跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何葉常青
研究生(外文):Hoyeh Chang-Thing
論文名稱:不同鹽度及鉛濃度下對烏魚(Mugilcephalus)血液酸鹼平衡、血紅素、葡萄糖及乳酸之影響
論文名稱(外文):Effects of different salinity and lead concentration exposure on blood acid-base balance, hemoglobin, glucose and lactate of grey mullet (Mugil cephalus)
指導教授:鄭學淵鄭學淵引用關係
指導教授(外文):Cheng Sha-Yen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:58
中文關鍵詞:烏魚血液酸鹼平衡血紅素葡萄糖乳酸鹽度
外文關鍵詞:Mugil cephalusblood acid-base balancehemoglobinglucoselactatesalinitylead
相關次數:
  • 被引用被引用:1
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
摘要
烏魚暴露於不同鹽度 ( 0、17 及34 psu )及鉛濃度(control、1、5、10及20 ppm)組合下,計測其三種血紅素:帶氧血紅素(Oxyhemoglobin)、不帶氧血紅素(Deoxyhemoglobin)及變態血紅素(Methemoglobin)間的比率及pH值、pO2、pCO2、葡萄糖(glucose)、乳酸(lactate)、 GOT (glutamic-oxalacetic transaminase)等重要之生理指標,探討其對血液的酸鹼平衡及能量代謝的影響。
在鹽度34 psu時於1天時,不同鉛濃度(control、1、5、10及20 ppm)平均不帶氧血紅素比率分別為61.43 、61.53、61.18、61.38以及59.49 % 至第10天時即開始下降,到20天後達最低值。
變態血紅素比率,在鹽度0 psu時,不同鉛濃度(1、5、10及20 ppm)至第10天有明顯上升之趨勢。在鹽度34 psu時,至第10天時即開始上升,到20天後達到最高值。
血液之pH值隨暴露時間增加而降低,隨著鉛濃度的增加而降低;烏魚暴露鹽度34 psu,鉛濃度20 ppm下經過1、5、10及20天後血液pH值平均分別為7.37、7.26、7.02及6.69。
血液之氧分壓隨暴露時間增加而增加,在鉛濃度20 ppm下經過1、5及10 天後血液氧分壓平均分別為21.40、25.80及27.20 mmHg ,第20天後上升至最高值52.00 mmHg;隨著鉛濃度的增加而增加;鉛濃度1、5、10及20 ppm下之血液氧分壓在20天時,其平均氧分壓分別為29.20、41.20及52.00 mmHg,相較於對照組,有顯著的差異。
血液之二氧化碳分壓隨暴露時間以及鉛濃度的增加而降低;烏魚暴露鹽度34 psu,鉛濃度20 ppm下經過1、5、10及20天後血液二氧化碳分壓平均分別為11.67、6.40、5.00及3.68 mmHg;相較於對照組,至第20天時,三個鹽度之不同鉛濃度的烏魚,其二氧化碳分壓皆明顯降低。
在0 psu的鹽度下,烏魚之血清葡萄糖濃度隨著曝露不同鉛濃度之增加而上升,曝露於20 mg/l的鉛濃度下,經過10天,濃度顯著上升至最大值的470 mg/dl;烏魚血清葡萄糖濃度與對照組比較無顯著差異(p < 0.05)。在同一時間下,曝露於5、10、20 ppm 鉛濃度組,均較對照組明顯增加(p < 0.05)。
烏魚血清乳酸濃度隨著鉛濃度及時間之增加而上升,10(0psu)、20天後達最大值。
血液GOT 隨著曝露鉛濃度及曝露時間之增加而增加,在鹽度17 psu經過20天後,烏魚曝露於1、5、10及20 ppm鉛濃度,其GOT 分別為45.00、49.00、52.17及58.40 U/L,皆高於對照組 。
Abstract
Mugil cephalus exposed to 0(control),1, 5, 10 and 20 ppm Pb2+ for 1,5,10 and 20 days at different salinity (0, 17 and 34 psu) were examined blood oxyhemoglobin, deohemoglobin, methmoglobin, pH, pO2, pCO2, glucose, lactate and GOT(glutamic-oxalacetic transminase).
Blood deoxyhemoglobin decreased directly with ambient Pb2+ concentration and exposure time, where as methemoglobin was inversely related to ambient Pb2+ concentration and exposure time. Mugil cephalus exposed to 20 ppm Pb2+ with salinity 0, 17 and 34 psu for 10 days, the methemoglobin at 0, 17 and 34 psu were 24.75, 11.94 and 5.81 %, respectively.
Blood pO2 increased with ambient Pb2+ concentration and exposure time, where as blood pH and pCO2 decrease with in- creased ambient Pb2+ concentration and exposure time. Mugil cephalus exposed to 20 ppm Pb2+ in 34 psu after 1, 5, 10 and 20 days. The blood pH was 7.37, 7.26, 7.02, and 6.69, blood pCO2 was 11.67, 6.40, 5.00 and 3.68 mmHg, and blood pO2 was 21.4, 25.8, 27.2 and 52.0 mmHg, respectively.
Blood glucose, lactate and GOT increased with ambient Pb2+ concentration and exposeure time. This result indicated the ambient lead affected the liver function and energy metabolism.
目錄
第一章 前言 1
第二章 文獻整理 3
圖 7
第三章烏魚在不同鹽度及鉛濃度組合下對其血液的血紅素及酸鹼平衡影響之研究
一、摘要 8
二、前言 9
三、材料與方法 10
四、結果 12
五、討論 17
圖 20
第四章烏魚於不同鹽度及鉛濃度下血液葡萄糖、乳酸及GOT之影響
一、摘要 26
二、前言 26
三、材料與方法 27
四、結果 28
五、討論 30
圖 34
第五章 結論 37
參考文獻 38
參考文獻

Anderson, D. P. 1990. Immunological indicators: effect of environmental stress on immune protection and disease outbreaks. American fisheries society symposium, 8:38-50.
Barton B. A. and Iwama, G. K., 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 1:3-26.
Barwick, M. and Maher, W., 2003. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australian Mararine Environmental Reserch, 56:471-502.
Bath, R. N. and Eddy, F. B., 1979. Salt and water balance in rainbow trout (Salmo gairdneri) rapidly transferred from fresh water to sea water. Journal of Experimental Biology, 83:193-202.
Bell, G. R., 1968. Distribution of transaminase (amine transferases) in the tissue of Pacific salmon (Oncorhynchus) with emphasis on the properties and diagnostic use of glutamic-oxalacetic transaminase. Journal of the Fisheries Research Board Canada, 25:1247-1268.
Benesch, R. E, Benesch, R. and Yung, S., 1973. Equations for the spectrophotometic analysis of hemoglobin mixtures. Analytical Biochemistry, 55:245-248.
Boteva, R., Severov, S., Genov, N., Beltremini, M., Filipii, N., Ricchelli, F., Tallandini,L., Pallhuber, M. M., Tognon, G. and Salvato, B., 1991. Biochemical and functional characterization of Rapana thomasiana hemocyanin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 100:493-501.
Bryan, G. W. and Langston, W. J., 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review of Environment Pollution, 76:89-131.
Buckley, J. T., Roch, M., McCarter, J. A., Rendell, C. A., and Matheson, A. T., 1982. Chronic exposure of coho salmon to sublethal concentrations of copper—I. Effect on growth, on accumulation and distribution of copper, and on copper tolerance. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 72:15-19.
Canli, M. and Furness, R. W., 1993b Toxicity of heavy metals dissolved in sea water and influences of sex and size on metal accumulation and tissue distribution in the norway lobster Nephrops norvegicus. Marine Environmental Research, 36:217-236.
Chen, J. C. and Cheng, S. Y., 1996. Hemolymph osmolality, acid-base balance, and ammonia excretion of Penaeus japonicus Bate exposed to ambient nitrite. Archives of Environmental Contamination and Toxicology, 30: 151-155.
Cheng, S. Y. and Chen, J. C., 2002. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid–base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate. Aquatic Toxicology, 61:181-193.
Cherian, M. G. and Goyer, R. A., 1978. Metallothioneins and their role in the metabolism and toxicity of metals. Life Sciences, 23:1-9.
Davies, P. H., Goettl, J. P., Sinley, J. R. and Smith, N. F., 1976. Acute and chronic toxicity of lead to rainbow trout Salmo gairdner in hard and soft water. Water Research, 10:199-206.
De Graaf, Fr., 1964. Maintenance problems in large public aquaria. Archives Neerlandaises de Zoologie, 16: 142-143.
Demayo, A., Taylor, M. C., Taylor, K. W. and Hodson, P. V., 1982. Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock. C.R.C. Critical Reviews in Environmental Contam., 12:257-305.
Diamond, S. A., Newman, M. C., Mulvey, M. and Guttman, S. I., 1991. Allozyme genotype and time-to-death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison of populations. Aquatic Toxicology, 21:119-134.
Dietrich, G., Kalle, K., Krauss, W. and Siedler, G., 1980. General Oceanography, 2nd ed., John Wiley & Sons, New York.
Dixon, D. G. and Sprague, J. B., 1981. Copper bioaccumulation and hepatoprotein synthesis during acclimation to copper by juvenile rainbow trout. Aquatic Toxicology, 1:69-81.
Duncan, D. E., 1955. Mutiple – range and multiple F test. Biometrics, 11:1-42.
Eddy, F.B. and Bath R.N., 1979. Ionic regulation in rainbow trout, Salmo gairdneri, adapted to freshwater and dilute seawater. Journal of Experimental Biology, 83: 181-192.
Gaesser, G. A. and Brooks, G. A., 1984. Metabolic basis of excess post-exercise oxygen consumption: a review. Medicine and Science in Sports and Exercise, 16: 29-43.
Grabda, E., Einszporn-Orecka, T., Felinska, C. and Zbanysek, R., 1974. Experimental methemoglobinemia in trout. Acta Ichthyologica et Piscatoria, 4:43-71.
Heath, A. G., 1987. Effects of waterborne copper or zinc on the osmoregulatory response of bluegill to a hypertonic NaCl challenge Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 88: 307-311.
Henry, R. P. and Wheatly, M. G., 1992. Interaction of respiration on regulation and acid-base balance in the everyday life of aquatic crustaceans. American Zoologist, 32:407-416.
Hodson, P. V., Blunt, B. R., Spry and Chronic, D. J., 1978. toxicity of water-borne and dietary lead to rainbow trout (Salmo Gairdneri) in lake Ontario water. Water Research, 12:869-878.
Huang, C. Y. and Chen, J. C., 2002. Effects on acid-base balance, methaemoglobinemia and nitrogen excretion of European eel after exposure to elevated ambient nitrite. Journal of Fish Biology, Taiwan, 61:712-725.
Jeney, G., Nemcsok, J., Jeney, Zs., Olah, J., et al., 1992. Acute effect of sublethal ammonia cincentrations on common crap (Cyprinus carpio L.). Effect of ammonia on blood plasma transaminase(GOT, GPT), GIDH enzyme activity, and ATP value. Aquaculture, 104: 149-156.
Kalay, M. and Canli, M., 2000. Elimination of essential (Cu, Zn) and nonessential (Cd, Pb) metals from tissues of a freshwater fish Tilapia zillii following an uptake protocol. Journal of Zoology, 24: 429–436.
Knoph, M. B. and Thorud, K., 1996. Toxicity of ammonia to atlantic salmon (Salmo salar L.) in seawater-effects on plasma osmolality, ion, ammonia, urea and glucose levels and hematologic. Parameters. Comparative Biochemistry and Physiology Part A: Physiology, 113:375-381.
Langston, W. J., 1990. Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In: Furness R.W. and P.S. Rainbow (eds.), Heavy Metals in the Marine Environment, pp.101-122. CRC Press, Inc.
Lin, S. W. and Hsieh, I. J., 1999. Occurrence of green oyster and heavy metals contaminant levels in the Sien-San area, Taiwan. Marine Pollution Bulletin, 38:960-965.
Linnaaeus C., 1785. Systema Naturae, Ed. X. Holmiae, 1:824.
Maleusky, J. and Montgomery, M. W., 1974. Liverfat and protein metabolism in rainbow trout Salmo gairdneri fed cyclopropenoid fatty acid. Journal of the Fisheries Research Board Canada, 31: 1093-1100.
Mangum, C., Silverthorn, S. U., Harris, J. L., Towle, K. W. and Drall, A. R., 1976. The relationship between blood pH, ammonia excretion and adaption in low salinity in the blue crab Callinects sapidus. Journal of Experimental Zoology, 195:129-136.
Mason, J., 1989. The causes and consequences of surface water acidification. In : R. Morris, E. W. Toylor, D. J. A. Brown (Eds), Acid Toxicity and Aquatic Animals. Cambridge University press.
Mason, R. P., Mangum, C. P. and Godette, G., 1983. The influence of inorganic ions and acclimation salinity on hemocyanin oxygen binding in the blue crab Callinectes sapidus. Biology Bulletin, 164:104-123.
Mazeaud, M. M., Mazeaud, F. and Donaldson, E. M., 1977. Primary and secondary effects of stress on fish: some new data with a general review. Transactions of the American Fisheries Society, 106:201-202.
McCarter, J. A. and Roch, M., 1983. Hepatic metallothionein and resistance to copper in juvenile coho salmon. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 74:133-137.
McCarter, J. A. and Roch, M., 1984. Chronic exposure of coho salmon to sublethal concentrations of copper—III. Kinetics of metabolism of metallothionein. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 77:83-87.
McCarter, J. A., Matheson, A. T., Roch, M., Olafson, R. W. and Buckley, J. T., 1982. Chronic exposure of coho salmon to sublethal concentrations of copper—II. Distribution of copper between high- and low-molecular-weight proteins in liver cytosol and the possible role of metallothionein in detoxification. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 72:21-26
Mehrle, P. M. and Bloomfield, R. A., 1974. Ammonia detoxifying mechanisms of rainbow trout altered by dietary dieldrin. Toxicology and Applied Pharmacology, 27:335-365.
Méndez, I. D., Alhama, J., Pueyo, C. and Barea, J. L., 1997. Fish 8-oxo-dG levels as biomarker of oxidative damages by environmental pollutants. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 379, 168.
Mikulski, C. M., Burnett, L. E. and Burnett, K. G., 2000. The effects of hypercapnic hypoxic on the survival of shrimp challenged with Vibrio parahaemolyticus. Journal of Shellfish Research, 19:301-311.
Morris, S., Bridges, C. R. and Grieshaber, M. K., 1985. A new role for uric acid: modulator of haemocyanin oxygen affinity in crustaceans. Journal of Experimental Zoology, 235:135-139.
Mugnier, C., Fostier, A., Guezzo, S., Gagnon, J. L. and Quemener, L., 1998. Effect of some repetitive factors on turbot stress response. Aquaculture Internationa, 6:33-45.
Nriagu, J. and Pacyna, J. M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333:134-139.
Olsen, Y. A., Falk, K. and Reite, O. B., 1992. Cortisol and lactate levels in atlantic salmon Salmo salar developing infectious anaemia (ISA). Diseases of Aquatic Organisms , 14:99-104.
Pickering, A. D. and Christie, P., 1981. Changes in the concentrations of plasma cortisol and thyroxine during sexual maturation of the hatchery-reared brown , Salmo trutta L. General and Comparative Endocrinology, 44:487-496.
Racicot, I. C., Gaudet, M. and Zeray, C., 1975. Blood and liver enzymes in rainbow trout (Salmo gairdneri Rich.) with emphasis on their diagnostic use: study of CCl4 toxicity and a case of Aeromonas infection. Journal of Fish Biology, 7:825-835.
Racotta, I. S. and Roberto, H. H., 2000. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comparative Biochemistry and Physiology Part A: Physiology, 125:437-443.
Reichert, W. L., Federighi, D. A. and Malins, D. C., 1979. Uptake and metabolism of lead and cadmium in coho salmon (Oncorhynchus kisutch). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 63:229-234.
Riggs, F. A., 1988. The Bohr effect. Annural Review Physiology, 50:181-204.
Ringwood, A. H., 1991. Short-term accumulation of cadmium by embyros larvae, and adults of a Hawaiian bivalve, Isognomon californicum. Journal of Experimental Marine Biology Ecological, 149: 55-56.
Roesijadi, G. and Robinson, W. E., 1994. Metal regulation in aquatic animals: mechanism of uptake, accumulation and release. In: Malins, D. C., Ostrander, G. K. (Eds.), Aquatic Toxicology Molecular, Biochemical and Cellular Perspectives. Lewis Publishers, London.
Ross, E. M., 1989. Signal sorting and amplification through G protein-coupled receptors. Neuron, 3: 141-152.
SAS, 1988. SAS/STAT user’s guide, 6.03 edition. SAS Institution, Cray, NC, USA.
Somero, G. N., 1986. Protons, osmolytes, and fitness of interanl milieu for protein function. American Journal of Physiology, pp. 213-251.
Stomer, J., Jensen, F. B. and Rankin, J. C., 1996. Uptake of nitrite, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance. Canadian Bulletin of Fisheries and Aquatic Sciences, 53:1943-1950.
Swift, D. J., 1981. Changes in selected blood component concentrations of rainbow trout, Salmo gairdneri Richardson, exposed to hypoxia or sublethal concentration of phenol or ammonia. Journal of Fish Biology, 19:45-61.
Sylvester, J. R., Nash, C. E. and Emerson, C. R., 1975. Salinity and oxygen tolerances of eggs and larvae of Hawaiian striped mullet (Mugil cephalus) L. Journal of Fish Biology, 7:621-629.
Taylor, L. N., McGeer, J. C., Wood, C. M. and McDonald, D. G. 2000. The physiological effects of chronic copper exposure to rainbow trout ( Oncorhynchus mykiss ) in hard and soft water. An evaluation of chronic endpoints. Environmental Toxicology Chemistry (in press).
Truchot, J. P., 1983. Regulation of acid-base balance. In: Mantel, L. H. (Ed.), The Biology of Crustacea, 5:431-457.
Truchot, J. P., 1980. Lactate increases the oxygen affinity of the crab haemocyanin. Journal of Experimental Ecological, 214:205 - 208.
Varanasi, U. and Gmur, D.J., 1978 Influence of water-borne and dietary calcium on uptake and retention of lead by coho salmon (Oncorhynchus kisutch). Toxicology Appl. Pharmacol, 46: 65-90.
Vijayan, M. M., Pereira, C., Grau, E. G. and Iwama, G. K., 1997. Metabolic responses associated with confinement stress in tilapia: The role of cortisol. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 116: 89-95.
Walsh, J. L., Todd, W. P., Carpenter, B. K. and Schwarcz, R., 1991. 4-Halo-3-hydroxyanthranilic acids: Potent competitive inhibitors of 3-hydroxy-anthranilic acid oxygenase in vitro. Biochemical Pharmacology, 42:985-990.
Webb, N. A. and Wood, C. M., 1998. Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 17:579-588.
Williams, E. M., Nelson, J. A. and Heisler, N., 1997. Cardio-respiratory function in carp exposed to environmental nitrite. Journal of Fish Biology, 50:137-149.
Wittmann, G., 1983. Toxic metals.In: Forstner, U. and G.T.W. Witmann(Eds.), Metal Pollution in the Aquatic Environment, pp.3-68.
Wood, C.M., 1988. Acid-base and ionic exchanges at gills and kidney after exhaustive exercise in rainbow trout. Journal of Experimental Biology, 134:779-801.
Wootten, R. and Williams, H.A., 1980. Some effects of therapeutic with coppersulphate and formalin in rainbow trout (Salmo gairdenri Richardson). Abstracts of the oral papers presented at the F.S.B.I. international symposium, “Stress in Fish”, University of East Anglia, Norwich, September 9-12.
Zabel, T. F., 1993. Diffuse source of pollution by heavy metals. J. IWEM 7:513-520.
袁又罡, 1990. 銅對烏魚 (Mugil cephalus Iinnaeus)之急慢性毒性的影響.國立台灣大學動物學研究所碩士論文.
童逸修, 1981.臺灣產鯔魚之漁業、生態及資源。經濟部-國立台灣大學合辦漁業生物試驗所研究報告 第3卷第4號 第38-102頁.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊