跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許耿銘
研究生(外文):Geng-Ming Hsu
論文名稱:氮化銦奈米結構的成長與光學性質分析
論文名稱(外文):Growth and optical properties of nano-structured Indium Nitride
指導教授:黃智賢黃智賢引用關係陳貴賢陳貴賢引用關係林麗瓊林麗瓊引用關係
指導教授(外文):Jih-Shang HwangKuei-Hsien ChenLi-Chyong Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:91
中文關鍵詞:氮化銦奈米
外文關鍵詞:InNnano
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
綜合而言,本研究成功地使用有機金屬氣相沉積法,以金做為觸媒成長出一維的InN奈米尖錐。我們除探討不同的製程溫度、壓力與氣體流量,對InN奈米結構形貌的影響外;進一步並量測奈米尖錐與奈米帶、奈米線、以及GaN包覆InN奈米線的光學性質。
電子顯微鏡觀察顯示InN奈米尖錐為單晶六面體結構,且直徑分佈大約在100∼200 nm之間,長度可達1~3 μm。InN奈米尖錐的紅外光發光(IR-PL)光譜顯現了一個在0.776 eV強度不隨溫度升高而降低的PL峰值,應為近能帶邊緣放光(near band edge emission)。對比之下,另一組InN奈米線樣本的IR-PL觀察中,我們發現隨著雷射強度提高,奈米線容易損毀;但當外包GaN之後,其抗損毀能力明顯提高。此外,我們在奈米尖錐以及奈米帶的InN發現有明顯的放大自發放光(ASE, amplified spontaneous emission)以及雷射(lasing)的現象。不過在奈米線樣本中我們並未觀察到該等現象,有可能是因為奈米線較細散射截面較小所致。經由仔細的探討,我們認為所觀察到的雷射放光極有可能是來自隨機雷射(Random Lasing)的現象,而此種現象在InN中是首次的發現。
For the first time, one dimensional InN nano-tips were fabricated with gold as the catalyst using metal organic chemical vapor deposition. The morphology dependence of nano-tips on substrate temperature, pressure, and gas flow rate was investigated; further, the infrared photoluminescence (IR-PL) spectra of InN nanotips as well as nanobelts, nanowires, and nanowires encapsulated by GaN were measured.
Observed through scanning electron microscopy (SEM), the single crystalline InN nanotip was revealed to be a tapered hexagon with 100~200nm in diameter and 1~3um in length. The IRPL showed a peak centered at 0.776eV, in which intensity is nearly temperature independent and could be attribute to the near band edge emission in InN. In contrast, the IR-PL spectrum of InN nanowires is susceptible to damage under high power laser; However, as the nanowire was encapsulated with GaN, the damaging threshold of nanowires can be greatly improved. Moreover, apparent amplified spontaneous emission and lasing phenomenon were observed both on InN nanotips and nanobelts, which behavior has however not observed in nanowires. A possible reason is due to the extremely thin diameter, which has lower laser scattering cross section. After carefully examination, the observed lasing phenomenon is very likely due to the random lasing mechanism, which was firstly observed in InN.
誌謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表格目錄 XI
第一章 序論 1
第二章 氮化銦半導體基本性質 4
2-1 氮化銦材料結構與基本性質 4
2-2 InN的能隙問題 5
第三章 實驗方法與設備 10
3-1 實驗方法與步驟 10
3-1-1奈米結構成長流程圖 11
3-1-2奈米結構成長條件 14
3-2 製程設備 15
3-2-1 有機金屬氣相沉積系統 15
3-2-2直流濺鍍機介紹( DC sputtering ) 19
3-3 分析與量測儀器 19
3-3-1 X光繞射儀( XRD ) 19
3-3-2掃瞄式電子顯微鏡( SEM ) 20
3-3-3 X光能譜分析儀( EDX ) 21
3-3-4穿透式電子顯微鏡( TEM ) 21
3-3-5顯微拉曼光譜分析儀( Micro-Raman Spectrumeter ) 22
3-3-6光激發螢光光譜儀( Photoluminescence ) 23
第四章 實驗結果與討論 26
4-1 製程參數對奈米結構形貌的影響 26
4-1-1 TMIn流量變化效應 26
4-1-2 氨氣流量變化效應 32
4-1-3成長壓力變化效應 34
4-1-4 成長溫度變化效應 36
4-2 InN奈米尖錐之成分與結構分析 39
4-3 InN奈米結構光學性質分析 42
4-3-1 奈米尖錐 42
4-3-2奈米帶 44
4-3-3 InN奈米線與Core-Shell InN奈米線@GaN 45
4-3 紅外線光激發螢光光譜的討論 57
4-3-1 Phonon Replica 57
4-3-2 Fabry Perot Resonator 60
4-3-3 Whispering Gallery Modes 62
4-3-3 Random Lasing 66
第五章 結論 72
參考文獻 73
1 R. Juza, H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).
2 O. Ambacher et al., J. Vac. Sci. Technol. B 14, 3532(1996).
3 A. Yamamoto, M. Tsujino, M. Ohkubo, A. Hashimoto, J. Cryst. Growth 137, 415 (1994).
4 T. Tsuchiya, H. Yamano, O. Miki, A. Wakahara, A. Yoshida, Jpn. J. Appl. Phys., Part 1 38, 18847 (1999).
5 W. K. Chen, Y. C. Pan, H. C. Lin, J. Ou, W. H. Chen, M. C. Lee, Jpn. J. Appl. Phys., Part 2 36, L1625 (1997).
6 H. Lu, W. J. Schaff, L. F. Eastman, J. Wu, W. Walukiewicz, V. Cimalla, O. Ambacher, Appl. Phys. Lett. 83, 1136 (2003).
7 T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
8 V. Y. Davydov et al., Phys. Status Solidi B 229, R1-R3 (2002).
9 J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager I I I, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
10 V. Y. Davydov et al., Phys. Status Solidi B 230, R4-R6 (2002).
11 M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N.Teraguchi, A. Suzuki, Phys. Status Solidi B 234, 787 (2002).
12 Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, Y. Nanishi, Phys. Status Solidi B 234, 796 (2002).
13 T. Miyajima et al., Phys. Status Solidi B 234, 801 (2002).
14 T. L. Tansley, C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
15 S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
16 A. Wakahara, T. Tokuda, X. Z. Dang, S. Noda, and A. Sasaki, Appl. Phys. Lett. 71, 906 (1997).
17 K. P. O’Donell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).
18 Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, J. I. Chyi, Appl. Phys. Lett. 77, 2988 (2000).
19 S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, J. Appl. Phys. 83, 826 (1998).
20 B. E. Foutz, S. K. O'Leary, M. S. Shur,L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).
21 B. R. Nag, Phys. Status Solidi B R2, 237 (2003).
22 經濟部能源委員會, 能源政策白皮書 (1998).
23 International Energy Agent, International Energy Outlook (1997).
24 International Energy Agent, World Energy Prospects to 2020, prepared for G8 Energy Ministers Meeting in Moscow, http://www.iea.org/pub.htm (1998).
25 C. J. Campell, J. H. Laberre, Scientific American, 78 (1998).
26 參考http://www.lbl.gov/msd/PIs/Walukiewicz/02/02_8_Full_Solar_Spectrum.html.
27 孫慶成, 光電概論, 全華科技圖書股份有限公司 (1997).
28 A. P. Lima, A. Tabata, J. R. Leite, S. Kaiser, and K. Lischka, J. Cryst. Growth 201/202, 396 (1999).
29 P. Bhattacjarya, T. K. Sharma, S. Singh, A. Ingale, J. Cryst. Growth 236, 5 (2002).
30 B. Gil, Group III nitride semiconductor compounds, physics and applications, Oxford University Press (1998).
31 A. Wakahara, T. Tsuchiya, A. Yoshida, J. Cryst. Growth 99, 385 (1990).
32 M. Sato, Jpn. J. Appl. Phys. 36, L658 (1997).
33 Q. Guo, M. Nishio, H. Ogawa, A. Yoshida, Jpn. J. Appl. Phys. 38, L490 (1999).
34 A. Yamamoto, Y. Yamauchi, M. Ohkubo, A.Hashimoto, J. Cryst. Growth 174, 641 (1997).
35 S. Yamaguchi, M. Kariya, S.Nitta, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, J. Appl. Phys. 85, 7682 (1999).
36 F. H. Yang, J. H. Hwang, K. H. Chen, Y. J. Yang, J. H. Wang, Jpn. J. Appl. Phys. 11B, L1321 (2002).
37 S. E. Aleksandov, V. A. Zykov, T. A. Gavrikova, D. M. Krasovitskil, Semiconductors 32, 412 (1998).
38 F. Agullo-Rueda, E. E. Medez, B. Bojarczuk, S. Guha, Sol. Stat. Commun. 115, 19 (2002).
39 F. H. Yang, J. H. Hwang, K. H. Chen, Y. J. Yang, T. H. Lee, L. G. Hwa, L. C. Che, Thin Solid Films 405, 194 (2002).
40 S. Gwo , C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang, J. T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
41 T. J. Kistenmacher, S. A. Ecellberger, W. A. Bryden, J. Appl. Phys. 74, 1684 (1993).
42 C. R. Abernathy, S. J. Pearton, F. Ren, P. W. Wisk, J. Vac. Sci. Technol. B 11, 179 (1993).
43 O. Igaracshi, Jpn. J. Appl. Phys. 31, 2665 (1992).
44 T. Inushima, V. U. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, S. Ohoya, J. Cryst. Growth 227/228, 481 (2001).
45 E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Appl. Phys. Lett. 84, 212 (2004).
46 J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Auger III, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. B 66, 201403 (2002)..
47 T. V. Shubina, S. V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vek-shin, P. S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, B. Monermar, Phys. Rev. Lett. 92, 117407 (2004).
48 Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, L .C. Chen, J. Cryst. Growth 269, 87 (2004).
49 Q. Guo, A. Yoshida, Jap. J. Appl. Phys., Part 1 33, 2453 (1994).
50 K. Ikuta, Y. Inoue and O. Takai, Thin Solid Films 334, 49 (1998).
51 V. V. Mamutin, T. V. Shubina, V. A. Vekshin, V. V. Ratnikov, A. A. Toropov, S. V. Ivanov, M. Karlsteen, U. Sodervall, M. Willander, Appied Surface Science 166, 87 (2000).
52 T. Yang, S. Nakajima, S. Sakai, Jpn. J. Appl. Phys. 34, 5912 (1995).
53 C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
54 V. V. Mamutin, V. A. Vekshin, V. Yu. Davydov, V. V. Ratnikov, T. V. Shubina, S. V. Ivanov, P. S. Kopev, M. Karlsteen, U. Sodervall and M. Willander, Phys. Status Solidi A 176, 247 (1999).
55 J. S. Hwang, C. H. Lee, F. H. Yang, K. H. Chen, L. G. Hwa, Y. J. Yang,
L. C. Chen, Mater. Chem. Phys. 72, 290 (2001).
56 F. Bechstedt, J. Furthmuller, J. Cryst. Growth 246, 315 (2002).
57 K. Xu, A. Yoshikawa, Appl. Phys. Lett. 83, 2 (2003).
58 S. Z. Wang, S. F. Yoon, Y. X. Xia, S.W. Xie, J. Appl. Phys. 95, 7998 (2004).
59 R. Intartaglia, B. Maleyre, S. Ruffenach, O. Briot, T. Taliercio, B. Gil, Appl. Phys. Lett. 86, 142104 (2005).
60 T. V. shubina, S. V. Ivanov, V. N. Jmerik, M. M. Glazov, A. P. Kalvaskii, M. G. Tkachman, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, I. Akasaki, K. S. A. Butcher, Q. Guo, B. Monemar, P. S. Kop’ev, Phys. Status Solidi A 202, 377 (2005).
61 A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, Hai Lu, William J. Schaff, Phys. Status Solidi B 242, R33-R35 (2005).
62 M. C. Johnson, S. L. Konsek, A.Zettl, E. D. Bourret-Courchesne, J. Cryst. Growth 272, 400 (2004).
63 L. W. Yin, Y. Bando, D. Golberg, M. S. Li, Adv. Mater. 16, 1833 (2004).
64 T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhou, B. Chen, J. Han, M. Meyyapan, J. Mater. Res. 19, 423 (2004).
65 M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, A. Zettl, Appl. Phys. Lett. 85, 5670 (2004).
66 J. Zhang, B. Xu, F. Jiang, Y. Yang, J. Li, Phys. Lett. A 337, 121 (2005).
67 G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy, Theory and Practice, Ch2. Academic Press (1989).
68 汪建民 主編,材料分析,第六、九、十二、十三、十五、二十二章,中國材料科學學會 (1998).
69 S. Perkowitz, Optical Characterization of Semiconductors, Infrared, Raman, and Photoluminescence Spectroscopy, Chapter 3, 5, 6, Academic Press (1993).
70 W. H. Weber, R. Merlin, Raman Scattering in Materials Science, Chapter7, Springer (2000).
71 Y. R. Wang, C. B. Duke, Surface Science 192, 305 (1987).
72 P. Schroer, P. Kruger, J. Pollmann, Phys. Rev. B 47, 17092 (1994).
73 K. Jabsonska et al., Appl. Phys. Lett. 70, 2711 (1997).
74 Mkhoyan et al., Appl. Phys. Lett. 82, 1407 (2003).
75 Y. Wu, P. Yang, Chem. Mater. 12, 605 (2000).
76 R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 81 (1964).
77 J. B. Baxter, F. Wu, E. S. Aydil, Appl. Phys. Lett. 83, 3797 (2003).
78 O. P. Louis, M. R. D’Orsogna, T. L. Einstein, Phys. Rev. Lett. 82, 3661 (1999).
79 J. S. Dyck, K. Kim, S. Limpijumnong, W. R. L. Lambrecht, K. Kash, J. C. Angus, Sol. Stat. Comm. 114, 355 (2000).
80 H. C. Yang, P. F. Kuo, T. Y. Lin, Y. F. Chen, K. H. Chen, L. C. Chen, J. I. Chyi, Appl. Phys. Lett. 76, 3712 (2000).
81 A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).
82 H. L. Liu, C. C. Chen, C. T. Chia, C. C. Yeh, C. H. Chen, M. Y. Yu, S. Keller, S. P. Denbaars, Chem. Phys. Lett. 345, 245 (2001).
83 張俊彥譯著,施敏原著,半導體元件物理與製作技術,第七章,高麗圖書有限公司,(2000).
84 G. D. Gilliland, Photoluminescence spectroscopy in crystalline semiconductors, Materials Science and engineering (1997).
85 P. BHATTACHARYA, Semiconductir optoelectronic devices (2003).
86 Tyagai et al., Soviet Physics Semiconductors (1977).
87 E. S. Pinto, R. de Paiva, L. C. de Carvalho, H. W. L. Alves, J. L. A. Alves, Microelectronics Journal 34, 721 (2003).
88 H. Ahn, C. H. Shen, C. L. Wu, S. Gwo, Appl. Phys. Lett. 86, 201905 (2005).
89 I. Braun, G. Ihlein, F. Laeri, J. U. Nockel, G. S. Ekloff, F. Schuth, U. Vietze, O. WeiB, D. Wohrle, Appl. Phys. B 70, 335 (2000).
90 J. Wiersig, Phys. Rev. A 67, 023807 (2003).
91 J. Wiersig, J. Opt. A, Pure Appl. Opt. 5, 53 (2003).
92 T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004).
93 S. Mujumdar, M. Ricci, R. Torre, D. S. Wiersma, Phys. Revs. Lett. 93, 053903 (2004).
94 Diederik Wiersma, Nature 406, 132 (2000).
95 H. C. Hsu, C. Y. Wu, W. F. Hsieh, J. Appl. Phys. 97, 064315 (2005).
96 R. C. Polson, A. Chipouline, Z. V. Vardeny, Adv. Mater. 13, 70 (2001).
97 S. F. Yu, C. Yuen, S. P. Lau, G. C. Yi, Appl. Phys. Lett. 84, 3241 (2004).
98 H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, O. H. Wang, R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top