跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文顥
研究生(外文):Wen-Hao Huang
論文名稱:利用低壓化學氣相沈積(LPCVD)系統成長多晶矽鍺薄膜應用於累崩光二極體(APD)之研究
論文名稱(外文):A Study of Avalanche Photodiode (APD) with the Poly-Si1-xGex Films by Low Pressure Chemical Vapor Deposition (LPCVD) System
指導教授:張忠誠張忠誠引用關係何志傑何志傑引用關係
指導教授(外文):Chung-Cheng ChangJyh-Jier Ho
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:158
中文關鍵詞:低壓化學氣相沈積系統多晶矽鍺薄膜累崩光二極體
外文關鍵詞:LPCVDPoly-Si0.82Ge0.18 filmsAPD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文運用低壓化學氣相沈積(LPCVD)系統成長多晶矽鍺(Poly-Si0.82Ge0.18)薄膜,並探討Poly-Si0.82Ge0.18薄膜應用於累崩光二極體(APD)元件之研究;並採用銦錫氧化物(ITO)作為APD之陽極透明導電層。在Poly-Si0.82Ge0.18薄膜方面,實驗採用之退火參數為退火溫度700℃、800℃、900℃,退火時間30、60、90分鐘,使用氣體為氮氣。由實驗比較發現,退火溫度800℃時間30分鐘時,Poly-Si0.82Ge0.18薄膜會有最佳的薄膜特性。在ITO薄膜方面,由實驗結果可知,基板溫度100℃,使用氮氣退火溫度300℃,時間1小時之條件為沈積ITO薄膜之最佳參數。
在APD元件製作方面,吾人製作n+/n/p/p+-Poly-Si0.82Ge0.18/ SiO2/Si基板結構之APD元件。比較Poly-Si0.82Ge0.18之薄膜特性分析結果,吾人對APD元件進行退火處理。經由實驗發現,經由氮氣退火800℃,時間30分鐘之APD元件,於固定光照度3.0μW、逆向偏壓27V時,光電流為143.75μA、響應係數為47.92 、量子效率82.94%、光暗電流比142.75。經由比較發現,氮氣退火800℃,時間30分鐘之APD元件其感應之光電流為未經退火處理之APD的7.67倍,為APD元件製作之最佳參數。
In this thesis, the Low Pressure Chemical Vapor Deposition (LPCVD) system is used to deposit the Poly-Si0.82Ge0.18 thin films. The Poly-Si0.82Ge0.18 thin films were used for the Avalanche photodiode (APD) device. The ITO films were used as the transparent conductive thin film material of the APD anode. In the experiment of the Poly-Si0.82Ge0.18 thin films, the annealing temperature is 700℃、800℃、900℃, and the annealing time is 30、60、90 minutes using nitrogen. From the experimental results, the Poly-Si0.82Ge0.18 thin films have the best properties with the 800℃ annealing temperature and the 30 minutes annealing time. In the experiment of the ITO films, the ITO films have the best properties when the depositing substrate temperature is 100℃ with the 300℃ annealing temperature and the one hour annealing time using nitrogen.
In the preparation of APD device, we have prepared APD device of n+/n/p/p+-Poly-Si0.82Ge0.18/SiO2/Si structure. In order to compare characteristics of Poly-Si0.82Ge0.18 thin film, we perform annealing on the APD device. The experimental result shows that for an APD device, through an annealing at 800℃ in the N2 environment for 30 minutes, and at a fixed optical illumination of 3.0μW and a reverse bias of 27V, the measured photocurrent is 143.75μA, responsivity 47.92 , quantum efficiency 82.94%, and a current ratio of 142.75. From the experimental result comparison, we found that APD device annealed at 800℃ in N2 environment for 30 minutes has a response photocurrent 7.67 times as compared to that of non-annealed APD device, this is believed to be the best parameter in the preparation of APD device.
Contents

Chapter 1 Introduction…….……………………………………..1

1-1. Overview……………………………………...………….1
1-2. Outline…………...……………………………………….7

Chapter 2 Deposition System and Experiment Equipments…………………………………………..9

2-1. Low Pressure Chemical Vapor Deposition (LPCVD)………………………………………………...9
2-2. Ion Implanter…………………………….…….……….11
2-3. Magnetron Sputter…………………….………...……..13
2-4. Thermal Evaporator……...……………………………14
2-5. Anneal System……………………………….…………15
2-6. Exposure and Photolithography Equipment……..…..15

Chapter 3 Characteristic Analysis of the Poly Si0.82Ge0.18 films………………………………….17

3-1. Introduction………………...………………..…………..17
3-2. The Fabrication Process of Poly-Si0.82Ge0.18 Films...…..21
3-2-1 Cleaning……….………………………...……….21
3-2-2 Growth Process………………...…………….….22
3-3. Scanning Electron Microscope (SEM) Analysis……….22
3-4. X-ray Diffraction (XRD) Analysis……………………...24
3-5. Energy Dispersive X-ray Spectrometer (EDS) Analysis………………………………………………….26
3-6. Atomic Force Microscopic (AFM) Analysis….………..27
3-7. Secondary-Ion Mass Spectrometry( SIMS) Analysis...29
3-8. X-Ray Photoelectron Spectroscopy (XPS) Analysis…..30
3-9. Conclusion…………….…………………….……………32

Chapter 4 Characteristic Analysis of the ITO films…….33

4-1. Introduction……………..…...…………………………33
4-2. Experiment…………………………...…………………35
4-3. Results and Discussion…………………………………36
4-3-1 Transmittance………………………..……………...36
4-3-2 Resistivity………………………………………...…37
4-3-3 Surface morphology………...…………………...….40
4-3-4 XRD patterns……………………………..…………41
4-3-5 EDS Analysis…………………………………….....42
4-4. Conclusion.……………………………………….……..43

Chapter 5 Avalanche Photodiode……………………...44

5-1. Introduction…………..………………………………...44
5-2. Theoretical Analysis of APD device…………………..45
5-2-1 Theoretical Analysis…...……………………………45
5-2-2 Dark Current and Photo-Current Models…………...46
5-2-3 Quantum Efficiency……………………..………….47
5-2-4 Response Speed……………………………..………48
5-2-5 Responsivity………………………………………...48
5-2-6 Bias……………………………………………….…49
5-3. The fabrication of APD device………………………...50
5-3-1 Fabrication process……………………………….…50
5-3-2 Oxide………………………………………….....….54
5-3-3 Etching the Poly-Si0.82Ge0.18 Films…………….…....55
5-3-4 The Sputtering of ITO films…………………..…….55
5-3-5 Evaporation…………………………………………55
5-3-6 Annealing……………...……………………………56
5-4. Results and Discussion…………………..……………..57

Chapter 6 Conclusion……………………………………………63
6-1. Summary……………………………...………………….63
6-2. Further……………………………………………...……64




Reference…………………………………………...……………………66




Table 3-1 The roughness of the Poly-Si0.82Ge0.18 films annealing at different conditions ………………………………………...72






Figure Captions

Fig 2-1 LPCVD Reaction Chamber………..…………........……..….73
Fig 2-2 Implanter System……..…………………………….…….....74
Fig 2-3 The magnetron sputter system………..…….…………….…75
Fig 2-4 The thermal evaporation system……………..……..…….....76
Fig 2-5 The annealing system………………..……………..……......77
Fig 2-6 The contact alainer...………………………………………...78
Fig 3-1 The Scanning Electron Microscope (SEM, Hitachi S-4100)………………………………………………...…….79
Fig 3-2 The surface morphology of the Poly-Si0.82Ge0.18 films before annealing ……………………...………………...….....…….80
Fig 3-3 The surface morphology of the Poly-Si0.82Ge0.18 films annealing at 700℃ for (a) 30 (b) 60 (c) 90 minutes.....................................................................................81
Fig 3-4 The surface morphology of the Poly-Si0.82Ge0.18 films annealing at 800℃ for (a) 30 (b) 60 (c) 90 minutes.....................................................................................82
Fig 3-5 The surface morphology of the Poly-Si0.82Ge0.18 films annealing at 900℃ for (a) 30 (b) 60 (c) 90 minutes.....................................................................................83
Fig 3-6 The XRD pattern of the Poly-Si0.82Ge0.18 films before annealing…………………………………………..………...84
Fig 3-7 The XRD pattern of the Poly-Si0.82Ge0.18 films annealing at 700℃ for (a)30 (b)60 (c)90 minutes……………………..…85
Fig 3-8 The XRD pattern of the Poly-Si0.82Ge0.18 films annealing at 800℃ for (a)30 (b)60 (c)90 minutes……………………..…87
Fig 3-9 The XRD pattern of the Poly-Si0.82Ge0.18 films annealing at 900℃ for (a)30 (b)60 (c)90 minutes……………………..…89
Fig 3-10 The EDS analysis of the Poly-Si0.82Ge0.18 films……………..91
Fig 3-11 The AFM (Digital Instruments Inc., NanoScope E) system...92
Fig 3-12 Illustration of Roughness………………………………..…..93
Fig 3-13 The surface morphology (3D) of the Poly-Si0.82Ge0.18 films before annealing……………………………..……………..94
Fig 3-14 The surface morphology (3D) of the Poly-Si0.82Ge0.18 films annealing at 700℃ for (a)30 (b)60 (c)90 minutes………......95
Fig 3-15 The surface morphology (3D) of the Poly-Si0.82Ge0.18 films annealing at 800℃ for (a)30 (b)60 (c)90 minutes………......96
Fig 3-16 The surface morphology (3D) of the Poly-Si0.82Ge0.18 films annealing at 900℃ for (a)30 (b)60 (c)90 minutes………......97
Fig 3-17 The roughness results in different annealing conditions........98
Fig 3-18 The SIMS (Cameca,IMS-4f) system………..……………….99
Fig 3-19 The SIMS analysis of the poly-Si0.82Ge0.18 films (a) before annealing(b)annealing at 700℃ for 30 min (c) annealing at 700℃ for 60 min(d)annealing at 700℃ for 90 min(e)annealing at 800℃ for 30 min…………………………..…100
Fig 3-20 The SIMS depth analysis of Ge in different annealing conditions…………….....................................................…101
Fig 3-21 The ESCA (Thermo VG Scientific ESCALAB 250) system………………………………………….…………..102
Fig 3-22 The XPS valence band spectrum for the elements of Si element(2p3/2)(a) before annealing(b) annealing at 700℃ for 90 minutes(c) annealing at 800℃ for 30 minutes(d) annealing at 800℃ for 60 minutes(e) annealing at 800℃ for 90 minutes (f) annealing at 900℃ for 30 minutes...............................…103
Fig 3-23 The XPS valence band spectrum for the elements of Ge element(3d5/2)(a) before annealing(b) annealing at 700℃ for 90 minutes(c) annealing at 800℃ for 30 minutes(d) annealing at 800℃ for 60 minutes(e) annealing at 800℃ for 90 minutes (f) annealing at 900℃ for 30 minutes……………..…...…104
Fig 4-1 The cross-section of the ITO on Glass………………..........105
Fig 4-2 Transmittance of Corning(7059)glass….............................106
Fig 4-3 The transmittance of ITO films which deposited at 30℃, 100℃, 200℃, 300℃, 400℃…………………………........107
Fig 4-4 The transmittance of ITO films which deposited at 30℃, 100℃, 200℃, 300℃, 400℃ and annealed at 300℃ for one hour using N2………………………………........................108
Fig 4-5 Illustration of Squre Thin Film.............................................109
Fig 4-6 Four-Point Probe...................................................................110
Fig 4-7 The resistivity of ITO films after annealing at 300℃, 1 hr in different conditions...............................................................111
Fig 4-8 SEM photographs of the surface of ITO films before annealing deposited at temperatures(a)30oC (b)100oC (c)200oC (d)300oC (e)400oC…………………………..……..……………....…112
Fig 4-9 SEM photographs of the surface of ITO films before annealing deposited at temperatures(a)30oC (b)100oC (c)200oC (d)300oC (e)400oC after annealing at 300 oC for 1 hr using N2……....113
Fig 4-10 XRD of patterns before annealing deposited at temperatures (a)30oC (b)100oC (c)200oC (d)300oC (e)400oC...……….…114
Fig 4-11 XRD of patterns after ammealing with N2 at 300 oC, 1 hr gas deposited at (a)30oC (b)100oC (c)200oC (d)300oC (e)400oC…………………………………………………...116
Fig 4-12 The EDS analysis of ITO films before annealing………….118
Fig 4-13 The EDS analysis of ITO films annealing at 300℃ for 1 hour using N2 gas…….………...……….………………..……..119
Fig 5-1 Illustration of pn junction...………………….………….....120
Fig 5-2 Energy band diagram for the avalanche process….…….....121
Fig 5-3 APD fabrication process……..……………..…………..….122
Fig 5-4 The structure of APD device…….……………….…….….124
Fig 5-5 The SEM cross section of ITO/n+/n/p/p+-Poly-Si0.82Ge0.18/ SiO2/Si substrate …………………………………….…….125
Fig 5-6 The Poly-Si0.82Ge0.18 films etching rate of the HNA etchant (27.5%HF:45%HNO3:H2O=2:2:1)in room temperature............................................................................126
Fig 5-7 Tektronix 577 current-voltage curve tracer……………..…127
Fig 5-8 The transmission of the grenn light filter.……………....…128
Fig 5-9 The I-V characteristics of the Poly-Si0.82Ge0.18 APD devices before annealing in different incident light power with green light band-pass filter…………………………..…………...129
Fig 5-10 The I-V characteristics of the Poly-Si0.82Ge0.18 APD devices annealing at 700℃ for 90 minutes in different incident light power with green light band-pass filter………………..…..130
Fig 5-11 The I-V characteristics of the Poly-Si0.82Ge0.18 APD devices annealing at 800℃ for 30 minutes in different incident light power with green light band-pass filter………………..…..131
Fig 5-12 The I-V characteristics of the Poly-Si0.82Ge0.18 APD devices annealing at 800℃ for 60 minutes in different incident light power with green light band-pass filter………………..…..132
Fig 5-13 The I-V characteristics of the Poly-Si0.82Ge0.18 APD devices in different annealing condition under incident light power 3.0μW with green light band-pass filter………......….……133
Fig 5-14 The responsivity of the Poly-Si0.82Ge0.18 APD devices before annealing in different incident light power with green light band-pass filter…………………………………...…….…134
Fig 5-15 The responsivity of the Poly-Si0.82Ge0.18 APD devices annealing at 700℃ for 90 minutes in different incident light power with green light band-pass filter………………....…135
Fig 5-16 The responsivity of the Poly-Si0.82Ge0.18 APD devices annealing at 800℃ for 30 minutes in different incident light power with green light band-pass filter………………....…136
Fig 5-17 The responsivity of the Poly-Si0.82Ge0.18 APD devices annealing at 800℃ for 60 minutes in different incident light power with green light band-pass filter………………....…137
Fig 5-18 The response coefficient curve of Poly-Si0.82Ge0.18 APD measured using green light filter at optical illumination of 3.0μW for different annealing conditions………...…..……138
Fig 5-19 The quantum efficiency of Poly-Si0.82Ge0.18 APD at different annealing conditions by using green light filter at optical illumination of 3.0μW…………………………….……..…139
Fig 5-20 The Gain Ratio of the Poly-Si0.82Ge0.18 APD devices before annealing in different incident light power with green light band-pass filter……………………………...…….……..…140
Fig 5-21 The relationship between Avalanche Multiplication Factor and VJ/VBR)………………………………………………..……141
[1]J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch, “Pseudomorphic growth of GexSi1-x on silicon by molecular beam epitaxy”, Appl. Phys. Letts., 44 (1), pp.102-104, 1 January. (1984).

[2]R. People, J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures, ” Appl. Phys. Lett.,vol. 47, pp.322-324, 1985.

[3]Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amopohous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol 45, No.9, pp.2085-2088, September, 1998.

[4]Jyh-Jier Ho, Y.K. Fang, K.H. Wu, and C.S. Tasi, “High-gain p-i-n infrared photosensors with Bragg reflectors on amorphous silicon alloy,” Appl. Phys. Letts., 70 (7), pp.826-828, 17 Feb. (1997).

[5]Y.V. Pomoarev, C. Salm, J. Schmitz, P.H. Woerlec, and D.J. Graveestijn, “High-performance Deep Submicron MOSTs With Polycrystallic-(Si,Ge) Gates”, VLSI Technology, Systems, and Applications, 1997. Proceedings of Technical Papers. 1997 International Symposium on June 3-5, 1997 Page(s):311 - 315

[6]Youri V. Pomoarev, Peter A. Stolk, and Cora Salm, “High-Performance Deep Submicron CMOS Techmology With Polycrystallic SiGe Gates, ” IEEE Trans. on Electron Devices, Vol. 47, No.4 , pp.848-855, April, 2000.

[7]C. Salm, D.T. van Veen, D.T. Gravestijn, J. Holleman, and P.H. Woerlee, “Diffusion and Electrical Properties of Boron and Arsenic Doped Poly-Si and Poly-SixGe1-x(x~0.3) as Gate Material for Sub-0.25 um Complementary Metal Oxide Semiconductor Applications”, J. Electrochem. Soc., Vol.144, No.10, pp.3665-3673, 1997.

[8]Tsu-Jae King and Krishna C. Saraswat, “Polycrystalline Silicon-Germanium Thin-Film Transistors”, IEEE Trans. on Electron Devices, Vol.41, No.9, pp.1581-1591, September, 1994.

[9]V. Subramanian, K.C. Saraswat, “Optimization of silicon-germanium TFT's through the control of amorphous precursor characteristics ”, IEEE Trans on Electron Devices, Vol.45, No.8, pp.1690 – 1695, August, 1998

[10]P. Van Gerwen, T. Salter, J.B. Chevrier, K. Beart, and R.Materes, “Thin-film boron-doped Polycrystalline Si70%-Ge70% for thermopiles”, Sensors and Actuators A. 53 pp.325-329, 1996.

[11]Sherif Sedky, Paolo Fiorini, Matty Caymax, Agens Verbist and Chirs Baert, “IR bolometer made of Polycrystalline silicon germanium”, Sensors and Actuators A. 66 pp.193-199, 1998.

[12]Sherif Sedky, Paolo Fiorini, Chris Baert, Lou Hermans and Robert Mertens, “Characterization and Optimization of Infrared Poly SiGe Bolometer”, IEEE Transactions on Electron devices, Vol. 46, No. 4, April, pp.675-682, April, 1999.

[13]A. Fischer, H. Kuhne, G. Lippert, H. Richter, B. Tillack, “State of Stress and Critical Thickness of Strained Small-Area SiGe Layer, ” Phys. Stat. sol., vol. 171, pp.475-485,1999.

[14]True-Lon Kin, A. Ksendzov, Suzan M. Dejewski, Eric W. Jones, Rober W. Fathauer, Timothy N. Krabach, and Joseph Maserjian, “SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy”, IEEE Transactions on Electron Devices, Vol. 38, No. 5, May, pp.1141 – 1144, 1991.

[15]B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition”, Appl. Phys. Letts., 48 (12), pp.797-799, 24 March. (1986).

[16]B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition”, Appl. Phys. Lett. Vol.48, p. 797 (1986).

[17]J. F. Gibbons, et al., “Limited reaction processing: Silicon epitaxy”, Appl. Phys. Lett. Vol.47, p. 721 (1985).

[18]G. L. Patton, J. H. Comfort, B. S. Meyerson, E. F. Crabbe, G. J. Scilla,E. D. Fresart, J. M. C. Stork, J. Y.-C. Sun, D .L. Harame, J.N. Burghartz, “75-GHz fT SiGe-base heterojunction bipolar transistors”, IEEE Electron Device Lett., Vol.11, No.4, pp. 171-173 , April, 1990.

[19]John D. Cressler, “SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications”, IEEE Transactions on Microwave Theory and Techniques, Vol.46, No.5, pp.572-589, May, 1998.

[20]A. J. Joseph, J. D. Cressler, D. M. Richey, R. C. Jaeger,D. L. Harame, “Neutral base recombination and its influence on the temperature dependence of Early voltage and current gain-Early voltage product in UHV/CVD SiGe heterojunction bipolar transistors”, IEEE Transactions on Electron Devices, Vol.44, No.3, pp.404-413, March, 1997.

[21]K. Washio, E. Ohue, R. Hayami, A. Kodama, H. Shimamoto, M. Miura, K. Oda, I. Suzumura, T. Tominari, T. Hashimoto, “High-speed scaled-down self-aligned SEG SiGe HBTs”, IEEE Transactions on Electron Devices, Vol.50, No.12, pp.2417-2424, December, 2003.

[22]L. J. Huang, J. O. Chu, D. F. Canaperi, C. P. D'Emic, R. M. Anderson, S. J. Koester, and H.-S. Philip Wong, “SiGe-on-insulator prepared by wafer bonding and layer transfer for high-performance field-effect transistors, ” Appl. Phys. Lett., vol. 78, pp. 1267-1269, 2001.

[23]T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction, ” Appl. Phys. Lett., vol. 79, pp. 1798, 2001.

[24]T. Mizuno, S. Takagi, N. Sugiyama, J. Koga, T. Tezuka, K. Usuda, T. Hatakeyama, A. Kurobe, and A. Toriumi, “High performance strained-Si p-MOSFETs on SiGe-on-insulator substrates fabricated by SIMOX technology, ” Electron Devices Meeting, 1999. IEDM Technical Digest. International5-8 Dec. 1999 Page(s):934 - 936

[25]T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology, ” IEEE Electron Device Letters, vol. 21, No.5, pp.230-232, May, 2000.

[26]J. D. Plummer, M. D. Dea, P.B. Griffin, Silicon VLSI Technology, Prentice Hall(2000), p.151.

[27]郭正次、朝春光,奈米結構材料科學,全華科技圖書股份有限公司(2005).

[28]K. Prabhakaran, T. Nishioka, K. Sumitomo, Y. Kobayashi, T. Ogino, “In situ oxidation of a thin layer of Ge on Si(001):Observation of GeO to SiO2 transition, ” Appl. Phys. Lett., vol. 62, pp864-866, 1993.

[29]Zhineng Fan, Gang Zhao, Paul K. Chu, Zhonghe Jin, Hoi S. Kwok, Man Wong, “Floating low-temperature radio-frequency plasma oxidation of polycrystalline silicon-germanium, ” Appl. Phys. Lett., vol. 73, pp360-362, 1998.

[30]M.-H. Cho, H. S. Chang, D. W. Moon, S. K. Kang, B. K. Min, D.-H. Ko, H. S. Kim, Paul C. Mclntyre, “ Interfacial characteristics of HfO2 films grown on strained Si0.7Ge0.3 by stomic-layer deposition, ” Appl. Phys. Lett., vol. 84, pp1171-1173, 2004.

[31]L. K. Bera, N. Balasubramanian, Dim-Lee Kwong, “ Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications, ” Appl. Phys. Lett., vol. 84, pp4331-4333, 2004.

[32]S. Fujita, H. Mimoto, and T. Noguchi, “ Photoluminescence in ZnSe grown by liquid epitaxy from Zn-Ga solution,” J. Appl. Phys., vol. 50, pp. 1079-1080, 1979.

[33]C. Qiu, Z. Xie, H. Chen, M. Wong, and H. S. Kwok, “Comparative study of metal or oxide capped indium--tin oxide anodes for organic light-emitting diodes,”J. Appl. Phys., vol 93, pp. 3253, 2003.

[34]H. Antoniadis, J. N. Miller, D. B. Roitman, I. H. Cambell, “Effects of hole carrier injection and transport in organic light-emitting diodes,” IEEE Transactions on Electron Devices, Vol.44, No.8 , pp. 1289 -1294, August, 1997.

[35]Jong Hyeok Park, O Ok Park, Jae-Woong Yu, Jai Kyeong Kim, and Young Chul Kim, “Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes,” Appl. Phys. Lett. vol.84, pp.1783-1785 ,2004.

[36]M. Sano, Y. Yamashita, and Y. Okuno, “ Growth and characterization of ZnSe epitaxial layers grown by the solution method,” J. Appl. Phys., Vol.74, pp.15-17, 1993.

[37]A. Kamata and T. Moriyama, “ Luminescence properties of nitrogen ion implanted ZnSe after thermal annealing,” Appl. Phys. Lett. vol. 67, pp. 1751-1753, 1995.

[38]Masayuki Kamei, Teruyuki Yagami, Satoru Takaki, Yuzo Shigesato, “Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates , ” Appl. Phys. Lett., vol.64, pp. 2712-2714, 1994.

[39]N. Z. Hakim, B. E. A. Saleh, M. C. Teich, “Generalized excess noise factor for avalanche photodiodes of arbitrary structure,” IEEE Transactions on Electron Devices, Vol.37, No.3, pp.599-610, March, 1990.

[40]F. M. Davidson, Xiaoli Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers,” IEEE Transactions on Communications, Vol. 36, No.11, pp.1185-1192, November, 1988.

[41]Y. M. El-Batawy, M. J. Deen, “Modeling and optimization of resonant cavity enhanced-separated absorption graded charge multiplication-avalanche photodetector (RCE-SAGCM-APD) ,” IEEE Transactions on Electron Devices, Vol.50, No.3, pp.790-801, March, 2003.

[42]T. Mikawa, S. Kagawa, T. Kaneda, T. Sakurai, H. Ando, O. Mikami, “A low-noise n+np germanium avalanche photodiode,” IEEE Journal of Quantum Electronics, Vol 17, No.2, pp.210-216, February, 1981.

[43]Y. M. El-Batawy, M. J. Deen, “Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD) ,” IEEE Transactions on Electron Devices, Vol.52, No.3, pp.335-344, March, 2005.

[44]R. J. McIntyre, P. P. Webb, H. Dautet, “A Short-Wavelength Selective Reach-through Avalanche Photodiode,” IEEE Transactions on Nuclear Science, Vol.43, No.3, pp.1341-1346, June, 1996.

[45]J. P. Pansart, “Avalanche Photodiodes for particle detection,” Nucl. Instr. and Meth in Phys. Res. A, Vol 387, p.186, 1997.

[46]K. S. Shah, R. Farrell, R. Grazioso, R. Myers, L. Cirignano, “Large-area APDs and monolithic APD arrays,” IEEE Transactions on Nuclear Science, Vol.48, No.6, pp.2352-2356, December, 2001.

[47]施敏原著、黃調元譯,半導體元件物理與製作技術(第二版),高立圖書有限公司(2003).

[48]R. Fisher, “P-i-n diode detectors for astronomical photometry, ” Applied Optics, vol. 7, pp. 1079-1083, 1968.

[49]Michael Quirk, Julian Serda, Semicinductor Manufacturing Technikogy, Prentice Hall, 2001.

[50]K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing-part II, ” J. Microelectromech. Syst., vol. 12, 2003.

[51]余合興,半導體材料與元件(第三版),中央圖書供應社(1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top