跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁聖雄
研究生(外文):Sheng-Hsiung-Weng
論文名稱:以數值方法分析電滲式散熱裝置之設計參數對其性能影響
論文名稱(外文):Application of Numerical Method to Study the Effect of Design Parameter on the Performance of Electroosmotic Heat Sink
指導教授:莊水旺莊水旺引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:散熱裝置電滲微流道
外文關鍵詞:heat sinkelectroosmoticmicro channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
隨著半導體產品效能日益提升,其發熱功率及散熱需求也不斷升高,以Intel Pentium 4 系列CPU為例,其解熱功率皆高於110W以上,傳統之氣冷式散熱器不但無法適應未來CPU的高功率,更會發出擾人的噪音。因此,國際各大知名CPU製造商如Intel、AMD及Apple等,皆大量投入經費用以研究與發展有效地液態冷卻方式來處理CPU的高溫。目前市面上之液冷裝置仍是以機械式幫浦為動力源,不但佔空間,且容易發生故障,此外也有管路老舊破損造成流體洩露及價格昂貴之問題。有鑑於此,配合目前產品結構的輕量化,微型化及模組化,高散熱效率之微型散熱裝置,將是未來CPU及其他半導體元件散熱的主流及趨勢。
本研究提出電滲方式驅動液式散熱裝置之新型設計,取代傳統泵浦之驅動功能,而新型設計之散熱裝置著重於微機電製程技術,採用微型散熱流道,以期具有高散熱效率並可改善現行散熱器之缺點;為評估設計之可行性,此研究係使用數值模擬方式進行分析,評估參數包含外加電場強度、 流體離子濃度及微流道幾何等。建構電滲驅動式散熱裝置之設計藍圖及探討各項設計參數之影響,作為未來技術之參考依據。
關鍵字:散熱裝置、電滲、微流道
Abstract
With the improvement of CPU efficiency day by day, the heat power generated and its following heat dissipation demand are rising constantly. For instance, Intel Pentium 4 serial CPU, it thermal power generated is always higher than 110W. The traditional air cooling type of heat sink is not only unable to adapt to the high power of CPU, but brings out the noise. Water-cooling devices for CPU on the market are still using mechanical pump as the driving force, which not only take the more space, but also are apt to out of function. Moreover, it has the problem on damage of pipeline causing fluids leakage and cost an arm and a leg. So, the heat sink must meet the market trend of light, micro-scale, modularization, and high thermal dissipation.
The procedures executed in the project are set forth as follows. The innovative design of heat sink driven by electroosmotic manner would proposed as a replacement of traditional types. It could be employed in the new design MEMS technology, in which it used the micro channel for the consideration of high thermal dissipation efficiency to overcome the drawbacks existed in the current water-cooling devices. In order to examine the feasibility of new design, the preliminary study was conducted a series of numerical analysis. The parameters addressed in the analysis included electric field intensity, ion concentration of working fluid, and dimensions of micro channel. A complete design drawings and design specifications for a robust and small electroosmotic driving heat sink could be provided as a reference for future purpose.
Keywords: heat sink, electroosmotic, micro channel,
目錄
頁次
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xii
第一章 序論
1-1 前言 1
1-2 研究動機及目的 3
1-3 文獻回顧 5
1-3-1 微流道散熱器 6
1-3-2 電滲理論及形成機制 8
1-3-3 電滲應用及電滲流CFD 9
1-4 論文架構 10
第二章 理論推導與數值方法 13
2-1 微流道電滲流 13
2-2 基本假設 17
2-3 統御方程式 18
2-4 設計方法 21
2-4-1 CAD設計 22
2-4-2 CAE分析 24
2-5 研究設備 26
2-6 分析結果與文獻數據比較 27
第三章 分析模型建構及邊界條件設定 29
3-1 模型建構 29
3-2 邊界條件 30
3-3 參數設定 31
3-3-1 電場強度參數 32
3-3-2 流體離子濃度參數 33
3-4 電滲流CFD驗證 33
第四章 參數研究與分析結果 35
4-1 分析過程與3D可視化結果 35
4-1-1 模型一之散熱設計分析 37
4-1-1-1 平行微流道之電場強度參數影響 39
4-1-1-2 模型一之流體離子濃度參數影響 42
4-1-2 模型二之散熱設計分析 47
4-1-2-1 模型二之電場強度參數影響 50
4-1-2-2 模型二之流體離子濃度參數影響 55
4-1-3 分析參數與散熱效率之研究 60
4-2 模型二之流道幾何參數影響 62
4-2-1 流道寬度參數影響 62
4-2-2 流道長度參數影響 66
4-2-3 流道密度參數影響 70
4-3 幾何參數與散熱效率 74
第五章 結論與未來展望 76
5-1 結論 76
5-2 成果與未來展望 76
參考文獻 78
自傳
參考文獻
Andreev, 1997 V.P. Andreev et al., “Field-Flow Fractionation with Asymmetrical Electroosmotic Flow.I. Uncharged Particles”, Journal of Micro, 1997.
Barz, 2003 Barz et al., “Simulation of Flow and Mass Transport in a Meander Micro-Channel Subject to Electroosmotic Driving”, Proc. Appl. Math. Mech., 2003.
Borges, 2002 M.F. Borges et al., “Electroosmotic Pumping in Rectangular Microchannels: a Numerical Treatment by the Finite Element Method”, Applied Mathematics E-Notes, 2002.
Brask, 2001 A. Brask et al., “Electroosmotic Pumping of Nonconducting Liquids by Viscous Drag from a Secondary Conducting Liquid”, Anal. Chem., 2001.
Brynda, 1999 E. Brynda et al., “Capillary Zone Electrophoresis with Electroosmotic Flow Controlled by External Radial Electric Flied”, Electrophoresis, 1999.
Chien, 2002 R.L. Chien and L. Bousse, “Electroosmotic Pumping in Microchips with Nonhomogeneous Distribution of Electrolytes”, Electrophoresis, 2002.
Choi, 1991 S.B. Choi et al., “Fluid Flow and Heat Transfer in Micro Tubes”, ASME DSC., 1991.
Conlisk, 2004 A.T. Conlisk et al., “Electroosmotic Flow of a Model Electrolyte”, Nonreference, 2004.



Dutta, 2001 P. Dutta et al., “Electroosmotic Flow in a Grooved Micro-Channel Configuration: a Comparative Study of μ-PIV Measurements and Numerical Simulations”, ASME International Mechanical Engineering Congress and Exposition, 2001.
Fedorov, 2000 A.G. Fedorov and R. Viskanta, “Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging”, Int. J. Heat Mass Transfer, 2000.
Ghosal, 2001 S. Ghosal and Z. Lu, “Electoosmotic Flow and Zone Broadening in Microfluidic Channels of Variable Cross-Section and Wall Charge”, Journal of Fluid Mech., 2001.
Gleeson, 2001 J.P. Gleeson, “Electroosmotic Microfluidic Flows with Random Zeta Potential”, Anal. Chem., 2001.
Herr, 2000 A.E. Herr et al., “Electroosmotic Capillary Flow with Nonuniform Zeta Potential”, Anal. Cham. 2000.
Hlushkou, 2004 D. Hlushkou et al., “Coupled Lattice-Boltzmann and Finite-Difference Simulation of Electroosmotic in Microfluidic Channels”, International Journal for Numerical Methods in Fluids, 2004.
Jen, 2002 C.P. Jen and Y.C. Lin, “Design and simulation of bi-directional microfluid driving systems”, Journal of Micromechanics and Microengineering, 2002.
Jiang, 2002 L. Jiang et al., “Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits”, IEEE Transactions on Components and Packaging Technologies, 2002.
Kang, 2003 J. Kang et al., “Fast Enantiomeric Separation with Vancomycin as Chiral Additive by Co-Electroosmotic Flow Capillary Electrophoresis: Increase of the Detection Sensitivity by the Partial Filling Technique”, Electrophoresis, 2003.
Keane, 2003 A. Keane, “MEMS-Based Heat Exchanger Cools Hot CPUs”, 2003.
Kim, 2001 M.J. Kim et al., “Micro-Scale PIV for Electroosmotic Flow Measurement”, PSFVIP-3, 2001.
Kitagawa, 2003 S. Kitagawa et al., “Study of Electroosmotic Flow Profile by Processing of Virtual Digital Shah Function Mask and Fourier Transform”, Journal of Separation Science, 2003.
Laser, 2003 D.J. Laser et al., “Silicon Electroosmotic Micropumps for Integrated Circuit Thermal Management”, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, 2003.
Lawson, 2002 H. Lawson, “Rebirth of the Computer Industry”, Communications of the ACM, 2002.
Li, 2005 X. Li and G. Karimi, “Electroosmotic Flow Through Polymer Electrolyte Membranes in PEM Fuel Cells”, Journal of Power Sources, 2005.
Locascio, 1999 Locascio et al., “Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate”, Journal of Chromatography, 1999.
Lucy, 2001 C.A. Lucy et al. “Dynamic Capillary Coatings for Electroosmotic Flow Control in Capillary Electrophoresis”, Trend in Analytical Chemistry, 2001.
Mala, 1999 G.M. Mala and D. Li, “Flow Characteristics of Water in Microtubes”, Int. J. Heat Mass Transfer, 1999.
McCreedy, 2000 T. McCreedy, “Fabrication Techniques and Materials Commonly Used for the Production of Microreactors and Micro Total Analyical Systems”, Trends in Analytical Chemistry, 2000.
McGUffin, 2001 V.L. McGUffin, “Stochastic Simulation of Laminar and Electroosmotic Convection in Capillary Electrophresis and Electrochromatography”, Electrophoresis, 2001.
Molho, 1998 J.I. Molho et al., “Fluid Transport Mechanisms in Microfluidic Devices”, ASME International Mechanical Engineering Congress and Exposition, 1998.
Mudawar, 1994 I. Mudawar and M.B. Bowers, “High Flux Boiling in Low Flow Rate: Low Pressure Drop Mini-Channel and Micro-Channel Heat Sink”, Int. J. Heat Mass Transfer, 1994.
Oddy, 2004 M.H.Oddy and J.G. Santiago, “A Method for Determining Electrophoretic and Electroosmotic Mobilities Using AC and DC Electric Flied Particle Displacement”, Journal of Colloid and Interface Science, 2004.
Peng, 1996 X.F. Peng and G.P. Peterson, “Convective Heat Transfer and Flow Fraction for Water Flow in Microchannel Structures”, Int. J. Heat Mass Transfer, 1996.
Qiao, 2000 R. Qiao and N.R. Aluru, “Transient Analysis of Electroosmotic Flow in Nano-Diameter Channels “, Journal of MEMS, 2000.
Qu, 2002 W. Qu and I. Mudawar, “Analysis of Three-dimensional Heat Transfer in Micro-Channel Heat sinks”, International Journal of Heat and Mass Transfer, 2002.
Riekkola, 1999 M.L. Riekkola et al., “Characteristic of Electroosmotic Flow in Capillary Electrophoresis in Water and in Organic Solvents without Added Ionic Species”, Journal of Microcolumn Separations, 1999.
Santiago, 2003 J.G. Santiago et al., “Porous Glass Electroosmotic Pumps: Design and Experiments”, Journal of Colloid and Interface Science, 2003.

Schwesinger, 1996 N. Schwesinger et al., “A Modular Microfluid System with an Integrated Micromixer”, Journal of Micromechanics and Microengineering, 1996
Scott, 1999 M. Scott et al., “Electroosmotic Flow Created by Surface Defects in Capillary Electrophoresis”, Journal of Colloid and Interface Science, 1999.
Scott, 2000 M. Scott et al., “Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays”, Journal of Colloid and Interface Science, 2000.
Sinton, 2002 D. Sinton et al., “Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels”, Journal of Colloid and Interface Science, 2002.
Sinton, 2002 D. Sinton et al., “Photo-Injection Based Sample Design and Electroosmotic Transport in Microchannel”, Journal of Micromechanics and Microengineering, 2002.
Sinton, 2003 D. Sinton and D. Li, ”Electroosmotic Velocity Profiles in Microchannels”, Journal of Colloid and Interface Science, 2003.
Tsuda, 2001 T. Tsuda and C. Chaiyasut, “Isoelectric Points Estimation of Proteins by Electroosmotic Flow: pH Relationship Using Physically Adsorbed Proteins on Silica Gel”, Chromatography, 2001.
Tuckerman, 1981 D.B. Tuckerman and R.F.W. Pease, “High-Performance Heat Ainking for VLSI”, IEEE Electron. Dev. Lett., 1981.
Webb, 2004 W. Webb, “Take the Heat: Cool That Hot Embedded Design”, EDN., 2004.
Weisberg, 1992 A. Weisberg et al., “Analysis of Micro-Channels for Integrated Cooling”, Int. J. Heat Mass Transfer, 1992.

Yao,2001 G. F. Yao et al., “A Numerical Model for Simulation of Combined Electroosmotic and Pressure Driven Flow in Microdevices,” SYMP on Fluid Control, Measurement and Visualization, 2001.
Yao, 2003 S. Yao and J.G. Santiago, “Porous Glass Electroosmotic Pumps: Theory”, Journal of Colloid and Interface Science, 2003.
Yu, 1995 D. Yu et al., “An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes”, ASME Therm. Engng. Conf., 1995.
Zengerle, 1994 R. Zengerle and M. Richter, “Simulation of microfluid systems”, Journal of Micromechanics and Microengineering, 1994.
Zheng, 2003 Z. Zheng et al., “Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nanochannels”, Electrophoresis, 2003.
林,民國91年 林政彥,” 微流體晶片之電滲流場分析與應用”,國立成功大學碩士論文,中華民國91年。
莊,民國94年 莊水旺、翁聖雄,”電滲式散熱裝置之設計分析”,第三屆微電子技術發展與應用研討會,中華民國94年。
張,民國92年 張志彰,”微晶片電滲流場之分析與應用”,國立成功大學碩士論文,中華民國92年。
傅,民國90年 傅龍明,”微晶片電滲流場之分析與應用”,國立成功大學碩士論文,中華民國90年。
黃,民國91年 黃鈺霖,”電流體驅動(EHD)微幫浦的研製”,淡江大學碩士論文,中華民國90年。
黃,民國93年 黃冠達,”電滲流流場分析與離子濃度分布探討”,國立成功大學碩士論文,中華民國93年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top