跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡安益
研究生(外文):An-Yi Tsai
論文名稱:台灣東北沿岸海域細菌與藍綠細菌日夜豐度變動之季節性變化與微細鞭毛蟲攝食損耗之研究
論文名稱(外文):Studies on seasonal diel variations of bacterial and Synechococcus abundance in the northeast of Taiwan and grazing impact of nanoflagellates
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Kuo-Ping Chiang
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:114
中文關鍵詞:細菌藍綠細菌微細鞭毛蟲
外文關鍵詞:bacteriaSynechococcusnanofalgellate
相關次數:
  • 被引用被引用:4
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要

本論文於1999年7月至2003年9月, 在台灣東北沿岸海域之副熱帶生態系, 對於細菌, 藍綠細菌及微細鞭毛蟲進行日週數量的季節性變動研究。 發現細菌, 藍綠細菌及微細鞭毛蟲豐度會有明顯的季節性變化, 呈現暖季高 (6至10月) 冷季低 (11至5月)的現象。 另一方面藍綠細菌與微細鞭毛蟲的數量在表水溫超過25℃時 (6月) 開始會有日夜變化產生, 藍綠細菌的高值在晚上會出現,而微細鞭毛蟲相反的則在白天會有高值出現, 但細菌則沒有明顯日夜的數量差異產生。 再者,為進一步瞭解上述細菌與藍綠細菌其日夜數量變化差異的原因,本研究另於2002年8月至2003年7月間, 使用分割過濾法來量測細菌與藍綠細菌成長及被捕食率來探討。 由培養結果發現, 細菌的成長與被攝食速率年間會有10倍左右的變動, 而藍綠細菌變動較小約有2-5倍的年間差異。 經分析之後清楚看出, 在暖季期間, 細菌與藍綠細菌的成長與攝食會有明顯的日夜變化, 細菌兩者速率都呈現白天大於晚上,同時兩者平衡, 因此細菌數量不會產生明顯日夜變化。 而藍綠細菌則與細菌的趨勢相反顯現出白天成長大於攝食, 而晚上則攝食超過成長, 因此造成在暖季時藍綠細菌數量會有日週變動產生。 而冷季期間, 細菌及藍綠細菌之成長與被攝食的速率並沒有呈現明顯的日夜差異。 另外以上述實驗結果可推估微細鞭毛蟲白天攝食餌料的主要來源為細菌 (佔總碳量85%), 而晚上則相反, 82% 的食物是藍綠細菌所供給。 季節間餌料生物重要性也有明顯差異, 暖季期間, 細菌與藍綠細菌佔微細鞭毛蟲餌料生物之比例大略相同, 但在冷季時, 微細鞭毛蟲主要的餌料來源為細菌,佔了所有能量來源的81%, 因此在冷季時, 細菌的角色比藍綠細菌來的重要。
另外為進一步瞭解控制藍綠細菌在暖季期間產生日夜變動的因子, 特別設計添加不同濃度藍綠細菌的培養實驗及使用細胞分裂頻度(Frequency of Dividing Cell)的方法來推估攝食與成長的變動情形,據此建立一個模式與現場藍綠細菌相比較。由此模式的推測結果可知,微細鞭毛蟲的攝食速率與藍綠細菌的密度有關, 表示著藍綠細菌的密度越高其攝食速率也越快。而溫度會改變藍綠細菌的成長, 溫度越高成長越快。 所以可看出在暖季時, 藍綠細菌在白天期間數量增加較快。而當藍綠細菌在晚上達到高值後, 由於藍綠細菌密度的增加致使微細鞭毛蟲的攝食能力增加, 而迅速移除在水體中藍綠細菌的數量。
Abstract

We analyzed seasonal and diel fluctuation patterns of heterotophic bacteria, Synechococcus spp., and nanoflagellates at a coastal station in the northeast of Taiwan between July 1999 and September 2003. All of these organic exhibited a clear seasonal cycle, with high values during the warm seasons (June to October) and lower values during the cold seasons (November to May). Synechococcus spp. and nanoflagellates exhibited diel fluctuation at water temperatures above 25°C. Cell concentrations of Synechococcus spp. were significantly higher during the evening, whereas those of nanoflagellates were higher during the day. The day and night amounts of heterotrophic bacteria did not differ significantly, and we did not observe diel rhythms of these organisms below 25°C. The fractionation experiments we performed between between August 2002 and July 2003. In the subtropical coastal ecosystem, a two-phased (warm>25℃, cold <25℃) seasonal cycle with a 10-fold variation was found in the picoplankton growth and grazing rate. The only exception was the grazing rate of Synechococcus (2-5 fold). A significant diel cycle of picoplankton growth and grazing rates existed during the warm season with both rates in bacteria being day>night while, in contrast, Synechococcus was night>day. During the warm season, our study clearly indicate that nanoflagellates largely depend on bacteria as an energy source in the daytime, but about Synechococcus contributed about 82% of the nanoflagellate diet at night. Another, in the warm season, naoflagellates consumed equal proportions of bacteria and Synechococcus spp. production; therefore, both consumption processes have an equal significance in warm season. However, during the cold season, bacteria contributed about 81% of the nanoflagellate diet, making it a more important food source than Synechococcus.
For studying the control factors of diel variations in Synechococcus abundance during the warm season, to use culture experiment with different density of Synechococcus and Frequency of Dividing Cell method to measure the variations of grazing and growth, and build the model by this method. For the results of model, the grazing rates of nanoflagellates are positively correlated with Synechococcus abundance, it mean that nanoflagellate grazing rates were likely to increase with Synechococcus abundance. Another, temperature could control the growth of Synechococcus, by this reason, we know that nanoflagellates grazing rates were likely to increase at night after Synechococcus had peak, and removed the Synechococcus abundance quickly.
目錄
表目錄
圖目錄
第一章 台灣東北部沿岸海域微生物群集數量的日週與季節變動

1-1 前言…………………………………………………………1

1-1-1 原生動物與微生物環………………………………………….1
1-1-2 微生物之季節與日週變動…………………………………….5
1-1-3 東海微生物之研究…………………………………………….8

1-2 材料方法 …………………………………………………11

1-2-1 48小時連續觀測(日周變動)
及日夜季節性變動……………………………………………………11
1-2-2 採樣地點及方法…. ………………………………………….12
1-2-3 培養實驗 (分層過濾法) ……………………………………15

1-3 結果………………………………………………………..21

1-3-1 微生物群集 (細菌、藍綠細菌及微細鞭毛蟲)
之日周變動……………………………………………………………21
1-3-2 細菌、藍綠細菌及微細鞭毛蟲的日夜變動的季節性變化 …23
1-3-3 細菌及藍綠細菌日夜成長的季節性變化 ……………………26
1-3-4 細菌及藍綠細菌被攝食速率的日夜變動及季節性變化 ……27
1-3-5 細菌及藍綠細菌淨成長速率之週年變化 ……………………29
1-3-6 暖季期間(6月至10月) picoplankton及nanoplankton之日夜能量傳遞變化 ……………………………………………………………30
1-3-7 微生物環能量傳遞的季節性變化……………………………..32

1-4 討論 ………………………………………………………35

1-4-1 Picoplankton與nanoplankton現存量季節性的變化 ………35
1-4-2 暖季期間 (6-10月) Picoplankton 日夜數量
變動的成因.………………………………………………………… 41
1-4-3 picoplankton成長率與被攝食率之季節性變動的互動關係………………………………………………………………………44

1-4-4 東海南部測站細菌與藍綠細菌之日夜變化 …………………46
1-4-5 東海南部測站細菌與藍綠細菌之季節變化 …………………49

第二章 藍綠細菌日夜數量變動之模式研究

2-1 前言 ……………………………………………………… 52
2-2 材料方法 ………………………………………………… 54

2-2-1 過濾培養法量測的日夜成長與攝食的速率推估藍綠細菌日週數量變化 ………………………………………………………………54
2-2-2 使用細胞分裂頻度法(FDC)修正藍綠細菌日夜成長速率的變動………………………………………………………………………55
2-2-3 使用細胞分裂頻度法(FDC)修正藍綠細菌日夜攝食速率的變動………………………………………………………………………56
2-2-4 使用細胞分裂頻度法(FDC)與攝食培養實驗推估藍綠細菌日夜數量變動 ……………………………………………………………58

2-3 結果 ……………………………………………………….63

2-3-1 使用過濾培養法的成長與攝食速率模擬藍綠細菌數量日週變化 ………………………………………………………………….63
2-3-2 使用FDC法量測成長速率與過濾培養法之攝食速率推估藍綠細菌數量日週變化…………………………………………………………64
2-3-3 推估藍綠細菌日周攝食變化………………………………….65
2-3-4 微細鞭毛蟲攝食能力之推估 …………………………………66
2-3-5 模式推估 ………………………………………………………66

2-4 結論…………………………………………………………68

第三章 瀉湖富營養鹽生態體系微生物環的生態特色---以大鵬灣為例………………….………………………………………………...70

3-1 前言 ………………………………………………………71
3-2 材料方法及進行步驟 ………………………………………72
3-2-1 現場採樣與測站 ………………………………………………72
3-2-2 稀釋培養實驗 …………………………………………………74
3-3 結果 …………………………………………………75

3-3-1 水文特色之時空分布 ………………………………………75
3-3-2 picoplankton 與nanoflagellates 數量之時空分布 ……………………………………………………………………77
3-3-3 細菌及噬菌性微細鞭毛蟲之攝食率與被捕食率之估計……..79

3-4 討論 ……………………………………………………….80
3-4-1 細菌與藍綠細菌的時空分布 ………………………………80
3-4-2 微細鞭毛蟲之時空分布………………………………………81
3-4-3 細菌生產力 …………………………………………………84

參考文獻 …………………………………………………85
Agawin, N.S.R., C.M. Duarte, and S. Agustí. 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170:45-53.

Anderson, M.R., and B.R. Rivken. 2001. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat. Microb. Ecol. 25:195-206

André, J.–M., C. Navarette, J. Blanchot, and M. –H. Radenac. 1999. Picophytoplankton dynamics in the equatorial Pacific: growth and grazing eates from cytometric counts. J. Geophys. Res. 104:3369-3380.

Anne, H. 1992. Bacterioplankton in a subarctic estuary: the Gulf of Bothnia (Baltic Sea). Mar. Ecol. Prog. Ser. 86:123-131.

Azam, F., T. Fenchel, F. G. Field, J.S. L-A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water – column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257-263.

Benni, H. 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39:395-403.
Berninger, U. G., B. J. Finlay, and P. Kuuppo-Leinikki. 1991. Protozoan control of bacterial abundances in fresh water. Limnol. Oceanogr. 36:139-147.

Biddanda, B., and R. Benner. 1997. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 42:506-518.

Binder, B. J., S. W. Chisholm, R. J. Olson, S. L. Frankel, and A. Z. Worden. 1996. Dynamics of pico-phytoplankton, ultra-phytoplankton, and bacteria in the central equatorial Pacific. Deep-Sea Res. II 43:907-931.

Bird, D.F, and J. Kalff. 1984. Empirical relationship between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can.J.Fish.Aquat.Sci.41:1015-1023.

Blanchot, J., and M. Rodier. 1996. Picophytoplankton abundance and biomass in the western tropical Pacific Ocean during the 1992 EL Nino year: results from flow cytometry. Deep-Sea Res. I 43: 877-895

Blanchot, J., J.–M. André, C. Navarette, and J. Neveux. 1997. Picophytoplankton dynamics in the equatorial Pacific: diel cycling from flow-cytometer observations. Comptes Rendus de I’Académie des Sciences Ⅲ-Sciences de laVie-Life Sci. 320:925-931.

Bloem, J., and F. M. Ellemberoek. 1989. Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation. Appl. Environ. Microbiol.55:1787-1795.

Børsheim, K. Y., and G. Bratbak. 1987. Cell volume to carbon conversion factors for a bacterivorous Monas sp. Enriched from seawater. Mar. Ecol. Prog. Ser. 8: 211-223.

Campbell, L., and E. J. Carpenter. 1986. Diel patterns of cell division in marine Synechococcus spp.(Cyanobacteria): use of the frequency of dividing cells technique to measure growth rate. Mar. Ecol. Prog. Ser. 32: 139-148.

Carlsson, P. 2001. Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnol. Oceanogr. 46(1):108-120.

Caron, D. A., H. G. Dam, P. Kremer, E. J. Lessard, L. P. Madin, T. C. Malone, Q. J. M. Napp, E. R. Peele, M. R. Roman, and M. J. Youngbluth. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res. 42: 943-972.

Chang, J., F. K. Shiah, G. C. Gong, and K. P. Chiang. 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep Sea Res. II 50: 1237-1247.
Chang, J. and E. J. Carpenter 1994. Active growth of the oceanic dinoflagellate ceratium teres in the Caribbean and Sargasso Sea estimated by cell cycle analysis. J. Phycol., 30:375-381.

Chang, J., C. C. Chung, and G. C. Gong. 1996. Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtrophical weatern Pacific coastal ecosystem. Mar. Ecol. Prog. Ser. 140: 199-205.

Chang, J., K. H. Lin, K. M. Chen, G. C. Gong, and K. P. Chiang. 2003. Synechococcus growth and mortality rates in the East China Sea: range of variations and correlation with environmental factors. Deep-Sea Res. II 50:1265-1278.

Charpy, L., and J. Blanchot. 1998. Photosynthetic picoplankton in French Polynesian atoll lagoons:estimation of taxa contribution to biomass and production by flow cytometry. Mar. Ecol. Prog. Ser. 162: 57-70.

Chase, Z., and N. M. Price. 1997. Metabolic consequences of iron deficiency in heterotrophic marine protozoa. Limnol. Oceanogr. 42:1673-1684.

Chiang, K. P., M. C. Kuo, J. Chang, R. H. Wang, and G. C. Gong. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Contin. Shelf Res. 22:3-13.

Chiang, K. P., C. Y. Lin, C. H. Lee, F. K. Shiah, and J. Chang. 2003. The coupling of oligotrich ciliate populations and hydrography in the East China Sea: spatial and temporal variations. Deep-Sea Res. 50:1279-1293.

Choi, D.H., J.S. C. Park., Y.S. Hwang., H. Huh., and B.C. Cho. 2002. Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters. Mar. Ecol. Prog. Ser. 229:1-10

Choi, D.H., C.C. Hwang, and B.C. Cho. 2003. Comparison of virus- and bacterivory-induced bacterial mortality in the eutrophic Masan Bay, Korea. Aquat. Microb. Ecol. 30:117-125.

Christaki, U., C. Courties, H. Karayanni, A. Giannakourou, C. Maravelias, K.A. Kormas, and P. Lebaron, 2002. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Micro. Ecol. 43: 341-352.

Christtine, D., S. L. Gall, H. J. Hartmann, and M. Breret 1999. Retention of ciliates and flagellates by the oyster Crassostrea gigas in French Atlantic coastal ponds: Protists as atrophic link between bacterioplankton and benthic suspension-feeders. Mar.Ecol.Prog. Ser 177:165-175.

Chrost, R. J., and M. A. Faust, 1999. Consequences of solar radiaton on bacterial econdary production and growth rats in subtropical coastal water(Atlantic Coral Reef off Belize, Central America). Aquat.Microb.Ecol. 20:39-48.

Chrzanowski, T.H, and K. Šimel. 1993. Bacterial growth and losses due to bacterivory in a mesotrophic lake. J. Plankton Res. 15: 771-785.

Chrzanowski, T. H., and K. Šimek. 1990. Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35: 1429-1436.

Cole, J. J., S. Findlay, and M. L. Pace. 1988. Bacterial production in fresh and salwater ecosystems :A cross- system over- view .Mar. Ecol. Prog. Ser.43:1-10.

Cole, J. J., and N. F. Caraco. 1993. The pelagic food web of oligotrophic lake, p. 101-111. In T. E. Ford [ed.], Aquatic microbiology. Blakwell.

Currie, D.J. 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphprus. Limnol.Oceanogr.35:1437-3455.

Di Servi, M. A., A. A. Mariazzi, and J. L. Donadelli. 1995. Bacterioplankton and phytoplankton in a large Patagonian reservoir (Republica Argentina). Hydrobiologia. 2: 213-129.

Dolan J. R. 1991. Microphagoous ciliates in mesohaline Chesapea Chesapeake Bay water: estimates of growth rates and consumption by copepods, Mar. Biol. 111: 303-309.

Dolan, J. R., and K. Šimek. 1998. Ingestion and digestion of an autotrophic picoplanker, Synechococcus, by a heterotrophic nanoflagellate, Bode saltans. Limnol. Oceanogr. 43: 1740-1746.

Dolan, J. R., and K. Šimek. 1998. Ingestion and digestion of an autotrophic picoplanker, Synechococcus, by a heterotrophic nanoflagellate, Bode saltans. Limnol. Oceanogr. 43: 1740-1746.

Dolan J. R. 1999. Diel periodicity in Synechococcus spp. Populations and grazing by heterotrophic nanoflagellates: Analysis of food vacuole contents. Limnol. Oceanogr. 44(6): 1565-1570.

Ducklow, H. W., and C. A. Carlson. 1992. Oceanic bacterial production. Adv. Microb. Ecol. 12:113-181.

DuRand, M. D., and R. J. Olson. 1996. Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra-, and nanoplankton. Deep-Sea Res. II 43:891-906.

Estep, K.W., P. G. Davis, M. D. Keller, and J. MeN. Sicburth. 1986. How important are algal nanoflagellate in bacterivory ? Limnol. Oceanogr. 31: 646-650.
Fenchel, T. M. 1984. Suspended bacteria as a food source, In Flows of energy and materials in marine ecosystems, ed.M. J. R. Fasham, Plenum Press, New york, pp.301-305.

Fenchel, T. and P. R. Jonsson. 1988. The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar. Ecol. Prog. Ser.48: 1-15.

Fenchel T 1987. Ecology of protozoa. Brock/Springer.

Fuhrman, J. A., and Suttle. 1993. Viruses in marine panktonic systems . Oceanogra. 6: 51-63.

Fuhrman , J. A., and R. T. Noble. 1995. Viruses and protests cause similar bacterial mortality in coastal seawater . Limnol. Oceanogr. 47 (7): 1236 – 1242.

Gasol, J. M. 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems? Limnol.Oceanogr.,38(3):657- 665.

Gasol, J. M., Doval, M. D., Pinhassi, J., Calderon-Paz, J. I., Guixa-Boixareu, N., Vaque, D. and Pedros-Alio, C. 1998. Diel variations in bacterial heterotrophic activity and growth in the north-western Mediterranean Sea. Mar. Ecol. Prog. Ser. 164:107-124.

Gasol, J.M. 1994. A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar. Ecol. Prog. Ser. 113: 291-300.

Goldman, J. C., and D. A. Caron. 1985. Experimental studies on an omnivorous microflagellate : implications for grazing and nutrient regeneration in the marine microbial food chain . Deep Sea Res. II 32:899–915.

Gong, G. C., L. Y. L. Chen, and K.K.Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont. Shelf. Res. 16:1561-1590.

González, J.M. 1999. Bactrivory rate estimates and fraction of active bacterivores in natural protest assemblages from aquatic systems. Appl Environ Microbial 65: 1463-1469.

Hall, J. A., and D. P. Barrett, and M. R. James. 1993. The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment. Journal of Plankton Res.15: 1075-1086.

Hall, J.A., M.R. James., and J.M. Bradford-Grieve. 1999. Structure and dynamics of the pelagic microbial food web of the Subtropical Convergence region east of New Zealand. Aquat. Microb. Ecol. 20:95-105

Harri, K. 1991. Picoplanktonic algae in the northern Baltic Sea: seasonal dynamics and flagellate grazing. Mar. Ecol. Prog. Ser 73:269-276

Hoch, M., and D. L. Kirchman. 1993. Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Mar. Ecol. Prog. Ser. 98: 283-295.

Hung, J. J. and Hung, P. Y. 2003. Carbon and nutrient dynamics in a hypertrophic lagoon in southwestern. J. Mar. Syst. 42: 97-114.

Jacquet, S., J. F. Lennon, D. Marie, and D. Vaulot. 1998. Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol. Oceanogr. 43: 1916-1931.

Jochem, F. 1988. On the distribution and importance of picocyanobacteria in a boreal inshore area (Kiel Bright, Western Baltic). J. Plankton Res. 10(5):1009-1022.

Johnson, M.D., and A.K. Ward. 1997. Influence of phagotrophic protistan bacterivory in determining the fate of dissolved organic matter (DOM) in a wetland microbial food web. Micro. Ecol. 33:149-162.

Jugnia, L.-B., R. D. Tadonleke, T. Sime-Ngando, and J. Delille. 2000. The microbial food web in the recently flooded Sep Reservoir: diel fluctuations in bacterial biomass and metabolic activity in relation to phytoplankton and flagellate grazers. Microb. Ecol. 40: 317-329.
Kirchman, D. L., Keil, R. G., Simon, M., and Welschmeyer, N. A. 1993. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res. 40: 967-988.

Kirchman, D.L. 1990. Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar. Ecol. Prog. Ser. 62:47-54.

Kormas, K. A., K. Kapiris, M. Thessalou-Legaki, A. Nicolaidou 1988. Quantitative relationships between phytoplankton, bacteria and protiats in an Aegean semi-enclosed embayment (Maliakos Gulf, Greece). Aquat. Microb. Ecol. 15:255-264.

Kuosa, H. 1991. Picoplanktonic algae in the northern Baltic sea : seasonal dynamics and flagellate grazing. Mar. Ecol. Prog. Ser. 73: 269-271.

Landry, M. R., J. Kirshtein, and J. Constantinou. 1996. Abundances and distributions of picoplankton populations in the central equatorial Pacific from 12˚N to 12˚S, 140˚W. Deep-Sea Res. II 43:871-890.

Landry, M. R., and R. P. Hassett 1982. Estimating the grazing impact of marine microzooplankton. Mar.Biol.67:283-288.
Lee, S., and Fuhrman, J. A. 1987. Relationships between biovolume and biomass of naturally derived marinebacterioplankton. Appl. Environ. Micro. 53:1298-1303.

Lee, C.W., I. Kudo., M. Yanada., and Y. Maita. 2001. Bacterial abundance and production and their relation to primary production in Funka Bay. Aquatic. Ecol. 48:1-9.
Liu, H., H. A. Nolla, and L. Campbell. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12:39-47.

Mann, E. L., and S. W. Chisholm. 2000. Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol. Oceanogr. 45: 1067-1076.

Markus, G. W., and P. Peduzzi 1995. Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the northern Adriatic Sea .J. Plank. Res. 17:1851-1856.

McManus, G. B., and J.A. Fuhrman. 1988. Control of marinee bacterioplankton opulations :measurement and significance of grazing. Hydrobiologia 159: 51-62.

Modigh, M., V, d’ Saggiomo and M.R. Alcala. 1996. Conservative features of picoplankton in a Mediterranean eutrophic area the Bay of Naples. J. Plankton Res. 18 (1): 87-95.

Murrell, M.C., and J.T. Hollibaugh. 1998. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquat. Microb. Ecol. 15:53-63.

Nagata, T. 2000. “Picopellets” produced by phagotrophic nanoflagellates: Role in the material cycling within marine environments. Dynamics and Characterization of Marine Organic Matter. In N. Handa, E. Tanoue, and T. Hama, eds., Terra Scientific Publishing, Tokyo.

Ochs, C. A. 1997. Effects of UV radiation on grazing by two marine heterotrophic nanoflagellates on autotrophic picoplankton. J. Plankton Res. 19: 1517-1536.

Paranjape, M. A., and K. Gold. 1982. Cultivation of marine pelagic protozoa, Ann. Inst. Oceanogr, Paris,58(S):143-150.

Parsons, T. R., M. Takahashi, and B. Hargrave. 1984. Biological Oceanographic Processes. NY, Pergamon, 263pp.

Peduzzi, P., and G.J. Herndl. 1992. Zooplankton activity fueling the microbial loop: differential growth response of bacteria from oligo- and eutrophic waters. Limnol. Oceanogr. 37:1087-1092.

Pomeroy, L. R., Wiebe, W. J. 1988. Energetics of microbial food webs. Hydrobiologia 159: 7-18

Porter, K. G., H. Paerl, and R. Hodson. 1985. Microbial interactions in lake food webs, In Complex Interactions in lake communities (ed. S. R. Carpenter), Spring-Verlag, New York, pp. 207-277.

Porter, K. G., and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.

Putland, J.N. 2000. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. 22:253-277.

Rassoulzadegan, F., and R.W. Sheldon. 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. 31: 1010-1021.

Romankevich, E.A. 1984. eochemistry of organic matter in the ocean. Springer, New Tork, 344pp.

Sanders, R. W., D. A. Caron, and U. G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters : an intr-ecosystem comparison. Mar. Ecol. Prog. Ser. 86:1-14.

Schultz, J.R.G.E., E.D. White III, and H.W. Ducklow. 2003. Bacterioplankton dynamics in the York River estuary: primary influence of temperature and freshwater inputs. Aquat. Microb. Ecol. 30:135-148.

Sherr, E. B., B. F. Sherr and J. McDaniel. 1991. Clearance rates of < 6µm flourescently labeled alage (FLA) by estuarine protozoa : potential impact of flagellates and ciliates. Mar. Ecol. Prog. Ser. 69:81-92.

Sherr, B. F., and C. Pedros-Alio. 1989. Simultaneous measurements of bacterioplankton production and protozan bacterivory in estuarine water. Mar. Ecol. Prog. Ser. 54: 209-219.

Sherr E, and B. Sherr. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225-1227.

Sherr, B. F., and E. B. Sherr. 1991. Proportional distribution of total number , biovolume , and bacterivory among size classes of 2 –20um nanopigmented marine flagellates. Mar. Microb. Food Webs 5:227–237.

Sherr, B. F. Sherr, E. B. Andrew, T., Fallon, R. D. and S. Y. Newell 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Mar.Ecol.Prog.Ser. 32:169-179.

Shiah F. K., and H. W. Ducklow. 1995. Multi-scale variability in bacterioplankton abundance, production and specific growth rate in a temperate salt marsh tidal creek. Limnol. Oceanogr. 40(1): 55-66.
Shiah, F. K. 1999. Diel cycles of heterotrophic abundance and production in the ocean surface waters. Aquat. Microb. Ecol. 17:239-246.

Shiah, F. K., G. C. Gong, T. Y. Chen and C. C. Chen. 2000a. Temperature dependence of bacterial specific growth rates on the continental shelf of the East China Sea and its potential application in estimating bacterial production. Aquat. Microb. Ecol. 22:155-162.

Shiah, F. K. K. K. Liu, S. J. Kao and G. C. Gong. 2000b. The coupling of bacterial production and hydrography in the southern East China Sea: spatial patterns in spring and fall. Cont. Shelf Res. 20:457-477.

Šolic M.´and N. Krstulovic´. 1994. Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. 114: 219-235.

Stoecker D. K., and J. M. Capuzzo. 1990. Predation on protozoa : its importance to zooplankton . J. Plankton Res. II 12: 891–908.

Strom, S. 2001. Light-aided digestion, grazing and growth in herbivorous protests. Aquat. Micro. Ecol. 23:253-261.

Strom, S. L. 2000. Bacterivory: interactions between bacteria and their grazers, P. 351-386. In D. L. Kirchman [ed.], Microbial ecology of the oceans. America.

Thingstad, T.F., M. Perez, S. Pelegri, J. Dolan and F. Rassoulzadegan. 1999. Trophic control of bacterial growth in microcosms containing a natural community from northwest Mediterranean surface waters. Aquat. Microb. Ecol. 18:145-156.

Tranvik, L. J. and J. M. Sieburth 1989. Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol.Oceanogr.34:688-699.

Tsai A.Y., K.P. Chiang, J Chang., and G.C. Gong. 2005. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Paciic coastal ecosystem. Limnol. Oceanogr 50(4):(Accept)

Vaqué D, J.M. Gasol. And C. Marrasé. 1994. Grazing rates on bacteria: the significance of methodology and ecological factors. Mar Ecol Prog Ser 109: 263-274.

Vaqué D., J.I. Paz, C.N.G. Boixereu, and C.P. Alió 2002. Spatia; distribution of microbial biomass and activity (bacterivory and bacterial production) in the northern Weddell Sea during the austral summer (January 1994). Aquat. Microb. Ecol. 29:107-121.

Vaulot, D., and D. Marie. 1999. Diel variability of photosynthetic picoplankton in the equatorial Pacific. Journal of Geophysical Research 104: 3297-3310.

Waterbury, J. B., S. W. Watson, F. W. Valois, and D. G. Franks. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214:71-120.

Weisse, T. and U. Scheffel-MÖser. 1991. Uncoupling the microbial loop: growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic. Mar. Ecol. Prog. Ser. 71: 195-205.

Weinbauer, M. G. W., and P. Peduzzi 1995. Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the northern Adriatic Sea. J Plankton Res 17:1851-1856.

White, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol. 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbiol. Ecol. 21:99-118.

Wikner, J., F. Rassoulzadegan and A. Hagstrom. 1990.Periodic bacterivore activity balances growth in the marine environment. Limno. Oceano. 35:313-324.

Wikner, J. and A. HagstrÖm. 1988. Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment. Mar. Ecol. Prog. Ser. 50: 137-145.

Wright, R. T., and R. B. Coffin. 1984. Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microb. Ecol. 10:137-149.

郭敏潔(1999) 藍綠細菌(Synechococcus)東海現存量之時空分布及其在台灣東北沿岸水域成長率季節變化之研究。國立台灣海洋大學碩士論文.26.pp.

王信欽 (2002) 台灣東北部沿岸海域矽藻群集之季節變動. 國立台灣海洋大學碩士論文.18.pp.

陳宗岳 (2001) 淺海水域異營性細菌生產力空間變異及生產控制機制探討. 國立台灣大學碩士論文.27.pp.

陳焜銘 (2002) 近岸及陸棚生態系中纖毛蟲對聚球藻捕食率的時空變異與其在生物碳循環中的重要性. 國立台灣海洋大學博士論文.62.pp.

吳芷容 (2002) 台灣東北沿岸海域纖毛蟲群集之季節變動與環境關係. 國立台灣海洋大學碩士論文. 20.pp
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊