跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃靖銘
研究生(外文):Ching-Ming Huang
論文名稱:以線性規劃法為基礎之最佳潮流分析
論文名稱(外文):Linear Programming Baesd Optimal Power Flow
指導教授:陸台根
指導教授(外文):Tai-Ken Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:75
中文關鍵詞:線性規劃最佳化電力潮流敏感度因子
外文關鍵詞:Linear ProgrammingOPF
相關次數:
  • 被引用被引用:5
  • 點閱點閱:798
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
摘要

電業自由化、民營化已是不可抵擋的世界趨勢,各國發輸配電業都將面臨更嚴苛的市場競爭。如何降低成本,提昇經營績效,進而確保有足夠的盈餘進行客戶服務以保有市場佔有率,將是未來電業競爭的重要基礎。此外,維持市場競爭的公平性,也是電業自由化能否成功的重要因素之一。所以,獨立系統運轉者是否以最佳的方式調度系統,使得系統不僅可以安全的運轉且成本最低;或輸電公司提出的系統擴建計畫是否是能以最低成本滿足未來系統需求;和監督管制機構如何確定現有系統運轉狀況及輸電費率的合理性,都需要有一套分析模擬工具來協助進行。
本文提出以線性規劃法為基礎來建立一個快速求解的最佳化電力潮流模式,模式中的整數控制變數將利用敏感度因子及模糊理論來設定,以避免求解整數規劃問題來加速OPF的求解速度。模式中的目標函數可依系統運轉或系統規劃的需求來進行修訂。

關鍵詞:線性規劃、最佳電力潮流、敏感度因子
Abstract

Electric deregulation is a trend in the power industry, electric utilites will face more harsh market competition. How to lower costs for improving the performance of management and then to have surpluses to carry on the customer service with holding the market share will be the important issues. In addition, maintaining the market competition fairness is also one of important factors to successiful electrical industry liberalization. Therefore, whether ISO is with the best way of operations does affect the system security as well as the transmission company’s system extension plans for meeting the future system need. In addition, how did the supervisory control organization determine the existing system operation condition and the transmission tariff rationality, it also requires simulation tools to assist a reliable and economical system operation.
This main purpose of this thesis is to propose a fast solution methodology of OPF based on linear programming. The integer control variables such as transformer tappings, and the number of capacitor/reactor banks will be decided by using the sensitivity factor and the fuzzy theory to avoid solving the integer programming problem and to accelerate the OPF solution speed. The objective function can be revised due to the system operation or the system planning.
目錄
中文摘要.....................................................................................................I
英文摘要...................................................................................................II
目錄..........................................................................................................III
圖目錄.......................................................................................................V
表目錄......................................................................................................VI

第一章 緒論...........................................................................................1
1.1 研究背景與動機..........................................................................1
1.2 研究目的與方法..........................................................................3
1.3 文獻探討......................................................................................5
第二章 OPF問題描述......................................................................10
2.1 OPF的問題描述.........................................................................10
2.2 OPF求解所需的要件.................................................................14
第三章 OPF演算法...........................................................................16
3.1 簡介............................................................................................16
3.2 線性化的OPF數學模型............................................................19
3.3 OPF解法.....................................................................................23
3.3.1 LPOPF.....................................................................................23
3.3.2 變壓器分接頭與電容器/電感器投入量之解法...................25
3.4 本章結論....................................................................................29

第四章 模擬分析...............................................................................30
4.1 前言..........................................................................................30
4.2 三匯流排系統測試..................................................................30
4.2.1 LPOPF...............................................................................30
4.2.2 不同起始點下的LPOPF..................................................33
4.3 搭配敏感度分析之LPOPF.....................................................35
4.3.1 完整的LPOPF..................................................................35
4.3.2 不同的起始點...................................................................37
4.3.3 不同系統條件下的LPOPF解.........................................40
4.4 IEEE 30個匯流排系統的測試...............................................44
4.4.1 LPOPF...............................................................................44
4.4.2 不同起始點下的LPOPF..................................................51
4.4.3 搭配敏感度分析的LPOPF..............................................55
4.5 不同的系統條件下的LPOPF解............................................57
第五章 結論與未來發展方向.........................................................62
5.1 結論.........................................................................................62
5.2 未來研究方向.........................................................................62
參考文獻..................................................................................................64

圖目錄
圖1.1 研究流程.........................................................................................5
圖3.1 LPOPF完整求解流程...................................................................18
圖3.2 LPOPF求解流程...........................................................................24
圖3.3 敏感度分析求解流程...................................................................28
圖4.1 三匯流排系統示意圖...................................................................31

表目錄
表4.1三匯流排系統的電力潮流解........................................................31
表4.2歷次疊代的匯流排電壓……........................................................32
表4.3歷次疊代的匯流排電壓相角........................................................32
表4.4歷次疊代系統的最小線損…........................................................32
表4.5不同起始值的LPOPF解…….......................................................34
表4.6配合敏感度矩陣的LPOPF運算結果...........................................36
表4.7在不同的起始條件下(CASE1).....................................................37
表4.8在不同的起始條件下(CASE2).....................................................38
表4.9在不同的起始條件下(CASE3).....................................................38
表4.10在不同的起始條件下(CASE4)...................................................39
表4.11在不同的起始條件下(CASE5)...................................................39
表4.12在不同的起始條件下(CASE6)...................................................40
表4.13改變實功率負載與注入(CASE1)...............................................41
表4.14改變實功率負載與注入(CASE2)...............................................42
表4.15改變實功率負載與注入(CASE3)...............................................43
表4.16改變實功率負載與注入(CASE4)...............................................44
表4.17變壓器資料..................................................................................45
表4.18並聯電容器的注入虛功率..........................................................45
表4.19 IEEE30 BUS匯流排與線路資料................................................45
表4.20 IEEE30 BUS匯流排電力潮流解…............................................49
表4.21 IEEE30 BUS匯流排LPOPF解…...............................................50
表4.22 給定30個匯流排系統不同的起始點之ㄧ................................52
表4.23給定30個匯流排系統不同的起始點之二.................................53
表4.24 給定30個匯流排系統不同的起始點之三................................54
表4.25變壓器分接頭調變量表..............................................................55
表4.26電容器/電抗器補償量表.............................................................55
表4.27完整LPOPF在30個匯流排系統中之運算結果....................... 56
表4.28修正後的匯流排資料................................................................. 58
表4.29修正後的線路資料..................................................................... 59
表4.30不同的系統條件下的運算結果................................................. 61
參考文獻

[1]"Power generation, operation, and control", Allen J. Wood, Bruce F. Wollenberg. New York: J. Wiley & Sons, c1996.
[2]H. W. Dommel and W. F. Tinney, "Optimal Power Flow Solutions", IEEE Transactions on Power Apparatus and Systems, vol. 87, pp. 1866-1876, October 1968
[3]R. C. Burchett, H. H. Happ, K. A. Wirgau, "Large Scale Optimal Power Flow", vol. 101, No. 10, pp. 3722-3732, Octtober 1982.
[4]R. C. Burchett, H. H. Happ and D. R. Vierath, "Quadratically Convergent Optimal Power Flow", Vol.103, pp.3267-3275, November 1984.
[5]D. I. Sun, B. Ashley, B. Brewer, A. Hughes, W. F. Tinney, "Optimal Power Flow by Newton Approach", IEEE Transaction on Power Apparatus and System, Vol. 103, No. 10, October 1984
[6]Giorgio Tognola, Rainer Bacher, "Unlimited Point Algorithm for OPF Problems", Power Systems, IEEE Transactions on , Vol. 14 , Iss. 3, pp. 1046-1054 Aug. 1999
[7]M. Todorovski, D. Rajicic, "A power flow method suitable for solving OPF problems using genetic algorithms", EUROCON 2003. Computer as a Tool. The IEEE Region 8, Vol. 2, pp.215 - 219, 22-24 Sept. 2003
[8]O. Alsac, J. Bright, M. Prais, B. Stott, "Further developments in LP-based optimal power flow", Power Systems, IEEE Transactions on , Volume: 5 , Issue: 3 , Aug. 1990 Pages:697 - 711

[9]B. Stott, J. L. Marinho, and O. Alsac, "Review of linear programming applied to power system rescheduling", Proceedings of IEEE PICA conference, May 1979, pp. 142-154
[10]K. Ponnambalam, V. H. Quintana, and A. Vannelli, "A Fast Algorithm for Power System Optimization Problems Using an Interior Point Method", IEEE Winter Meeting, 1991
[11]Y. C. Wu, A. S. Debs, and R. E. Marsten, "A nonlinear programming approach based on an interior point method for optimal power flows", in Proc. IEEE/NTUA Athens Power Tech. Conf., Athens, Greece, Sept. 5-8, 1993, pp. 196-200
[12]J. A. Momoh, “Robust Interior Point Optimal Power Flow,” EPRI Final Report TR-105081, May 1995
[13] J. A. Momoh, L. G. Dias, S. X. Guo, and R. Adapa, “Economic Operation and Planning of Multi-Area Interconnected Power System”, IEEE Trans. on Power System, Vol. 10, 1995
[14]J. A. Momoh, S. X. Guo, C. E. Ogbuobiri, and R. Adapa, "The Quadratic Interior Point Method for Solving Power System Optimization Problems", IEEE Transactions on Power System, Vol. 9, 1994
[15]J. A. Momoh, J. Z. Zhu, "Improved Interior Point Method for OPF Problem", IEEE Trans. on Power System, Vol. 14, No. 3, August 1999
[16]R. A. Jabr, A. H. Coonick, and B. J. Cory, "A Primal-Dual Interior Point Method for Optimal Power Flow Dispatching", IEEE Transactions on Power Systems, Vol. 17,No. 3, August 2002

[17]K. Tomsovic, "A fuzzy linear programming approach to the reactive power/voltage control problem", Power Systems, IEEE Transactions on, Vol. 7, Iss. 1, pp. 287-293, Feb 1992
[18]Y. C. Wu, A. S. Debs, "A Direct Nonlinear Predictor-Corrector Primal-Dual Interior Point Algorithm for Optimal Power Flows", Proceedings of Power Industry Coputer Applications (PICA) Conference held in Phoenix Arizona, May 2-7, 1993.
[19]L. A. Zadeh,“Fuzzy sets”, Information Control, Vol. 8, pp. 338-353, 1965.
[20]A. M. Sasson and H. M. Merrill, "Some Applications of Optimization Techniques to Power System Problems", Proceedings of IEEE, Vol. 62, July 1974, pp. 959-972.
[21] 賴慶育,”混合型線性整數規劃應用於火力機組發電排程預定之研究”, 國立中正大學電機所碩士論文,民國92年6月。
[22] 莊景勝,”線性整數規劃與拉氏鬆弛法求解火力機組排程之分析比較”, 國立中正大學電機所碩士論文,民國92年6月。
[23]”Power System Analysis”, Hadi Saadat, McGraw-Hill,Inc c1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top