(3.220.231.235) 您好!臺灣時間:2021/03/07 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅翊偉
研究生(外文):Yi-Wei Lou
論文名稱:Ras轉型細胞中內生性氧化壓力調控蛋白質酪氨酸去磷酸酶活性與FAK訊息傳遞之機制探討
論文名稱(外文):Intrinsic oxidative stress regulates enzymatic activity of protein tyrosine phosphatases and FAK-mediated signal transduction in Ras-transformed fibroblasts
指導教授:孟子青孟子青引用關係
指導教授(外文):Tzu-Ching Meng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:75
中文關鍵詞:轉型細胞活性氧蛋白質酪氨酸去磷酸酶
外文關鍵詞:ROSPTPFAK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前有越來越多的證據指出,活性氧以訊息傳遞分子的角色參與在許多細胞生理現象,包括了細胞生長、細胞凋零與細胞老化等。活性氧參與在訊息傳導路徑主要是透過可逆氧化抑制細胞中蛋白質酪氨酸去磷酸酶(protein tyrosine phosphatases)來調控蛋白質酪氨酸磷酸化程度。過去有許多研究認為細胞轉型和癌症的發生與細胞持續不斷製造活性氧有關。本篇論文主旨是針對在轉型細胞中,大量的活性氧在細胞訊息傳遞上所扮演的角色功能探討。

在正常細胞與致癌基因Ras與Src引發之轉型細胞的比較上,我們觀察到轉型細胞製造高量活性氧的同時,細胞中酪氨酸磷酸化蛋白程度也隨之上升。當以細胞中負責產生活性氧之酵素Nox的抑制劑DPI來抑制轉型細胞所製造的活性氧時,實驗結果顯示細胞蛋白中酪氨酸磷酸化有減少的現象發生。在此同時,轉型細胞在有DPI的處理下發生了細胞型態的變化。從我們的實驗結果發現,對於細胞遷移具有重要功能的focal adhesion kinase (FAK)第397酪氨酸的磷酸化在DPI處理後會有減弱的情形。而在Ras轉型細胞中另一個重要的蛋白激酶Src,其活性在長時間DPI的處理後也會減低。同時在FAK上屬於Src磷酸化位置的酪氨酸也會隨著Src活性的減弱有磷酸化下降的現象。在本實驗亦證實,經過DPI處理抑制活性氧,會造成細胞中受到可逆氧化調控的蛋白質酪氨酸去磷酸酶酵素活性的恢復。因此我們認為轉型細胞製造高量的活性氧,進而氧化抑制細胞中蛋白質酪氨酸去磷酸酶,以促進細胞中蛋白質酪氨酸磷酸化。這個機制所造成的影響,包括了對於FAK與Src主導的訊息傳遞路徑。
Reactive oxygen species (ROS) have emerged as intracellular signaling molecules in multiple cellular processes such as proliferation, apoptosis, and senescence. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, particularly protein tyrosine phosphatases (PTPs). Recent studies suggested that the abnormally high levels of cellular ROS production are concurrent with the development of human diseases such as cancers. We examined the role of ROS in the control of signal transduction in Ras- and Src-transformed NIH-3T3 cells which constitutively produce more ROS and possess more active tyrosine phosphorylation signals than parental NIH-3T3 cell. Treatment of transformed cells with diphenyleneiodonium (DPI), a NADPH oxidase (Nox) inhibitor, led to the suppression of cellular ROS production. Under this condition, we found that the activity of endogenous PTPs was elevated, whereas the tyrosine phosphorylation level of cellular proteins was decreased. Such an effect was more pronounced in Ras-transformed cells, compared with that in Src-transformed cells, suggesting that Ras-mediated signal transduction is essentially ROS-dependent. This hypothesis was further investigated. In Ras-transformed cells treated with DPI, a 120 kDa protein, which showed a significant decrease of tyrosine phosphorylation, was subsequently identified as focal adhesion kinase (FAK). Upon the inhibition of cellular ROS production, FAK was dephosphorylated at tyrosine 397 (Tyr397), an integrin-induced auto-phosphorylation site whose phosphorylation activates FAK and enhances cell migration. Treatment of DPI also led to the decrease of phosphorylation levels of Tyr576, Tyr577, Tyr861 and Tyr925 of FAK, concurrent with the decreased kinase activity of Src that recognizes and phosphorylates those Tyr residues in FAK. We also observed that the overexpression of dominant negative Rac1N17, which has been shown to block Nox activity, resulted in the dephosphorylation of FAK and Src. Furthermore, we showed that Ras-transformed cells lost their membrane protrusions in a time-dependent manner in response to DPI treatment, concomitant with the reactivation of cellular PTPs that were originally undergoing reversible oxidation. Our data thus suggested that the Ras-mediated migration signal is regulated by the ROS-dependent activation of FAK and Src through constitutive oxidation and inactivation of endogenous PTPs.
目錄

中文摘要 …………………………………………………………………1
英文摘要 …………………………………………………………………2
緒論 ………………………………………………………………………3
實驗材料…………………………………………………………………16
實驗方法…………………………………………………………………21
實驗結果…………………………………………………………………26
討論………………………………………………………………………36
圖表………………………………………………………………………43
附圖………………………………………………………………………64
參考文獻…………………………………………………………………69
Akagi T, Murata K, Shishido T, Hanafusa H (2002) v-Crk activates the phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and H-Ras. Mol Cell Biol 22: 7015-7023
Babior BM (1999) NADPH oxidase: an update. Blood 93: 1464-1476
Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16: 42-47
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272: 217-221
Banfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278: 3510-3513
Bokoch GM, Bohl BP, Chuang TH (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem 269: 31674-31679
Brabek J, Constancio SS, Shin NY, Pozzi A, Weaver AM, Hanks SK (2004) CAS promotes invasiveness of Src-transformed cells. Oncogene 23: 7406-7415
Chen R, Kim O, Li M, Xiong X, Guan JL, Kung HJ, Chen H, Shimizu Y, Qiu Y (2001) Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat Cell Biol 3: 439-444
Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161: 933-944
Cho SY, Klemke RL (2002) Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J Cell Biol 156: 725-736
Chodniewicz D, Klemke RL (2004) Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta 1692: 63-76
Cool RH, Merten E, Theiss C, Acker H (1998) Rac1, and not Rac2, is involved in the regulation of the intracellular hydrogen peroxide level in HepG2 cells. Biochem J 332 (Pt 1): 5-8
Cross AR, Jones OT (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237: 111-116
Cross AR, Rae J, Curnutte JT (1995) Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 270: 17075-17077
Cunnick JM, Dorsey JF, Mei L, Wu J (1998) Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. Biochem Mol Biol Int 45: 887-894
Dang PM, Babior BM, Smith RM (1999) NADPH dehydrogenase activity of p67PHOX, a cytosolic subunit of the leukocyte NADPH oxidase. Biochemistry 38: 5746-5753
DeLeo FR, Quinn MT (1996) Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 60: 677-691
Denu JM, Dixon JE (1998) Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 2: 633-641
Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37: 5633-5642
Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265: 531-533
Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86: 1729-1737
Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47-95
Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96: 4820-4825
Freeman JL, Lambeth JD (1996) NADPH oxidase activity is independent of p47phox in vitro. J Biol Chem 271: 22578-22582
Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64: 97-112
Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278: 20006-20012
Han CH, Lee MH (2000) Expression and characterization of the flavoprotein domain of gp91phox. J Vet Sci 1: 19-26
Han DC, Guan JL (1999) Association of focal adhesion kinase with Grb7 and its role in cell migration. J Biol Chem 274: 24425-24430
Hanks SK, Ryzhova L, Shin NY, Brabek J (2003) Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8: d982-996
Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15: 578-584
Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160: 753-767
Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T (1998) Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem 273: 9656-9666
Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649-1652
Koshkin V, Lotan O, Pick E (1996) The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem 271: 30326-30329
Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15: 1942-1952
Krieger-Brauer HI, Kather H (1995) Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem J 307 (Pt 2): 549-556
Kuroda S, Fukata M, Fujii K, Nakamura T, Izawa I, Kaibuchi K (1997) Regulation of cell-cell adhesion of MDCK cells by Cdc42 and Rac1 small GTPases. Biochem Biophys Res Commun 240: 430-435
Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9: 11-17
Lambeth JD, Cheng G, Arnold RS, Edens WA (2000) Novel homologs of gp91phox. Trends Biochem Sci 25: 459-461
Lapouge K, Smith SJ, Groemping Y, Rittinger K (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 277: 10121-10128
Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366-15372
Lim Y, Han I, Jeon J, Park H, Bahk YY, Oh ES (2004) Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem 279: 29060-29065
Liu E, Cote JF, Vuori K (2003) Negative regulation of FAK signaling by SOCS proteins. Embo J 22: 5036-5046
Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF (1995) Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol Cell Biol 15: 3654-3663
Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270: 11727-11730
Machesky LM, Hall A (1997) Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 138: 913-926
May JM, de Haen C (1979) Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J Biol Chem 254: 2214-2220
Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9: 387-399
Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247: 939-945
Mitsushita J, Lambeth JD, Kamata T (2004) The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 64: 3580-3585
Naarala J, Tervo P, Loikkanen J, Savolainen K (1997) Cholinergic-induced production of reactive oxygen species in human neuroblastoma cells. Life Sci 60: 1905-1914
Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K, Matsuura Y, Takai Y (1994) rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 14: 2447-2456
Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53-62
Ohba M, Shibanuma M, Kuroki T, Nose K (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126: 1079-1088
Owen JD, Ruest PJ, Fry DW, Hanks SK (1999) Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol 19: 4806-4818
Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116: 1409-1416
Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, Ballinger CA, Brasier AR, Bode C, Runge MS (1999) Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 274: 19814-19822
Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14: S211-215
Ridley AJ, Comoglio PM, Hall A (1995) Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol 15: 1110-1122
Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401-410
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302: 1704-1709
Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5: 1307-1315
Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, Griffin JD (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93: 2928-2935
Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540: 1-21
Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20: 6459-6472
Schlaepfer DD, Hanks SK, Hunter T, van der Geer P (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372: 786-791
Schlaepfer DD, Hunter T (1996) Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 16: 5623-5633
Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692: 77-102
Shimizu T, Ihara K, Maesaki R, Kuroda S, Kaibuchi K, Hakoshima T (2000) An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP. Implications for the GDP/GTP exchange mechanism. J Biol Chem 275: 18311-18317
Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2: 249-256
Snyder JT, Worthylake DK, Rossman KL, Betts L, Pruitt WM, Siderovski DP, Der CJ, Sondek J (2002) Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat Struct Biol 9: 468-475
Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278: 50456-50465
Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM (2004) Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility. J Cell Biol 165: 371-381
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296-299
Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, Goldschmidt-Clermont PJ, Finkel T (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J 318 (Pt 2): 379-382
Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794-798
Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y (1994) Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9: 273-279
Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278: 25234-25246
Taylor JM, Macklem MM, Parsons JT (1999) Cytoskeletal changes induced by GRAF, the GTPase regulator associated with focal adhesion kinase, are mediated by Rho. J Cell Sci 112 (Pt 2): 231-242
Tominaga T, Sugie K, Hirata M, Morii N, Fukata J, Uchida A, Imura H, Narumiya S (1993) Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J Cell Biol 120: 1529-1537
Toutant M, Costa A, Studler JM, Kadare G, Carnaud M, Girault JA (2002) Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 22: 7731-7743
Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274: 22699-22704
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6: 154-161
Zhai J, Lin H, Nie Z, Wu J, Canete-Soler R, Schlaepfer WW, Schlaepfer DD (2003) Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 278: 24865-24873
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔