-43(a) Pyroelectric coefficient versus temperature of the PCT(40) film at different annealing temperature for 15 minutes………………………………………………………………131
Fig.4-43(b) Pyroelectric coefficient versus temperature of the PCT(50) film at different annealing temperature for 15 minutes………………………………………………………………131
Fig.4-43(c) Pyroelectric coefficient at 50℃ of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents………………………………132
Fig.4-44 The system for measuring PIR sensor properties……………………………………………………………134
Fig.4-45 Voltage response of PCT(25) at annealed 650 ℃ for 15 minutes thin film by back etching technology…………135
Fig.4-46 Voltage Response of PCT(30) thin film at annealed 550℃~ 700℃ for 15 minutes by surface v-groove etching technology……………………………………………………………136
Fig.4-47(a) Voltage Response versus chopper frequency of the PCT(40) film at different annealing temperature for 15 minutes by surface v-groove etching technology……………………………………………………………137
Fig.4-47(b) Voltage Response versus chopper frequency of the PCT(50) film at different annealing temperature for 15 minutes by surface v-groove etching technology…………137
Fig.4-47(c) Voltage Response at chopper frequency 0.3Hz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents by surface v-groove etching technology………………………………………………138
Fig.4-48 Noise voltage of PCT(25) thin film at annealed 650 ℃ for 15 minutes by back etching technology……………139
Fig.4-49 Noise voltage of PCT(30) thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology…………………………………………………………140
Fig.4-50(a) Noise voltage versus chopper frequency of the PCT(40) film at different annealing temperature for 15 minutes by surface v-groove etching technology…………141
Fig.4-50(b) Noise voltage versus chopper frequency of the PCT(50) film at different annealing temperature for 15 minutes by surface v-groove etching technology…………141
Fig.4-50(c) Noise voltage at chopper frequency 0.3Hz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents by surface v-groove etching technology………………………………………………142
Fig.4-51 Noise equivalent power of PCT(25) thin at annealed 650 ℃ for 15 minutes film by back etching technology…143
Fig.4-52 Noise equivalent power of PCT(30) thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology………………………………………………144
Fig.4-53(a) Noise equivalent power versus chopper frequency of the PCT(40) film at different annealing temperature for 15 minutes by surface v-groove etching technology…………………………………………………………145
Fig.4-53(b) Noise equivalent power versus chopper frequency of the PCT(50) film at different annealing temperature for 15 minutes by surface v-groove etching technology……145
Fig.4-53(c) Noise equivalent power at chopper frequency 0.3Hz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents by surface v-groove etching technology……………………………………146
Fig.4-54 Detectivity with the PCT(25) thin film at annealed 650 ℃ for 15 minutes by back etching technology………147
Fig.4-55 Detectivity with Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology…………………………………………………148
Fig.4-56(a) Detectivity versus chopper frequency of the PCT(40) film at different annealing temperature for 15 minutes by surface v-groove etching technology………………………149
Fig.4-56(b) Detectivity versus chopper frequency of the PCT(50) film at different annealing temperature for 15 minutes by surface v-groove etching technology………………………149
Fig.4-56(c) Detectivity at chopper frequency 0.3Hz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents by surface v-groove etching technology…………………………………………………150
Fig.4-57 Specific detectivity with PCT(25) thin film at annealed 650 ℃ for 15 minutes by back etching technology……………………………………………………………151
Fig.4-58 Specific detectivity with PCT(30) thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology…………………………………………………152
Fig.4-59(a) Specific detectivity versus chopper frequency of the PCT(40) film at different annealing temperature for 15 minutes by surface v-groove etching technology……………………………………………………………153
Fig.4-59(b) Specific detectivity versus chopper frequency of the PCT(50) film at different annealing temperature for 15 minutes by surface v-groove etching technology……………………………………………………………153
Fig.4-59(c) Specific detectivity at chopper frequency 0.3Hz of the PCT film at an annealing temperature of 650°C for 15 minutes with different calcium contents by surface v-groove etching technology…………………………………………………154
Fig.5-1 A single component test on the 8X8 array PIR thermal image sensor………………………………………………155
Fig.5-2 The PIR thermal image simulation system flowchart………………………………………………………………156
Fig.5-3 The PIR thermal image sensor circuit diagram……157
Fig.5-4 The pictures for the 8x8 array PIR thermal image sensor and the 8051 simulator peripheral circuit…………158
Fig.5-5 (a)The grayscale thermal image of the 8x8 array PIR sensor when the circuit power is OFF and it is kept away from the radiation source………………………………………159
Fig.5-5 (b)The grayscale thermal image of the 8x8 array PIR sensor when the circuit power is ON and it is near the radiation source…………………………………………………159
Fig.5-5 (c)The grayscale thermal image of the 8x8 array PIR sensor when circuit power is ON and it is kept away from the radiation source………………………………………………160
Fig.5-6 When halogen lamp is used as the radiation source for the PIR thermal image sensor measuring system………161
Fig.5-7 (a)The grayscale thermal image of PIR sensor when the circuit power is OFF and the halogen lamp is OFF…162
Fig.5-7 (b)The grayscale thermal image of the 8x8 array PIR sensor when the circuit power is ON and the halogen lamp is ON……………………………………………………………………162
Fig. 5-7 (c)The grayscale thermal image of the 8x8 array PIR sensor when circuit power is ON and the halogen lamp is OFF……………………………………………………………………163
[1]R. D. Hudson, and J. R, “Infrared system engineering,” John Wiley and Sons, New York, 1969.
[2]R. A. Wood, “Uncooled thermal imaging with monolithic silicon focal planes,” in Infrared Technology XIX, Proc. SPIE 2020, pp. 322-329, 1993.
[3]X. D. Quan and S. B. Lang, “Measurement applications based on pyroelectric properties of ferroelectric polymers,” IEEE Transaction on Electrical Insulation, pp.503-516, 1988.
[4]W. Y. Chung, T. P. Sun, Y. L. Chin and Y. L. Kao, “Design of pyroelectric IR readout circuit based on LiTaO3 detectors,” IEEE International Symposium, pp. 225-228, 1996.
[5]傅勝利,”電子材料,” 第七章,金華科技圖書公司印行, 台北
[6]國立編譯館邱碧秀,”電子陶瓷材料,” 第十章, 徐氏基金會出版, 台北
[7]E. Yamakm, H. Watanabe, H. Kimura, H. Kanaya and H. Onkuma, “Structural, ferroelectric, and pyroelectric properties of highly c-axis oriented Pb1-xCaxTiO3 thin film grown by radio-frequency magnetron sputtering,” J. Vac. Sci. Technol., vol. A6, pp.2921-2928, Oct.1988.
[8]U. Schnakenberg, W.Benecks, P. Lange, “TMAHW etchants for silicon micromachining,” IEEE Proceeding, pp.815-818, 1991
[9]J. D. Vincent, “Fundamentals of infrared detector operation & testing,” John Wiley & Sons, pp. 453-456, 1990
[10]R. D. Shannon, ”Effective Ionic Radii in Oxides and Fluordes,” Acta Cryst.,B25,pp.925-930,1969
[11]E. Nakamura, ”Landolt Bornstein,” Band 16,pp.415,1981.
[12]C. M. Wang, Y. C. Chen, Y. T. Huang, M. C. Kao, “Calcium modified lead titanate thin films for pyroelectric applications,” IEEE International Symposium , vol. 2, pp.771-774, 2000.
[13]F. M. Pontes, D. S. L. Pontes, E. R. Leite, and E. Longo, “Influence of Ca concentration on the electric, morphological, and structural properties of ( Pb, Ca )TiO3 thin films,” Journal of Applied Physics, vol. 91, no.10,May 2002.
[14]J. D. Zook and S. T. Liu, “Pyroelectric effects in thin film,” J. Appl. Phys, vol. 49, no. 8, pp.4604-4606, 1978
[15]Y. Xu, ”Ferroelectric Materials and Their Applications,” North-Holland, New York,pp.10,1991
[16]E. S. Barr, “The infrared pioneers-II. Macedonia Melloni,” Infrared Phys,1962
[17]R. W. Whatmore,”Pyroelectric devices and materials,” Rep.Prog Phys.pp.1335,1986.
[18]J. S, R. Q, E. H and M, Schulze, “Infrared thermopile sensors with high sensitivity and very low temperature coefficient,” Sensors and Actuators A, 46-47 pp.422-427, 1995.
[19]A. Ignatiev, Y. Q. Xu., N. J. Wu, D. Liu, “Pyroelectric, ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors,” Materials Science and Engineering , pp.191-194, 1998.
[20]Y. Chen, H. L. W. Chan and C. L. Choy, “Pyroelectric properties of PbTiO3/P(VDF-TrFE) 0-3 nanocomposite films,” Thin Solid Film, 323, pp.270-274, 1998.
[21]R. B. Liu, S. W. Lin, C. F. Qu, C. H. Yao and Y. H. Jin, “Series pyroelectric ceramics used for small area IR detector,” IEEE International Symposium on Application of Ferroelectrics, pp.812-814, 1995.
[22]G. H. Haer ,”Cermic Materials for Electronics,”pp.139,1986.
[23]R. Takayama and Y. Tomita: Ferroelectrics 118 pp.325, 1991.
[24]R. Genesh and E. Goo:J. Am. Ceram. Soc. 80 pp.653, 1997.
[25]M. Lee and S. Bae, “Temperature-induced transient noise of pyroelectric thermal detector,” Photo-Optical Instrumentation Engineers, pp.3076-3083, Nov.2000.
[26]B. Cole, R. Horning, B. Johnson, K. Nguyen, P. W. Kruce and M. C. Foute, “High performance infrared detector arrays using thin film microstructure,” IEEE International Symposium on Applications of Ferroelectrics,pp.653-656, 1995
[27]C. Ye, T. Temagawa, and D. L. Polla, “Pyroelectric PbTiO3 Thin Films for Microsensor Applications,” IEEE International Conference on Rocbotics and Automation Leuven, pp.904-907, 1991.
[28]E. S. Barr, “The infrared pioneers-II. Macedonia Melloni,” infrared Phys., no.2, pp.67,1962.
[29]C. Ye, T. Temagawa, and D. L. Polla, “Pyroelectric PbTiO3 Thin Films for Microsensor Applications,” IEEE International Conference on Rocbotics and Automation Leuven, pp.904-907, 1991.
[30]T. Fukuda, H. Sato, F. Arai, H. Iwata and K. Itoigawa, “Parallel beam micro sensor/actuator unit using PZT thin films and its application examples,” IEEE International Conference on Robotics & Automation Leuven, pp.1498-1503, 1998.
[31]G. King and E. Goo, “Crystal structure and defects of ordered (Pb1-xCax)TiO3,” J. Am. Ceram. Soc., vol. 71, no. 6, pp.454-460, 1988.
[32]凌永健,二次離子質譜儀,科儀新知,11(2),1989.;凌永健離子束質譜術的原理與應用,科儀新知,12(2),1990.
[33]F. Moulder, F. Stickle, E. Sobol, D. Bombem , ”Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation and Physical Eletronics Division,1992.
[34]H. Banno, N. Sugimoto and T. Hayashi, “Preparation and properties of PZT/PbTiO3 ceramic composite,” IEEE 9th International Symposium on Electrets, pp.523-526, 1996.
[35]S. G. Lee and Y. H. Lee, “Dielectric properties of sol-gol derived PZT(40/60)/PZT(60/40) heterolayered thin films,” Thin Solid Films, pp.244-248,1999.
[36]A. V. Shil, A. V. Sopit, A. I. Burkganovand, A. G. Luchaninov, “The dielectric response of electrostrictive (1-x) PMN-xPZT ceramics,” Journal of the European Ceramic Society, no.19, pp.1295-1297, 1999.
[37]Y. Park, S. M. Jeong, S. Ⅱ Moon, K. W. Jeong, S. Hkim, J. T. Song and J. Yi, “Pt and RuO2 bottom electrode effects on Pb(Zr,Ti)O3 memory capacitors,” Jpn. J. Appl. Phys., no.12A, pp.6801-6806, 1999.
[38]J. D. Kim, S. Kawagoe, K.Sasaki and T. Hata, “Target for a Pb(Zr,Ti)O3 thin film deposited at a low temperature using a quasi-metallic mode of reactive sputtering”, Jpn. J. Appl. Phys., no. 12A, pp.6882-6886, 1999.
[39]H. Diamant, K. Drenck, and R. Pepinsky:The Review of Scientific Instruments 28 ,1957.
[40]K. Takeuchi, K. Shibata, T. Tanaka, K. Kuroki, S. Nakano and Y. Kuwano, “Modulation-type pyroelectric infrared detector and its application,” Sensors and Actuators , no.40, pp.103-109, 1994.
[41]C. Ye, T. Tamagawa, and D. L. Polla, “Pyroelectric PbTiO3 thin films for microsensor applications,” Proceeding of the IEEE, vol. 72, no. 8. May 1991
[42]R. C. Ibraim, T. Sakai, T. Nishida, T. Horiuchi, T. Shiosaki and K. Matsushige, ”Fabrication and evaluation of niobium doped lead titanate thin films,” Proceeding of the IEEE, vol. 86, no.5, Jan 1996
[43]K. lijima, T. Takeuchi, N. Nagao, R. Takayama and I Ueda, “Preparation and properties of Lanthanum Modified PbTiO3 thin films by RF-magnetron sputtering,” Proceeding of the IEEE, pp.53-58, 1995.
[44]J. C. Gunter, S. K. Streiffer and A. I. Kingon, ”Low temperature preparation of sol-gel PZT thin film for pyroelectric and other integrated devices,” IEEE International Symposium on Applications of Ferroelectrics, pp.18-21, 1996.
[45]B. Zigon and B. B. Lavrencic, “Pyroelectric thin-film detector performance,” Sensors and Actuators , no.36, pp.167-171, 1993.
[46]R. Balcerak, D. P. Jenkins, “Uncooled infrared focal plane arrays,” Engineering in Medicine and Biology Society, pp.2077-2078,1996.
[47]L. Pham, W. Tjhen, C. Ye, D. L. Polla, “Surface-micromachined pyroelectric infrared imaging array with vertically integrated signal processing circuitry,” Ferroelectrics and Frequency Control, IEEE, pp. 552-555, July 1994.
[48]J. J. Ho, Y. K. Fang, K. H. Wu, W. T. Hsieh, C. W. Chu, C. R. Huang, M. S. Ju, and C. P. chang, “A high sensitivity lead-titanate pyroelectric thin-film infrared sensor with temperature isolation improvement structure,” IEEE electron device letters, vol.19, no.6, June 1998
[49]宇左美晶,“感測器應用技術100種,”第一篇,建宏出版社,台北
[50]G. Vélu and D. Rèmiens, “Electrical properties of sputtered PZT films on stabilized platinum electrode”, Journal of the European Ceramic Society, vol 19, pp. 2005-2013, 1999.
[51]U. Schnakenberg, W.Benecks, P. Lange, “TMAHW etchants for silicon micromachining,” Proceeding of the IEEE, pp.815-818, 1991.
[52]朱凱鵬,”焦電薄膜紅外線影像感測元件之研究”, 國立臺灣海洋大學電機工程學系碩士論文, 民國93年
[53]Y. Xu, Ferroelectric Materials and Their Application, North-Holland, New York,pp.104,1997.
[54]Masaki Kurasawa and Paul C. Mclntyre,” Surface passivation and electronic structure characterization of PbTiO thin films and Pt/PbTiO interfaces,” J. Appl. Phys. no.97, pp.104-110,2005
[55]鄭維中,”利用JFET差動放大積體電路製作焦電式紅外線感測器之特性研究,” 國立臺灣海洋大學電機工程學系碩士論文, 民國89年
[56]Y. Xu,”Ferroelectric Materials and Their Applications”, North-Holland, New York, pp.10,1991.
[57]G. shirane, F.Jona,and R.Pepinsky,Proc.I.R.E,42,pp.1738-1739,1955
[58]吳政惠,” 以射頻磁控濺鍍含鈥之鈦酸鋇薄膜的製備與性質分析研究,” 國立臺灣海洋大學電機工程學系碩士論文, 民國93年
[59]M. L. Calzada, I. Bretos, R. Jimenez, J. Ricote, J. Mendiola,“X-ray characterization of chemical solution deposited PbTiO3 films with high Ca doping,” Thin Solid Films , pp.211-215,2004.
[60]S. Chopra, S. Sharma, T. C.Goel, R. G. Mendiratta ,“Structural dielectric and pyroelectric studies of Pb1-xCaxTiO3 thin films,” Solid State Communications, pp.299-304,2003.
[61]A. Seifert, P. Muralt, and N. Setter, “High figure-of-merit porous Pb1-xCaxTiO3 thin films for pyroelectric applications,” Applied Physics Letters, vol.72, no. 1911, May 1998.
[62]S. Chopra, A. K. Tripathi, T. C. Goel, R. G. Mendiratta ,“haracterization of sol-gel synthesized lead calcium titanate(PCT) thin films for pyro-sensors,” Materials Science and Engineering , pp.180-185,2003
[63]S. Chopra, S. Sharma, T. C. Goel, R. G..Mendiratta, “Sol-gel preparation and characterization of calcium modified lead titanate (PCT) thin films ,” Ceramics International , pp.1477-1481,2004
[64]I. Bretos, J. Ricote, R. Jimenez, J. Mendiola, R. J.Jimenez Rioboo, M. L. Calzada ,“Crystallisation of Pb1-xCaxTiO3 ferroelectric thin films as a function of the Ca2+ content,” Ceramics International , pp.1477-1481,2004
[65]吳煥堂,“焦電薄膜紅外線感測器與積體化CMOS熱影像陣列之製作研究”, 國立臺灣海洋大學電機工程學系碩士論文, 民國92年
[66]C. J. and D. K., ”Electroactive polymer-ceramic composites,” Properties and Applications of Dielectric Materials, vol. 1, pp.175-178, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊思偉(1999c)。日本升學機制之研究。教育研究資訊,7(6),123-143。
2. 黃政傑(1983)。我國能力本位師範教育的展望。國教天地,52,6-12。
3. 彭森明(2005)。美國學生「學習成果評量」資料之分析及運用。研習資訊,22(2),8-13。
4. 陳新轉(2002)。社會學習領域能力指標之「能力表徵」課程轉化模式。教育研究月刊,100,86-100。 
5. 陳清溪、林欣怡(2004)。台灣學生學習成就評量資料庫建置計畫之探究。研習資訊,21(6),56-67。
6. 陳明印(2004)。英國國定課程學生成就評量制度。研習資訊,21(6),90-109。
7. 陳伯璋(1999)。九年一貫新課程綱要修訂的背景及內涵。教育研究資訊,7(1),1-13;20-25。
8. 馬信行(1988)。國家發展指標之探索──以教育與經濟發展指標為主。國立政治大學學報,58,229-272。
9. 呂燕卿(1999)。簡介國小、國中、高中之美術基本學力指標。國教世紀,184,4-10。
10. 余民寧、賴姿伶、劉育如(2004)。國中基本學力測驗實施成效之初步調查:學生的觀點。教育與心理研究,27(3),457-481。
11. 成露茜(1999)。淺析基本能力與基本學力。翰林文教雜誌,5,24-25。
12. 楊思偉(2000)。談基本能力與基本學力。研習資訊,17(6),16-24。
13. 鄭富森(1998)。淺談國中基本學力測驗之評鑑原則。測驗與輔導,150,3119-3125。
14. 盧雪梅(2000)。美國的「全國教育進展評量」(NAEP)。人文及社會學科教學通訊,11(1),143-153。
15. 盧雪梅(2004)。從技術面談九年一貫課程能力指標建構:美國學習標準建構的啟示。教育研究資訊,12(2),3-34。