跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖盛惠
研究生(外文):Sheng-Hui Liao
論文名稱:軟決策方法應用於盲蔽適應性決策迴授等化器
論文名稱(外文):Soft Decision Approaches for Blind Adaptive Decision Feedback Equalizer
指導教授:呂福生
指導教授(外文):Fu-Sheng Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:55
中文關鍵詞:軟決策盲蔽適應性決策迴授等化器
外文關鍵詞:Soft DecisionBlind Adaptive Decision Feedback Equalizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水下通訊環境中多重路徑效應和都卜勒效應一直是障礙所在,若想要快速的傳送資料,更是增加問題的複雜度,必須在接收端使用精密的通道等化及信號處理技術來克服。
為能得到正確且高通訊容量的需求,改善傳統適應等化器需要訓練序列,本論文引入軟決策盲蔽適應性決策迴授等化器架構,其結合了傳統決策迴授等化器、適應性等化器及一般盲蔽式等化器的優點,
同時再加入軟決策的概念,不須訓練序列即可適應時變的通道變化,
同時具有較快的收斂速度和更低的位元錯誤率。應用Matlab程式語言模擬等化器在穩態和非穩態通道中的適應及追蹤能力,由結果可知本文所改良之架構在惡劣通道中以及低SNR時都有不錯性能。
Because of multi-path and Doppler effect, the development of the underwater acoustic communication system is a challenging task. The optimum equalization and appropriate signal processing technique are needed to improve the quality of communications.

In this thesis, the implementation algorithms based on the blind adaptive decision feedback equalization (BADFE), whose function can be automatically adjusted according to variations of channel, are investigated. The soft decision is combined with the BADFE to get a modified equalization scheme. The proposed method combines decision feedback, blind adaptive scheme, and the soft decision method at the same time. Therefore it can combat the distortion occurred
in underwater communication channels without the need of the training sequence. The bit error rates and the transmission efficiency are improved. Computer simulation results indicate that the performances of the proposed method always has better convergence speed and lower bit error rate even in the bad channel and low SNR.
1 序論 1
1.1 研究動機與目的..................................1
1.2 各章節內容概述..................................2
2 常見等化器簡介 4
2.1 等化器簡介......................................4
2.2 等化器架構及型別................................5
2.3 決策迴授等化器..................................6
2.4 軟決策裝置的最佳化..............................7
2.5 傳統的適應性演算法..............................12
2.5.1 最小均方演算法 (LMS).......................13
2.5.2 遞迴最小平方演算法 (RLS)...................14
2.6 盲蔽式等化器....................................16
3 盲蔽適應性決策迴授等化器之改良 18
3.1 簡介............................................18
3.2 盲蔽適應性決策迴授等化器演算法則................19
3.2.1 起始模式 (R在T之前)........................19
3.2.2 追蹤模式 (T在R之前)........................22
3.2.3 追蹤模式的適應性演算法.....................24
3.3 改良盲蔽適應性決策迴授等化器....................25
3.3.1 結合BADFE的起始模式和追蹤模式..............25
3.3.2 加入軟決策概念.............................28
3.3.3 在DFE中引入抹除概念來降低錯誤傳遞..........30
4 等化器模擬結果與分析 32
4.1 模擬系統結構與通道描述..........................32
4.2 Matlab模擬結果與分析............................39
5 結論與未來發展 51
[1] R. J. Urick, Principles of Underwater Sound, New York : McGraw-Hill, 1983.
[2] T. H. Eggen, A. B. Baggeroer, and J. C. Preisig, ”Communication over Doppler spread channels-Part I: Channel and receiver presentation,” IEEE Journal of Oceanic Engineering, vol. 25, No. 1, Jan. 2000.
[3] D. B. Kilfoyle and A. B. Baggeroer, ”The state of the art in underwater acoustic telemetry,” IEEE Journal of Oceanic Engineering, vol. 25, No. 1, Jan. 2000.
[4] J. Labat, ”Real time underwater communications,” Proc. OCEANS’ 94, vol. 3, pp. 501-506, 1994.
[5] Y. Choi, J.-W. Park, S.-M. Kim, and Y.-K. Lim, ”A phase coherent all-digital transmitter and receiver for underwater acoustic communication systems,”in Proc. 35th SSST, pp. 79-83, 2003.
[6] T. S. Rappaport, Wireless Communications: Principles and Practice. Second Edition, Prentice Hall, 2002.
[7] J. Labat and O. Macchi, ”Adaptive decision feedback equalization: Can you skip the training period,” IEEE Trans. on communications, vol. 46, No. 7, July 1998.
[8] J. Balakrishnan, H. Viswanathan, and C. R. Johnson, Jr., ”Decision device optimization for soft decision feedback equalization,” Proceedings of the 2000 Conference on Information Sciences and Systems, (Princeton, NJ), March
2000.
[9] M. Reuter, J. C. Allen, J. R. Zeidler, and R. C. North, ”Mitigating error propagation effects in a decision feedback equalizer,” IEEE Trans. on Communication,
vol. 49, pp. 2028-2041, Nov. 2001.
[10] R. A. Casas, C. R. Johnson, Jr., R. A. Kennedy, Z. Ding, and R. Malamut, ”Blind adaptive decision feedback equalization: a class of channels resulting in ill-convergence from a zero initialization,” International Journal on Adaptive Control and Signal Processing Special Issue on Adaptive Channel Equalization, vol. 12, No. 2, pp. 173-193, March 1998.
[11] S. Haykin, Adaptive Filter Theory, NJ: Prentice-Hall, 2002.
[12] G. Ananthaswamy and D. L. Goeckel, ”A fast-acquiring blind predictive DFE,” IEEE Trans. on communications, vol. 50, No. 10, pp. 1557 - 1560, Oct. 2002.
[13] Y.-H. Kim and S. Shamsunder, ”Adaptive algorithms for channel equalization with soft decision feedback,” IEEE Journal on communications, vol. 16, No. 9, pp. 1660 - 1669, Dec. 1998.
[14] S. J. Nowlan and G. E. Hinton, ”A soft decision-directed LMS algorithm for blind equalization,” IEEE Trans. Commun., vol. 41, pp. 275-279, Feb. 1993.
[15] T. Frey and M. Reinhardt, ”Signal estimation for interference cancellation and decision feedback equalization,” IEEE 47th Vehicular Technology Conf.,
Phoenix, AZ, pp. 155-159, May 1997.
[16] S. Ariyavisitakul and Y. Li, ”Joint coding and decision feedback equalization for broadband wireless channels,” IEEE 48th Vehicular Technology Conference,
Ottawa, Canada, May 1998.
[17] S. Marcos, S. Cherif, and M. Jaidane, ”Blind cancellation of intersymbol interference in decision feedback equalizers,” in Proc. ICASSP, pp. 1073-
1076, May 1995.
[18] J. Proakis, Digital Communications, fourth edition, New York, McGraw-Hill, 2001.
[19] S. U. H. Qureshi, ”Adaptive equalization,” Proc. IEEE, vol. 73, pp. 1349-1387, Sept. 1985.
[20] D. N. Godard, ”Self-recovering equalization and carrier tracking in two dimensional data communication system,” IEEE Trans. on communications, vol. COM-28, pp. 1867-1875, Nov. 1980.
[21] J. Labat, O. Macchi, C. Laot, and N. Lesquin, ”Is training of adaptive equalizers still useful ?,” in Proc. Globecom’96, vol. 2, pp. 968-972, 18-22, Nov. 1996.
[22] M. Chiani, ”Introducing erasures in decision-feedback equalization to reduce error propagation” IEEE Transactions on communications, vol. 45, No. 7, pp. 757 - 760, July 1997.
[23] W. Chung, T. J. Endres, C. Long, and C. R. Johnson, Jr. ”Soft decision approaches for blind adaptive decision feedback equalizers” Signal Processing Advances in Wireless Communications, 2003. SPAWC 2003. 4th IEEE
Workshop on 15-18, pp. 447 - 451, June 2003.
[24] V. Shtrom and H. Fan, ”A refined class of cost functions in blind equalization” IEEE International Conference , vol. 3, pp. 2273 - 2276, April 1997.
[25] S. T. Alexander and A. L. Ghirniker, ”A method for recursive least squares filtering based upon an inverse QR decomposition,” IEEE Trans. on Signal Processing, vol. 41, pp. 20-30, Jan. 1993.
[26] I. D. Skidmore and I. K. Proudler , ”The KaGE RLS algorithm,” IEEE Trans., vol. 51, pp. 3094-3104, Dec. 2003.
[27] 呂福生,陳志強, 吳鑌崇, ”結合常數模組演算法之盲蔽式可適性決策迴授等化器,” 2004全國電信研討會, 93,12。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文