跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃一峰
研究生(外文):Yi-Feng Hung
論文名稱:硫酸銅對多齒新米蝦(Neocaridinadenticulata)之毒性影響
論文名稱(外文):Toxicity of copper sulphate on Freshwater
指導教授:陳俊德陳俊德引用關係
指導教授(外文):Chun-Te Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:62
中文關鍵詞:多齒新米蝦銅重金屬急性毒性耗氧率排氨率
外文關鍵詞:Freshwater shrimpNeocaridina denticulateCopper heavy metalAcute toxicityoxygen consumption rateammonia excretion rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在探討硫酸銅對多齒新米蝦(Neocaridina denticulata)之急毒性及排氨和耗氧率之影響。銅之急性毒性實驗共使用了0.01、0.02、0.04、0.08、0.16、0.24、0.32 ppm 七種銅濃度,耗氧率及排氨率實驗則使用了0、0.01、0.02、0.04 ppm四種銅濃度。急性毒性、耗氧率及排氨率實驗分別浸漬96、24及24小時。
急性毒性實驗結果,由解析得到之綜合死亡曲線可求出在銅濃度0.01~0.32 ppm之任一濃度,在96小時浸漬時間內之多齒新米蝦死亡率,此外,96hr-LC50 為9.23 ug/L。
耗氧率實驗結果顯示,於是相同浸漬時間下,銅濃度愈高則耗氧率有增加之趨勢,但是排氨率則呈現降低之趨勢。0、0.01、0.02、0.04 ppm的不同銅濃度之平均耗氧率分別為0.68, 1.047, 1.042, 0.97 mg/g/hr,而排氨率則為0.1353、0.0709、0.0495、0.0492 μg/g/hr。

關鍵字:多齒新米蝦(Neocaridina denticulate)、銅重金屬、急性毒性、耗氧率、排氨率。
This thesis tries to find out the influence of copper heavy metal on Freshwater shrimp (Neocaridina denticulata) in acute toxicity, oxygen consumption rate and ammonia excretion rate.
Experiment of acute toxicity used seven kinds of concentration of copper -- 0.01、0.02、0.04、0.08、0.16、0.24、0.32 ppm. Experiment of oxygen consumption and ammonia excretion used four kinds of concentration of copper -- 0、0.01、0.02、0.04 ppm. The experimental soaking time of acute toxicity, oxygen consumption and ammonia excretion spent 96, 24 and 24 hours, respectively.
Results of acute toxicity lead to a logistic formula of Freshwater shrimp lethal curve from each copper concentration. From this formula, we can get the Freshwater shrimp death rate from each concentration of copper within 0.01~0.32 ppm. Besides, results show that the 96hr-LC50 is 9.23 ug/L.
The rate of oxygen consumption of Freshwater shrimp increased with the increasing of copper concentration in the same exposed time, while the rate of ammonia excretion of Freshwater shrimp decreased with the increasing of copper concentration in the same exposed time.
Averagely, oxygen consumption rates of Freshwater shrimps, exposed 24 hours in the 0, 0.01, 0.02, 0.04 ppm concentration of copper water, are 0.68, 1.047, 1.042, 0.97 mg/g/hr respectively, as well as, ammonia excretion rates of Freshwater shrimps are 0.1353、0.0709、0.0495、0.0492 μg/g/hr respectively.

Key words: Freshwater shrimp (Neocaridina denticulate), Copper heavy metal, Acute toxicity, oxygen consumption rate, ammonia excretion rate.
目錄

目錄 Ⅰ
表目錄 Ⅲ
圖目錄 IV
照片目錄 VI
摘要 ⅤII
Abstract VIII
第一章 緒言 1
1-1研究動機 1
1-2文獻回顧 3
1-2-1多齒新米蝦之分類與生態 3
1-2-2重金屬對甲殼類之毒性影響 5
1-2-3硫酸銅對水產生物之毒性 8
1-2-4銅對魚類的毒性 9
1-2-5氮排泄產物 10
第二章 材料與方法 14
2-1 動物來源及蓄養 14
2-2 實驗容器 14
2-3 試驗用水 14
2-4 銅原液之配置如下 14
2-5 預備試驗 14
2-6 急性毒性試驗 15
2-7 耗氧測定 16
2-8 氨-氮測定 16
第三章 結果與討論 18
3-1 銅對多齒新米蝦之急性毒性 18
3-1-1 死亡曲線的特性 18
3-1-2 半致死時間(T50)、25%致死時間(T25)或75%致死時間(T75)與銅濃度之關係 19
3-1-3死亡曲線之Master Curve 19
3-1-4 半致死濃度結果比較 20
3-2 多齒新米蝦在銅環境下蓄養一天對其耗氧率的影響 21
3-3多齒新米蝦在銅環境下蓄養一天對其排氨率的影響 23
第4章 討論與結論 25
4-1 討論 25
4-2 結論 26
4-2-1銅對多齒新米蝦之急性毒性實驗 26
4-2-2曝露於致死濃度硫酸銅下多齒新米蝦耗氧之影響 26
4-2-3曝露於致死濃度硫酸銅下多齒新米蝦排氨之影響 27
謝辭 28
參考文獻 29
表 43
圖 47
照片 62


表目錄

表1. 銅-銅離子對甲殼類生物之影響 42
表2. 實驗用水加入硫酸銅之pH 值的變化 43
表3. 多齒新米蝦在Cu2+濃度在0.01、0.02、0.04、0.08、0.16、0.24、0.32 ppm時死亡曲線logistic 方程式S=1/[1+exp(q-r*t)] q、r 值及T25、T50、T75值。 43
表4. 重金屬-銅(Cu2+)對蝦子半致死濃度 44
表5. 多齒新米蝦在不同銅濃度之對照組、0.01、0.02及0.04 ppm暴露24小時間之耗氧量變化(mg/g/hr) 45
表6. 多齒新米蝦在不同銅濃度之對照組、0.01、0.02及0.04 ppm暴露24小時間之排氨量變化(μg/g/hr) 45













圖目錄

圖1. 多齒新米蝦在Cu2+濃度在0.01、0.02、0.04、0.08、0.16、0.24及0.32 ppm,且浸漬時間為0-96小時之死亡曲線。S和T分別代表死亡率和浸漬時間。 46
圖2. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.01 ppm) 47
圖3. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.02 ppm) 47
圖4. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.04 ppm) 48
圖5. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.08 ppm) 48
圖6. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.16 ppm) 49
圖7. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.24 ppm) 49
圖8. 以最小平方法計算多齒新米蝦死亡直線方程,S和T分別代表死亡率和浸漬時間。(Cu2+:0.32 ppm)- 50
圖9. 多齒新米蝦在Cu2+濃度在0.01、0.02、0.04、0.08、0.16、0.24及0.32 ppm,且浸漬時間為0-96小時之死亡迴歸曲線。S和T分別代表死亡率和浸漬時間。 51
圖10.多齒新米蝦在Cu2+濃度在0.01、0.02、0.04、0.08、0.16、024
和0.32 ppm之半致死時間(T50)與25﹪致死時間(T25)或
75﹪致死時間(T75)。 52
圖11. 0.01、0.02、0.04、0.08及0.16 ppm Cu2+濃度(C)和T50、T75相對應的直線方程式,此二條直線方程式之交點(C0,T0)為(0.3932,0.1642) 53
圖12. 0.16、0.24及0.32 ppm Cu2+濃度(C)和T50、T75相對應的直線方程式,此二條直線方程式之交點(C0,T0)為(5.5862,1785.9779) 54
圖13. 以最小平方法計算在Cu2+濃度0.01、0.02、0.04、0.08及0.16 ppm時ln/(1/s-1)和(T-T0)/(C-C0)相對應關係圖。S為死亡率。
55
圖14. 在Cu2+ 濃度0.01、0.02、0.04、0.08及0.16 ppm時,死亡率(S)和(T-T0)/(C-C0)相對應關係圖。實線表示多齒新米蝦之綜合死亡率曲線,logistic方程式S=1/{1+exp[q-r(T-T0)/(C-C0)]}。
56
圖15. 以最小平方法計算在Cu2+濃度0.16、0.24及0.32 ppm時ln/(1/s-1)和(T-T0)/(C-C0)相對應關係圖。S為死亡率。 57
圖16. 在Cu2+濃度0.16、0.24及0.32 ppm時,死亡率(S)和(T-T0)/(C-C0)相對應關係圖。實線表示多齒新米蝦之綜合死亡率曲線,logistic方程式S=1/{1+exp[q-r(T-T0)/(C-C0)]}。 58
圖17. 多齒新米蝦在銅濃度為0、0.01、0.02及0.04 ppm環境中經過24小時後的耗氧率(±SE)。 59
圖18. 多齒新米蝦在銅濃度為0、0.01、0.02及0.04 ppm環境中經過24小時後之排氨率(±SE)。 60


照片目錄

照片1. 飼育箱 61
照片2. 實驗進行中 61
照片3. 玻璃棒和挾子 61
照片4. 蓄養中的多齒新米蝦 61
照片5. 過濾中的實驗用水 61
照片6. 多齒新米蝦的外型 61
參考文獻

Ahsanullah, M. and W. Ying (1995). Toxic effect of dissolved copper on Penaeus meguiensis and Penaeus monodon. Bull. Environ. Contam. Toxicol, 5: 81-88.
Alikhan, M. A. (1972). Haemolymph and hepatopancreas copper in porcellio laevis Latrelille (Porcellionidae, Peracarida). Comp. Biochem. Physiol, 42A: 823-832.
Bambang, Y., P. Thuet., Daures. M. Charmantier., J. P. Trilles and G. Charmantier (1995). Effect of copper on survival and osmoregulation of various developemental stages of the shrimp Penaeus japonicus Bate (Crustacea, Decapod). Aqua. Toxicol., 33: 125-139.
Binns, R. and A. J. Peterson (1969). Nitrogen excretion by the spiny lobster Jasus edwardsi (Hutton). The role of the antennal gland. Biol. Bull., 136: 147-153.
Bjerregaard, P. and T. Vislie (1986). Effect of copper on ion and osmoregulation in the shore crab Carcinus maenas. Mar. Biol., 91: 39-76.
Boitel, F. and J. P. Trucbot (1989). Effects of sublethal and lethal copper levels on hemolymph acid-base balance and ion concebtrations in the shore crab Carcinus maenas kept inundiluted sea water. Mar. Biol., 103: 495-501.
Brouwer, M., C. Bonaventura and J. Boaventura (1978). Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp, Penaeus setiferus. Biochemistry, 17: 2148-2154.
Bryan, G. W. (1968). Effect of size upon metal content of shellfish. J. Mar. Biol. Ass., 63: 661-672.
Bryan, G. W. (1971). The effects of heavy metals (other than mercury) on marine and estuarine animals. Proc. R Soc., Ser. B, 177: 389-410.
Buikema, A. L. Jr., P. R. Niedertehner., J. Jr. Caims (1982). Biological monitoring: Part IV. Toxicity testing. Water Res., 16: 239-262.
Burnett, L. E. (1992). Integrated function of the respiratory pigment hemocyanin in crabs. Am. Zool., 32, 438-446.
Canli, M., R. W. Furness (1993). Toxicity of heavy metals dissolved in seawater and influence of sex and size on metal accumulation and tissue distribution in the Norway lobster Nephrops norvegicus. Mar. Environ. Res., 37: 217-236.
Carmel, C. L., P. N. K. Nambisan and R. Damodaran (1983). The effect of copperon juvenile Penaeus indicus. Indian. J. Mar. Sci., 12: 128-130.
Chan, H. M. and J. M. Weeks (1992). The subunit structural composition of amphipod haemocyanin (Crustacea; amphipoda; talitridae). Comp. Biochem. Physiol., 101B: 567-572.
Chandler, J. H. and L. L. Marking (1979). Toxicity of fishery chemicals to the Asiatic Clam Corbicula manilensis. Prog. Fish-cult., 41: 148-151.
Chen, J. C. and S. Y. Cheng (1993). Studies on haemocyanin and haemolymph protein levels of Penaeus japonicus based on sex, size and moulting cycle. Comp. Biochem. Physiol., 106B: 293-296.
Chen, J. C. and C. H. Lin (2001). Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon. Aquaculture, 192: 55-65.
Chen, J. C. and Y. Z. Kuo (1991). Accumulation of ammonia in the hemolymph of Penaeus japonicus exposed to ambient ammonia. Dis. Aquat.Org., 11: 187-191.
Chen, H. C. and J. D. Slinn (1980). Osmoregulation of the prawn, Palaemon elegans exposed to some heavy metals. J. Fish. Soc. Taiwan, 7(1): 1-13.
Chinni, S., R. N. Khan and P. R. Yallapragada (2001). Larval growth in Penaeus indicus on exposure to lead. Bull. Environ. Contam. Toxicol., 67: 27-34.
Colt, J. E. and D. A. Armstrong (1981). Niteogen toxicity of crustaceans, fish, and mollusks. In Bio-Engineering symposium for fish culture (L. J. Allen and E. C. Kinney, eds.). Fish Culture Section, Bethesda, Maryland., 1: 34-47.
Corner, E. D. S. and B.S. Newell (1967). On the nutrition and metabolism of zooplankton. IV. The forms of nitrogen excreted by Calanus. J. Mar. Biol. Assoc. U. K., 47: 113-120.
Corner, E. D. S., D. N. Heat., C. C. Kilvington and L. Pennycuick (1976) On the nutrition and metabolism of zooplankton. X. Quantitative aspects of Calanus helgolandicus feeding as a carnivore. J. Mar. Biol. Assoc. U K., 56: 345-358.
Cowey, C. B. and M. J. Walton (1989). Intermediary metabolism. In Fish Nutrition, 2 edn (J. E. Halver, ed.). Academic press, New York, 259-329.
Darmono, D. and G. R. W. Denton (1990). Heavy metal concentrations in the banana prawn, Penaeus merguiensis, and leader prawn, Penaeus monodon, in the Townsville region of Australia. Bull. Environ. Contam. Toxicol., 44: 479-486.
Depledge, M. H., T. L. Forbes and V. E. Forbes (1993). Evaluation of cadmium, copper, zinc, and iron concentrations and tissue distributions in the benthic crab, Dorippe granulata (De Haan 1844) from Tolo Harbour, Hong Kong. Environ. Pollut., 81: 15-19.
Depledge, M. H. and P. S. Rainbow (1990). Models of regulation and accumulation of trace metals in marine invertebrates. Comp. Biochem. Physiol., 97A: 1-7.
Dresel, E. I. B. and V. Moyle (1950). Nitrogenous excretion in amphipods and isopods. J. Exp. Biol., 27: 210-223.
Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics, 11: 1-42.
Engstrom-Heg, R. (1971). Direct measurement of Potassium permanganate demand and residual potassium permanganate. New York Fish. Game. J., 18: 117-122.
Evans, D. and J. N. Cameron(1986). Gill ammonia transport. J. Exp. Zool., 239: 17-23.
Figueroa-Sota, C. G. and A. M. Calderón(1997). Purification of hemocyanin from white shrimp (Penaeus vannamei Boone) by Immobilized metal affinity chromatography. Comp. Biochem. Physiol., 177B: 203-208.
Frenet, M. and A. Alliot (1985). Comparative bioaccumulation of metals in Palaemonetes varians in polluted and non-polluted environments. Mar. Environ. Res., 17: 19-44.
Gaty, G. and J. h. Wilson (1986). Effect of body size, starvation, temperature and oxygen tension on the oxygen consumption of hatchery-rearedormers Haliotis tuberculata L. Aquaculture, 4: 81-84.
Green, J. W., M. Harsch., L. Barre and C. L. Prosser (1959). The regulation of water and salt by the fiddler crabs Uca pugnax and Uca pugilator. Biol. Bull., 116: 76-87.
Harris, R. P. (1973). Feeding, growth, reproduction and nitrogen utilization by the harpacticold copepod Tigriopus breviccrnis. J. Mar. Biol. Assoc. U.K., 53: 785-800.
Herskovits, T. T. (1988). Recent aspects of the subunit organization and dissociation of hemocyanins. Comp. Biochem. Physiol., 73B: 983-990.
Horne, F. R. (1968). nitrogen excretion in Crustacea. I. The herbivorous land crab Cardisoma guanhumi Latreille. Comp. Biochem. Physiol., 26: 687-695.
Horowitz, A. and B. J. Presley (1997). Trace metal concentrations and partitioning in zooplankton, neuston and bentons from the south Texas outer continental shelf. Arch. Environ. Contam. Toxicol., 5: 241-255.
Johammes, R. E. and D. L. Webb (1965). Release of dissolved amino-acids by marine zooplankton. Science, 130: 76-77.
Karlson, K. (1994). As investigation on the sensitivity to heavy metals of the tiger shrimp Penaeus monodon, a commercially important tropical shrimp. A laboratory and field study in the upper Gulf of Thailand. Fish. Dev. Ser. Natl. Swedish Board Fish., 82: 29.
Kormanik, G. A. and J. N. Cameron (1981). Ammonia excretion in animals that breathe water: a review. Mar. Biol., 2: 11-23.
Koop, J. F. and R. C. Kroner (1967). Trace metals in water of the United States, Oct. I, 1962 to Sept. 30, 1967. Federal Water Pollution Control Administration, U. S. Department of Interior, Cincinnati.
Lake, P. S. and V. J. Thorp (1974). The gill lamellae of the shrimp Paratya tasmaniensis (Atyidae:crustacea). Normal ultrastructure and changes with low levels of cadmium. Eight International Congress on Electron Microscopy, Canderra. Vol. II: 448-449。
Lawson, S. L., M. B. Jones and R. M. Moate (1995). Effect of copper on ultrastructure of the gill epithelium of Carcinus maenas (Decapoda: Brachyura). Mar. Pollut. Bull., 31: 63-72.
Liao, I. C. and C. J. Hsieh (1988). Toxicity of heavy metals to Penaeus Japonicus I. Toxicities of copper, cadmium and zinc to Penaeus japonicus. J. Fish. Soc. Taiwan, 15(2): 69-78.
Liao, I. C. and C. J. Hsieh (1990). The Second Asian Fisheries Forum. In Proceedings of the Second Asian Fisheries Forum (R. Hirano and I. Hanyu, eds.). Tokyo, Japan, 17-22(5): 923.
Lloyd, R. (1965). Factors that affect the tolerance of fish to heavy metal poisoning. In Biological problems in water pollution (C. D. Tarzwell, ed.). U. S. Dept. Health. Educ. Welfare.
Lombardi, J.V., J. G. Machado-Neto., A. L. Brossi-Garcia., H. L. A. Marques and E. Kubo (2000). Acute toxicity of the fungicide copper oxychloride to the freshwater prawn Macrobrachium rosenbergii de Man.. Bull. Environ. Contam. Toxicol., 65: 383-390.
Lorenzon, S., M. Franceese, V. J. Smith and E. A. Ferrero (2001). Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish and Shellfish Imm., 11: 459-472.
Mayzaud, P. (1976) Respiration and nitrogen excretion of zooplankton. IV. The influence of starvation on the metabolism and the biochemical composition of some species. Mar. Biol., 37:47-58.
McIntosh, A. W. and N. R. Kevern (1974). Toxicity of copper to zooplankton. J. Environ. Quality, 3: 166-170.
Mero, J. L. (1964). Mineral resources of the sea. America Elsevier Publishing Co., New York.
Newell, R. C. (1970). Respiration and metabolism. In Biology of Intertidal Animal (R. C. Newell, ed.). Elsevier Publishing Company, New York, 165-450.
Nonnotte, L., F. Boitel. and J. P. Truchot (1993). Waterborne copper cause gill damage and hemolymph hypoxia in the shore crab Carcinus maenas. Can. J. Zool., 71: 1569-1576.
Páez-Osuna, F. and L. Tron-Mayen (1995). Distribution of heavy metals in tissues of the shrimp Penaeus californiensis from the Northwest coast of Mexico. Bull. Environ. Contam. Toxicol., 55: 209-215.
Pagenkopf, G. K., R. C. Russo and R. V. Thurston (1974). Effecct of complexation on toxicity of copper of fishes, J. Fish. Res. Bd. Can., 31: 462-465.
Paget, G. E. (1970). Methods in Toxicology. F. A. D. avis Co., Philadelphia.
Parry, G. (1969). Ecretion. In The Physiology of Crustacea (T. H. Waterman, ed.). Academic Press, New York, 1: 341-366.
Pequeux, A. and R. Gilles (1981). Na+ fluxes across isolated perfused gills of the Chinese crab Eriocheir sinensis. J. Exp. Biol., 92: 173-186.
Pickering, Q. H. and C. Henderson (1966). The acute toxicity of some heavy metals to different species of warm water fishes. J. Air and Water Pollut., 10: 453.
Pringle, B. H., D. E. Hissong, E. L. Katz and S. T. Mulawka (1968). Trace metal accumulation by estuarine mollusca. J. Sanit. Engng Div. Amer. Soc. Civ. Engrs., 94: 455-475.
Prosser, C. L. (1996). Oxygen:respiration and metabolism. In Comparative animal physiology (C. L. Prosser and F. A. Brown, eds.). Saunders Company, Philadelphia, 153-197.
Quetin, L. B., R. M. Ross and K. Uchio (1980). Metabolic characteristics of midwater zooplankton: Ammonia excretion, O:N ration, and effect of staevation. Mar. Biol., 59: 201-209.
Ramachandran, S., T. R. Patel. and M. H. Colbo (1997). Effect of copper and cadmium on three Malaysian tropical estuarine invertebrate larvae. Ecotoxicol. Environ. Saf., 36: 183-188.
Rand, G. M. and S. R. Petrocelli (1985). Fundamentals of Aquatic Toxicology: Methods and Applications, p: 20-25.
Rasmussen, A. D., A. Krag, P. Bjerregaard, J. M. Weeks and M. H. Depledge (1995). The effect of trace metals on the apparent water permeability of theshore crab Carcinus maenas (L.) and the brown shrimp Crangon crangon (L.). Mar. Pollut. Bull., 31: 60-62.
Regnault, M. (1981). Respiration and ammonia excretion of the shrimp crangon crangon L. metabolic responer to prolonged starvation. J. Comp. Physiol., 141: 549-555.
Regnault, M. (1983). Influence a long terme du taux proteique du regime sur l’excretion d’azote et le metabolism de la crevetee Crangon crangon L.. Oceanis, 9: 241-255.
Rtal, A., L. Nonnotte. and J. P. Truchot (1996). Detoxification of exogenous copper by binding to hemolymph proteins in the shore crab, Carcinus maenas. Aquat. Toxicol., 36: 239-252.
Rtal, A. and J. P. Truchot (1996). Haemolymph transport and tissue accumulation of exogenous copper in the shore crab, Carcinus maenas. Mar. Pollut. Bull., 32 (11): 802-811.
Safferman, N. S., A. A. Rosen., C.I. Mashni. and M. E. Morris (1967). Earthy-smelling substance from a blue-green alga. Environ. Sci. and Technol., 1: 429-430.
Santos, M. H. S., N. Troca da Cunha and A. Bianchini (2000). Effect of copper and zinc on growth, feeding and oxygen consumption of Farfantepenaeus paulensis postlarvae (Decapoda: Penaeide). J. Exp. Mar. Biol. Ecol., 247: 233-242.
SAS (1996). SAS/STAT user’s guide. 6.12 ver SAS Inst., Cary, N. C.
Schoffeniels, E. and R. Gilles (1970). Nitrogenous constuents and nitrogen metabolism in Arthropods. In: M. Florkin and B. T. Scheer, (eds.). Chem. Zool. Academic Press, New York, 5A: 199-227.
Schoffeniels, E. (1976). Adaptions with respect of salinity. Biochem. Soc. Symp., 41: 179-204.
Segawa, S. (1911). Oxygen consumption and ammonia by the abalone Sulculus diversicolor aquatilis in starved condition. Bull. Jap. Soc. Sci. fish., 57: 2001-2006.
Shaw, T. L. and V. M. Brown (1974). The toxicity of some forms of copper to rainbow trout. Water Res., 8: 377-382.
Skidmore, J. F.(1970). Respiration and osmoregulation in rainbow trout with gill damaged by zinc sulphate. J. Exp. Boil., 52: 481-494.
Soegianto, A., M. charmantier-Daures., J. Trilles. and G. Charmantier (1999). Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus (Decapoda). J. Crust. Biol., 19: 209-223.
Sorensen, E. M. B. (1991). Metal Poisonings in Fish. CRC Press, Boca Raton, FL, 361 pp.
Sprague, J. B. (1968). Promising anti-pollutant: Chelating agent NTA Protects fish from copper and zinc. Nature, 220: 1345-1346.
Sprague, J. B. (1971). Measurement of pollutant toxicity to fish-III. Snblethal effects and safe concentration. Water Res., 5: 245-266.
St-Amand, L., R. Gagnon., T. T. Packard and C. Savenkoff (1999). Effect of inorganic mercury on the respiration and the swimming activity of shrimp larvae, Pandalus borealis. Comp. Biochem. Physiol., 122C: 33-43.
Stiff, M. J. (1971). Copper/Bicarbonate equilibria in solution of bicarbonate ion at concentration similar to those found in natural water. Water Res., 5: 171-176.
Styrishave, B., A. D. Rasmussen and M. H. Depledge (1995). The influence of bulk and trace metals on the circadian rhythm of heart rates in freshwater crayfish. Astacus astacus. Mar. Pollut. Bull., 31: 87-92.
Sunda, W. G. and A. K. Hanson (1987). Measurement of free cupric ion concentration in seawater by a ligand competition technique involving copper sorption onto C18 SEP-PAK cartridge. Limmol. Oceanogr., 32: 537-551.
Taylor, A. C., S. Morris and C. R. Bridges (1985). Modulation of haemocyaninoxygen affinity in the prawn, Palaemon elegans (Rathke) underenvironmental salinity stress. J. Exp. Mar. Biol. Ecol., 94: 167-180.
Towle, D. W., G. E. Palmer and J. L. Harris (1976). Role of gill Na+-K+-dependent ATPase in acclimati on of blue crab (Callinectecs sapidus) to low salinity. J. Exp. Zool., 196: 315-322.
Van Holde, K. E. and K. I. Miller (1982). Haemocyanins. Q. Rev. Biophys., 15(1): 1-29.
White, S. and P. S. Rainbow (1982). Regulation and accumulation of copper, zinc and cadmium by the shrimp Palaemon elegans ( Crustacea: Decapoda). Mar. Ecol. Prog. Ser., 97: 91-98.
Wahlefeld, A. W. and H. U. Bergmeyer., eds (1974). Methods of enzymetic analysis. academic Press Inc., New York, 1831 pp.
Weeks, J. M. and P. S. Rainbow (1992). The effect of salinity on copper and zinc concentration in three species of Talitrid amphipods (crustacea). Comp. Biochem. Physiol., 101C: 399-405.
Wright, P. A. (1995). Nitrogen excretion: three end products, many physiological roles. J. Exp. Biol., 198: 273-281.
Wong, C. K., K. Y. Cheung and K. H. Chu (1995). Effect of copper on survival, development and growth of Metapenaeus ensis larvae and postlarvae (Decapoda: Penaeidae). Mar. Pollut. Bull., 31: 416-419.
行政院環境保護署 (1991). 放流水標準,環署法字第00359號令。
何平合(2002). 台灣溪流中的蝦兵蟹將。《科學發展》,國立海洋生物博物館,352(4): 12∼19。
呂仲倫 (2002). 硫酸銅-銅對白蝦之半致死濃度及其在曝露於亞致死濃度(sublethal concentration)下之生理反應及變化,3-14 頁。
林世榮.丁雲源 (1995). 汞對紅尾蝦生長、肝比重、肌肉水份、血淋巴滲透壓與蛋白質含量之影響。水產研究3(1): 41-51。
林清龍.吳慶麗.丁雲源 (1987). 各種化學治療劑對於紅尾蝦苗之安全濃度。台灣省水產試驗所報告,43: 179-183。
林清龍.吳慶麗.丁雲源 (1985). 各種化學治療劑對於養殖生物-草蝦、砂蝦、蟳、文蛤等幼苗之安全濃度。台灣省水產試驗所報告,38: 189-198。
林家興 (1999). 硫酸銅毒性及對草蝦成長及氮排泄之影響。國立台灣海洋大學水產養殖學系研究所碩士論文,73。
熊文俊.林清龍.郭世榮.陳秀男 (1993). 水產常用藥物對斑節蝦苗安全濃度之研究。J. Fish. Soc. Taiwan, 20: 357-366。
施志昀.游祥平 (1998). 台灣的淡水蝦。國立海洋生物博物館籌備處出版(彩色圖鑑),168頁。
許濤 (1992). 生物急毒性標準試驗法建立之研究。EPA- 154810225,環保署環境檢驗所報告,39頁。
陳弘成 (1994). 魚類毒性試驗標準方法之研究。環保署EPA-83-E3S5-09-03-02,67頁。
陳弘成.謝明慧 (1987). 重金屬對於蝦類急速毒性之研究。漁業環境保護專集(一)農委會漁業特刊(3):118-132。
陳弘成.林泰榮 (1984). 廢酸對海洋生物之毒性研究。行政院衛生署環保局編號73-03-002。
陳建初 (1985). 水質管理。九大圖書公司。
黃琪琰 (1995). 水產動物疾病學,水產出版社,49-58頁。
黃世鈴.陳秀男 (1999). 魚病防治-魚病診斷與防治(二)。農委會漁業署出版品-漁業推廣,153: 57-60頁。
楊喜男 (1991). 硫酸銅及四銨類(Benzalkonium chloride)對鰻池水生生物之毒性研究。輔仁大學生物研究所碩士論文,128頁。
廖德裕.劉名允 (2002). 台灣的淡水蝦類簡介。行政院農委會特有生物研究保育中心,自然保育季刊,40: 47-51頁。
鄭學淵 (1998). 亞硝酸對草蝦及斑節蝦之生理反應研究。國立台灣海洋大學水產養殖學系研究所博士論文。
潘明珠.尤伸森 (1981). 重金屬對於淡水長臂大蝦的半致死影響。台灣省水產試驗所試驗報告,33: 625-628。
魏彰郁.林晏熙.劉嘉剛 (1985). 重金屬毒性對淡水蝦及蜆的半致死濃度。台灣省水產試驗所試驗報告,38: 75-81。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 6.吳弘仁,「創造附加價值的內部稽核」,內部稽核季刊,第43 期,第31-34頁, 民國92年6月。
2. 16.寇惠植,「稽核與風險管理」,內部稽核季刊,第54期,第61-66頁,民國95年3月。
3. 18.郭兆玲、賴佳誼,「內部稽核於健全風險管理之關鍵角色」,內部稽核季刊,第50期,第52-58頁,民國94年3月。
4. 20.陳錦烽,「整合性企業風險管理」,內部稽核季刊,第53期,第19-24頁,民國95年1月。
5. 21. 陳錦烽,「掌握契機-內部稽核揮灑的時代」,內部稽核季刊,第51期,第8-12頁,民國94年6月。
6. 27.劉振岩,「以風險為導向的內部稽核」,內部稽核季刊,第54期,第14-19頁,民國95年3月。
7. 29.賴森本,「風險導向稽核」,內部稽核季刊,第48期,第14-24頁,民國93年9月。
8. 30.賴森本,「政府部門之風險管理及內部稽核」,內部稽核季刊,第44 期,第28-34頁,民國92年9月。
9. 32.蘇淑美,「風險管理流程之稽核要點」,內部稽核季刊,第53期,第33-36頁,民國95年1月。
10. 林世榮.丁雲源 (1995). 汞對紅尾蝦生長、肝比重、肌肉水份、血淋巴滲透壓與蛋白質含量之影響。水產研究3(1): 41-51。
11. 黃世鈴.陳秀男 (1999). 魚病防治-魚病診斷與防治(二)。農委會漁業署出版品-漁業推廣,153: 57-60頁。
12. 廖德裕.劉名允 (2002). 台灣的淡水蝦類簡介。行政院農委會特有生物研究保育中心,自然保育季刊,40: 47-51頁。