跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張偉
研究生(外文):Wei Chang
論文名稱:時間延遲仿射式Takagi-Sugeno模糊系統之分析與合成
論文名稱(外文):Analysis and Synthesis of Time-Delay Affine Takagi-Sugeno Fuzzy Systems
指導教授:張文哲張文哲引用關係
指導教授(外文):Wen-Jer Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:180
中文關鍵詞:時間延遲系統仿射式 Takagi-Sugeno 模糊系統H-infinite 控制S-程序疊代線性矩陣不等式
外文關鍵詞:Time-Delay SystemsAffine Takagi-Sugeno Fuzzy SystemsH-infinite ControlS-procedureIterative Linear Matrix Inequality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
時間延遲 (Time Delay) 效應經常發生在一般的動態系統當中。因此對於控制系統而言,發展一套針對時間延遲系統的穩定性分析以及控制器合成方法將是一個重要的課題。在此篇論文中,我們將提出一套針對複雜非線性時間延遲系統的Takagi-Sugeno模糊建模方法。根據模糊集合法則,此Takagi-Sugeno模糊系統能夠有效描述原始的複雜非線性時間延遲系統。與此同時,針對連續與離散時間延遲仿射 (Affine) 式Takagi-Sugeno模糊系統的穩定性以及穩定化問題也被陳述在本文中。基於Lyapunov穩定準則與Razumikhin定理,疊代線性矩陣不等式 (Iterative Linear Matrix Inequality) 演算法被使用於求解此一系統的穩定性條件。此種疊代線性矩陣不等式演算法被使用在連續與離散時間延遲仿射式Takagi-Sugeno模糊系統的模糊控制器設計,並提供可能的控制器解。更進一步,系統外界干擾 (Disturbance) 也同時被考慮在連續與離散時間延遲仿射式Takagi-Sugeno模糊系統的模糊控制器設計之中。 控制技巧將被運用去解決此一問題,以及當系統遭受外來干擾影響同時 的效能亦能被保證。本文最後,我們將展示一單擺系統 (Pendulum System) 與一聯結車式機械手臂 (Truck–Trailer Mobile Robot) 的數值模擬用以證明本篇論文所提方法的有效性。
Time delay effect often occurs in many dynamical systems. So that stability analysis and synthesis of time-delay systems is an important issue for the control systems. In this thesis, we will introduce the Takagi-Sugeno fuzzy modeling approach for the complex time-delay nonlinear systems. It can provide an effective representation of complex time-delay nonlinear systems in terms of fuzzy sets. Besides, the stability and stabilization issue to continuous and discrete time-delay affine Takagi-Sugeno fuzzy systems are presented. Based on Lyapunov stability criterion and Razumikhin theorem, an Iterative Linear Matrix Inequality algorithm is used to solve the stability conditions. The iterative linear matrix inequality algorithm is used to find the feasible solutions for the synthesis of the Takagi-Sugeno fuzzy controller design for continuous and discrete time-delay affine Takagi-Sugeno fuzzy systems. Moreover, the external disturbance is also considered into the controller design procedure for continuous and discrete time-delay affine Takagi-Sugeno fuzzy systems. The control technique is applied to deal with this problem and the performance is guaranteed for the worst case effect of disturbance on system states. Finally, the numerical simulations for the delayed pendulum system and nonlinear truck–trailer mobile robot system are given to show the applications of the present approach.
Abstract I
Nomenclature III
Acronyms V
List of Table and Figures VI
Table of Contents VIII

I.System Structure and Problem Formulations

1. Introduction 1
1.1 Motivation of This Thesis 1
1.2 Previous Works of the Investigate 2
1.3 Outline of This Thesis 6
1.4 Contributions 6

2. Structure of Takagi-Sugeno Fuzzy Systems
and Problem Formulations 8
2.1 Linearization for NonlinearSystems 9
2.2 Structural of Takagi-Sugeno Fuzzy Systems 11
2.2.1 Homogeneous Takagi-Sugeno Fuzzy Systems 11
2.2.2 Affine Takagi-Sugeno Fuzzy Systems 17
2.3 Parallel Distributed Compensation 23
2.4 Problem Formulations 26
2.5 Summary 28

II.Fuzzy Controller Design to the Nonlinear Time-Delay
Systems via Continuous and Discrete Time-Delay Affine
Takagi-Sugeno Fuzzy Systems

3. Fuzzy Controller Design for Takagi-Sugeno Fuzzy
Systems without Time Delay Effect 29
3.1 Useful Mathematic Tools 30
3.1.1 Linear Matrix Inequalities 30
3.1.2 Iterative Linear Matrix Inequality
Algorithm 34
3.1.3 S-Procedure 36
3.2 Controller Design for Takagi-Sugeno Fuzzy
Systems 37
3.2.1 Homogeneous Takagi-Sugeno Fuzzy Systems 37
3.2.2 Affine Takagi-Sugeno Fuzzy Systems 41
3.3 Summary 47

4. Fuzzy Controller Design for Time-Delay Affine
Takagi-Sugeno Fuzzy Systems 48
4.1 Time-Delay Systems 49
4.2 Fuzzy Controller Design for Continuous
Time-Delay Affine T-S Fuzzy Systems 50
4.2.1 Introduction of Continuous TD-ATSFS 50
4.2.2 Stability Condition for Continuous
TD-ATSFS 53
4.2.3 Fuzzy Controller Design for Continuous
TD-ATSFS via ILMI Algorithm 58
4.3 Controller Design for Discrete Time-Delay
Affine T-S Fuzzy Systems 65
4.3.1 Introduction of Discrete TD-ATSFS 65
4.3.2 Stability Condition for Discrete TD-ATSFS 67
4.3.3 Fuzzy Controller Design for Discrete
TD-ATSFS via ILMI Algorithm 71
4.4 Summary 76

5.Fuzzy Controller Design for Time-Delay Affine
Takagi-Sugeno Fuzzy Systems with Disturbance
Effect 77
5.1 Control Problems 78
5.2 Fuzzy Control of Continuous TD-ATSFS with
Disturbance Effect 79
5.2.1 Introduction of Continuous TD-ATSFSD 79
5.2.2 Stability Condition for Continuous
TD-ATSFSD 82
5.2.3 Fuzzy Controller Design for Continuous
TD-ATSFSD via ILMI Algorithm 89
5.3 Fuzzy Control of Discrete TD-ATSFS with
Disturbance Effect 94
5.3.1 Introduction of Discrete TD-ATSFSD 94
5.3.2 Stability Condition for Discrete
TD-ATSFSD 97
5.3.3 Fuzzy Controller Design for Discrete
TD-ATSFSD via ILMI Algorithm 102
5.4. Summary 107

III.Applications and Conclusions

6. Simulations of Fuzzy Controller Design for
Time-Delay Affine Takagi-Sugeno Fuzzy Systems 108
6.1 Continuous Time Case: Stabilization for a
Nonlinear Pendulum System 109
6.2 Discrete Time Case: Stabilization for a
Practical Nonlinear Truck–Trailer Mobile
Robot System 123
6.3. Summary 134

7. Conclusions and Future Works 135
7.1 Conclusions and Publications 135
7.2 Future Works 137

Appendix 138
Bibliography 147
1. S. G. Cao, N. W. Rees and G. Feng, “Analysis and Design for a Class of Complex Control Systems Part І: Fuzzy Modeling and Identification,” Automatica, Vol. 33, No. 6, pp. 1017-1028, 1997.
2. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Trans. Systems, Man and Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985.
3. M. Sugeno and G. T. Kang, “Fuzzy Modeling and Control of Multilayer Incinerator,” Fuzzy Sets and Systems, Vol. 18, pp. 329-346, 1986.
4. K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets and Systems, Vol. 45, No. 2, pp. 135-156, 1992.
5. H. O. Wang, K. Tanaka and M. F. Griffin, “Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model,” Proc. Fuzzy IEEE/IFES’95, pp. 531-538, 1995.
6. H. O. Wang, K. Tanaka and M. F. Griffin, “An Analytical Framework of Fuzzy Modeling and Control of Nonlinear Systems: Stability and Design Issues,” Proc. 1995 American Control Conference, Seattle, WA, pp. 2272-2276, 1995.
7. H. Ying, “An Analytical Study on Structure, Stability and Design of General Nonlinear Takagi-Sugeno Fuzzy Control Systems,” Automatica, Vol. 34, No. 12, pp. 1617-1623, 1998.
8. K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis – A Linear Matrix Inequality Approach, John Wiley & Son Inc., 2001.
9. K. Tanaka and M. Sano, “A Robust Stabilization Problem of Fuzzy Control Systems and Its Application to Backing up Control of a Truck-Trailer,” IEEE Trans. Fuzzy Systems, Vol. 2, No. 2, pp. 119-134, 1994.
10. F. Cuesta, F. Gordillo, J. Aracil and A. Ollero, “Stability Analysis of Nonlinear Multivariable Takagi-Sugeno Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, Vol. 7, No.5, pp. 505-520, 1999.
11. W. J. Chang and C. C. Shing, “Discrete Output Feedback Fuzzy Controller Design for Achieving Common State Covariance Assignment,” ASME, J. Dynamic Systems, Measurement and Control, Vol. 126, No. 3, pp. 627-632, 2004.
12. W. J. Chang, C. C. Sun and H. Y. Chung, “Fuzzy Controller Design for Discrete Controllability Canonical Takagi-Sugeno Fuzzy Systems,” IEE Proceeding, Part D, Control Theory and Applications, Vol. 151, No. 3, pp. 319-328, 2004.
13. Y. Y. Cao and P. M. Frank, “Robust Disturbance Attenuation for a Class of Uncertain Discrete-Time Fuzzy Systems,” IEEE Trans. Fuzzy Systems, Vol. 8, No. 4, pp. 406-415, 2000.
14. H. J. Lee, J. B. Park and G. Chen, “Robust Fuzzy Control of Nonlinear Systems with Parametric Uncertainties,” IEEE Trans. Fuzzy Systems, Vol. 9, No. 2, pp. 369-379, 2001.
15. K. Tanaka, T. Ikeda and H. O. Wang, “Robust Stabilization of a Class of Uncertain Nonlinear Systems via Fuzzy Control: Quadratic Stabilizability, Control Theory, and Linear Matrix Inequalities,” IEEE Trans. Fuzzy Systems, Vol. 4, No. 1, pp. 1-13, 1996.
16. W. Assawinchaichote and S. K. Nguang, “ Fuzzy Control Design for Nonlinear Singularly Perturbed Systems with Pole Placement Constraints: An LMI Approach,” IEEE Trans. Systems, Man, and Cybernetics, Part B, Vol. 34, No. 1, pp. 579-588, 2004.
17. Y. Y. Cao and P. M. Frank, “Analysis and Synthesis of Nonlinear Time-Delay Systems via Fuzzy Control Approach,” IEEE Trans. Fuzzy Systems, Vol. 8, No. 2, pp. 200-211, 2000.
18. Y. Y. Cao and P. M. Frank, “Stability Analysis and Synthesis of Nonlinear Time-Delay Systems via Linear Takagi-Sugeno Fuzzy Models,” Fuzzy Sets and Systems, Vol. 124, No. 2, pp. 213-229, 2001.
19. Y. Gu, H. O. Wang, K. Tanaka and L. G. Bushnell, “Fuzzy Control of Nonlinear Time-Delay Systems: Stability and Design Issues,” Proc. of the American Control Conference, Vol. 6, pp. 4771-4776, 2001.
20. R. J. Wang, W. W. Lin, and W. J. Wang, “Stabilizability of Linear Quadratic State Feedback for Uncertain Fuzzy Time-Delay Systems,” IEEE Trans. Systems, Man and Cybernetics, Part B, Vol. 34, No. 2, pp. 1288-1292, 2004.
21. Z. Yi and P. A. Heng, “Stability of Fuzzy Control Systems with Bounded Uncertain Delays,” IEEE Trans. Fuzzy Systems, Vol. 10, No. 1, pp. 92-97, 2002.
22. K. R. Lee, J. H. Kim, E. T. Jeung and H. B. Park, “Output Feedback Robust Control of Uncertain Fuzzy Dynamic Systems with Time Varying Delay,” IEEE Trans. Fuzzy Systems, Vol. 8, No. 6, pp. 657-664, 2000.
23. S. S. Chen, Y. C. Chang, S. F. Su, S. L. Chung and T. T. Lee, “Robust Static Output-Feedback Stabilization for Nonlinear Discrete-Time Systems with Time Delay via Fuzzy Control Approach,” IEEE Trans. Fuzzy Systems, Vol. 13, No. 2, pp. 263-272, 2005.
24. Y. C. Lin and J. C. Lo, “ Filter/Controller Design for Discrete-Time Takagi-Sugeno Fuzzy Systems with Time Delays,” Proc. of the American Control Conference, pp. 1516-1522, 2004.
25. L. Udawatta, K. Watanabe, K. Kiguchi and K. Izumi, “Solution to Global Stability of Fuzzy Regulators via Evolutionary Computation,” Applied Soft Computing, Vol. 4, No. 1, pp. 25-34, 2004.
26. T. A. Johansen, R. Shorten and R. M. Smith, “On the Interpretation and Identification of Dynamic Takagi-Sugeno Fuzzy Models,” IEEE Trans. Fuzzy Systems, Vol. 8, No. 3, pp. 297-313, 2000.
27. P. Bergsten, Observers and Controllers for Takagi-Sugeno Fuzzy Systems, Orebro: Orebro University, 2001.
28. M. Johansson, A. Rantzer and K. E. Arzen, “Piecewise Quadratic Stability of Fuzzy Systems,” IEEE Trans. Fuzzy Systems, Vol. 7, No. 6, pp. 713-722, 1999.
29. G. Feng, “ Controller Design of Fuzzy Dynamic Systems Based on Piecewise Lyapunov Functions,” IEEE Trans. Systems, Man and Cybernetics, Part B, Vol. 34, No. 1, pp. 283-292, 2004.
30. C. C. Hsiao, S. F. Su, T. T. Lee and C. C. Chuang, “Hybrid Compensation Control for Affine TSK Fuzzy Control Systems,” IEEE Trans. Systems, Man, and Cybernetics, Part B, Vol. 34, No. 4, pp. 1865-1872, 2004.
31. E. Kim and S. Kim, “Stability Analysis and Synthesis for an Affine Fuzzy Control System via LMI and ILMI: A Continuous Case,” IEEE Trans. Fuzzy Systems, Vol. 10, No. 3, pp. 391-400, 2002.
32. E. Kim and D. Kim, “Stability Analysis and Synthesis for an Affine Fuzzy System via LMI and ILMI: Discrete Case,” IEEE Trans. Systems, Man, and Cybernetics, Part B, Vol. 31, No. 1, pp. 132-140, 2001.
33. L. X. Wang, “Fuzzy Systems are Universal Approximators,” Proc. of IEEE International Conference on Fuzzy Systems, pp. 1163-1170, 1992.
34. B. Kosko, “Fuzzy Systems as Universal Approximators,” IEEE Trans. Computers, Vol. 43, No. 11, pp. 1329-1333, 1994.
35. Y. W. Teng, W. J. Wang and C. H. Chiu, “Function Approximation via Particular Input Space Partition and Region-Based Exponential Membership Functions,” Fuzzy Sets and Systems, Vol. 142, No. 2, pp. 267-291, 2004.
36. G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice Hall, 1992.
37. S. Kawamoto, K. Tada, A. Ishigame and T. Taniguchi, ‘An Approach to Stability Analysis of Second Order Fuzzy Systems,’’ Proc. of First IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 1427-1434, 1992.
38. H. K. Khalil, Nonlinear Systems 3rd Edition, Prentice Hall, 2000.
39. S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
40. J. G. Vanantwerp and R. D. Braatz, “A Tutorial on Linear and Bilinear Matrix Inequalities,” Journal of Process Control, Vol. 10, No. 4, pp. 363-385, 2000.
41. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
42. D. Harel, Computers Ltd: What They Really Can't Do, Oxford University Press, 2000.
43. Y. Y. Cao, J. Lam and Y. X. Sun, “Static Output Feedback Stabilization: An ILMI Approach,” Automatica, Vol. 34, No, 12, pp. 1641-1645, 1998.
44. Y. Y. Cao, Y. X. Sun and W. J. Mao, “Output Feedback Decentralized Stabilization: ILMI Approach,” Systems and Control Letters, Vol. 35, No. 3, pp. 183-194, 1998.
45. M. Z. Maun and J. Mohammad, Time-Delay Systems Analysis, Optimization and Applications, North-Holland, New York, 1987.
46. M. S. Mahmoud, Robust Control and Filtering for Time-Delay Systems, New York: Marcel Dekker, 2000.
47. S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Berlin; New York: Springer, 2001.
48. D. Ivanescu, J. M. Dion, L. Dugard and S. I. Niculescu, “Dynamical Compensation for Time-Delay Systems: an LMI Approach,” Int. J. Robust Nonlinear Control, Vol. 10, No. 8, pp. 611-628, 2000.
49. Y. Y. Cao, Y. X. Sun and C. Cheng, “Delay-Dependent Robust Stabilization of Uncertain Systems with Multiple State Delays,” IEEE Trans. Automatic Control, Vol. 43, No. 11, pp. 1608-1612, 1998.
50. S. Tarbouriech, P. L. D. Peres, G. Garcia and I. Queinnec, “Delay-Dependent Stabilisation and Disturbance Tolerance for Time-Delay Systems Subject to Actuator Saturation” IEE Proc. of Control Theory and Applications, Vol.149, No. 5, pp. 387-393, 2002.
51. H. Lutkepohl, Handbook of Matrices, John Wiley & Sons Inc., 1996.
52. J. B. Burl, Linear Optimal Control: and Methods, Addison Wesley Longman, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top