跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/25 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱佑銘
研究生(外文):You-Min Chiu
論文名稱:蜂巢格網擋土結構模型試驗
論文名稱(外文):Model Tests of Geocell Retaining Structures
指導教授:陳榮河陳榮河引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:133
中文關鍵詞:蜂巢格網邊坡穩定模型試驗破壞型式
外文關鍵詞:Geocellslope stabilitymodel testsfailure modes
相關次數:
  • 被引用被引用:7
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蜂巢格網為新興之地工合成材料,能提供土壤的圍束作用,增加土壤承載力及防止沖蝕發生,格室更可植生綠化,提高工程生態性,美化環境景觀。目前國內外對蜂巢格網的應用案例相當廣泛,常見應用包括增加路基承載力、防止河岸沖刷、邊坡穩定、護坡等。
本研究旨在探討蜂巢格網擋土結構於受荷重時之牆體變形性、背填土沉陷量,與整體擋土結構的破壞型式,以對破壞機制能有更進一步掌握。研究方法係利用模型砂箱試驗,並透過模型相似性分析,製作適當的蜂巢格網擋土結構模型,藉由改變擋土結構高度、牆面傾角、荷重加載方式與擋土結構型式等,探討各因子對蜂巢格網擋土結構行為之影響。
根據模型試驗分析結果顯示,蜂巢格網擋土結構的牆面水平位移量與背填土沉陷量,隨著牆面傾角及背填土加壓荷重之提高而增加。蜂巢格網重力式擋土結構的牆面最大水平位移量發生於牆頂,且其破壞行為包括層間局部塊體之水平滑動,與整體擋土結構有翻倒破壞的傾向。蜂巢格網擋土結構模型與背填土一同受壓時,其牆面的最大水平位移量約發生在距牆頂0.3倍牆高處。背填土加勁可有效地減少荷重加載後牆面的水平位移量與背填土沉陷量。低加載階段時,背填土下層加勁較能抑制牆體的側向位移,而高加載階段時,背填土上層加勁之功效則較佳。背填土上層加勁時,牆面最大水平位移量約發生在0.5倍牆高處,而背填土下層加勁之牆面最大水平位移量則產生於牆頂。
Geocell is a new developing material for geosynthetics. It can offer confining pressures for soils to increase the bearing capacity and prevent soil erosion. In addition, geocell can be vegetation to improve the ecology of engineering and environment. The applications of geocell include the soil bearing capacity, erosion control, slope stability, and slope protection etc.
The purpose of this study is to investigate the structure deformation, backfill settlement and failure modes of the geocell retaining structures through model tests in a sandbox. Geocell models were made through similarity analysis. The main variables for model tests include the structure height, the structure inclination, surcharge loading type and the construction form of geocell retaining structures.
The result of the model tests shows that the structure displacement and backfill settlement will rise with the increasing structure inclination and surcharge loading. The maximum horizontal displacement of geocell gravity retaining structures is located on the wall top. Additionally, the failure modes of geocell gravity retaining structures include layer block sliding and overall overturning failure. When the model and backfill are under pressure together, the maximum displacement is located near the 0.3 times of the wall height. However, Backfill reinforce can reduce the displacement and settlement effectively. While backfill upper layers are being reinforced, the maximum horizontal displacement nearly takes place in half wall height. Nevertheless, while backfill lower layers are being reinforced, the maximum horizontal displacement is located on the wall top.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
表目錄 VII
圖目錄 VIII
照片目錄 XI
符號說明 XIII

第一章 導論 1
1.1 研究動機與背景 1
1.2 研究目的與方法 1
1.3 研究內容 2
第二章 文獻回顧 4
2.1 蜂巢格網簡介 4
2.1.1 蜂巢格網之材料特性 4
2.1.2 蜂巢格網之鋪設 6
2.1.3 蜂巢格網之優點及應用 6
2.2 蜂巢格網之相關研究 11
2.2.1 三軸試驗 11
2.2.2 基礎承載力 14
2.3 模型擋土牆試驗 16
2.3.1 加勁擋土牆模型試驗 16
2.3.2 土釘擋土牆模型試驗 18
第三章 蜂巢格網模型之設計與製作 25
3.1 模型相似性分析 25
3.2 蜂巢格網之力學性質試驗 26
3.2.1 試驗設備及準備工作 27
3.2.2 抗張強度試驗 29
3.2.3 接縫強度試驗 29
3.3 蜂巢格網模型之製作 33
3.3.1 蜂巢格網模型材料之決定 33
3.3.2 蜂巢格網模型接縫製作方式之決定 38
3.3.3 蜂巢格網擋土結構模型之製作 41
第四章 蜂巢格網擋土結構模型試驗 51
4.1 試驗用砂土之基本性質 51
4.1.1 粒徑分析試驗 51
4.1.2 含水量試驗 53
4.1.3 比重試驗 53
4.1.4 最大與最小乾密度試驗 53
4.2 試驗用砂土之力學性質 53
4.3 模型之側壁摩擦效應 54
4.4 背填土加勁紙張與砂土之摩擦反應 58
4.5 模型砂箱及相關試驗設備儀器 58
4.5.1 模型砂箱基本裝備 58
4.5.2 量測設備與記讀儀器 62
4.6 模型試驗步驟 65
第五章 模型試驗結果與分析 75
5.1 荷重加壓鈑型式之影響 77
5.2 擋土結構傾角之影響 77
5.3 荷重加壓區域之影響 82
5.4 背填土加勁之影響 88
5.4.1 背填土是否加勁之影響 88
5.4.2 背填土加勁區域之影響 93
5.5 擋土結構型式之影響 98
5.6 牆面水平位移量與加壓荷重之變化關係 98
5.6.1 蜂巢格網重力式擋土牆 105
5.6.2 蜂巢格網重力式擋土牆與背填土加勁 105
5.6.3 蜂巢格網牆面與背填土加勁 105
第六章 結論與建議 111
6.1 結論 111
6.1.1 第三章(模型相似性)研究成果 111
6.1.2 第四章(試驗準備)研究成果 111
6.1.3 第五章(模型試驗)研究成果 112
6.2 建議 113
6.2.1 試驗建議 113
6.2.2 蜂巢格網擋土結構設計建議 114
參考文獻 116
附錄A 試驗用砂土之基本性質試驗結果 120
附錄B 試驗用儀器校正結果 128
1.Bathurst, R. J. and Karpurapu, R. (1993), “Large-Scale Triaxial Compression Testing of Geocell-Reinforced Granular Soils,” Geotechnical Testing Journal, GTJODJ, Vol. 16, No. 3, pp. 296-303.
2.Bathurst, R. J. and Crowe, R. E. (1994), “Recent Case Histories of Flexible Geocell Retaining Walls in North America,” Recent Case Histories of Permanent Geosynthetic-Reinforced Soil Retaining Walls, pp. 3-19.
3.Bathurst, R. J., Walters, D., Vlachopoulos, N., Burgess, P., and Allen, T. M. (2000), “Full Scale Testing of Geosynthetic Reinforced Walls,” ASCE Special Publication, Proceedings of GeoDenver, Denver, Colorado.
4.Cancelli, A., Rimoldi, P. and Montanelli, F. (1993), “Index and Performance Tests for Geocells in Different Applications,” Geosynthetic Soil Reinforcement Testing Procedures, ASTM STP 1190, S. C. Jonathan Cheng, Ed., American Society for Testing and Materials, Philadelphia.
5.Diemand, D., Alger, R., and Klokov, V. (1996), “Snow Road Enhancement,” Road Management & Engineering Journal.
6.Watanabe, K. (2004), “Behaviors of Several Types of Model Retaining Walls Subjected to Large Earthquake Excitation,” 2004 Taiwan-Japan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall Papers, National Center for Research on Earthquake Engineering, Taipei.
7.Kim, D. S., Juran, I., Nasimov, R., and Drabkin, S. (1995), “Model Study on the Failure Mechanism of Soil-Nailed Structure Under Surcharge Loading,” Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 4, pp. 421-430.
8.Koerner, R. M. (1997), “Designing with Geosynthetics,” 4th edition, Prentice Hall Inc., New Jersey, USA.
9.Koerner, R. M., Soong, T. Y. (2001), “Geosynthetic Reinforced Segmental Retaining Walls,” Geotextiles and Geomembranes, Vol. 19, pp. 359-386.
10.Langhaar, H. L. (1980), “Dimensional Analysis and Theory of Models,” Robert E. Krieger Publishing Company Inc., New York, USA.
11.Miki, H., Kudo, K., Taki, M., Fukuda, N., Iwasaki, K. and Nishimura, J. (1994), “The Facing’s Retaining Effect of Steep Slope Reinforced Embankment” Recent Case Histories of Permanent Geosynthetic- Reinforced Soil Retaining Walls, pp. 131-140.
12.Pinto, M. Isabel M. and Cousens, T. W. (1996), “Geotextile Reinforced Brick Faced Retaining Walls,” Geotextiles and Geomembranes, Vol. 14, pp. 449-464.
13.Presto Products Company (2000), “The Geoweb Earth Retention System Technical Overview,” USA.
14.Presto Products Company (2002), “The Geoweb Earth Retention System Installation Guideline,” USA.
15.Rajagopal, K., Krishnaswamy, N. R. and Madhavi Latha, G. (1999), “Behaviour of Sand Confined with Single and Multiple Geocells,” Geotextiles and Geomembranes, Vol. 17, pp. 171-184.
16.Schuring, D. J. (1977), “Scale Models in Engineering: Fundamentals and Applications,” Pergamon Press Inc., New York, USA.
17.Wong, K. S., Broms, B. B. and Chandrasekaran B. (1994), “Failure Modes at Model Tests of a Geotextile Reinforced Wall,” Geotextiles and Geomembranes, Vol. 13, pp. 475-493.
18.Zornberg, J. G., Mitchell, J. K. and Sitar, N. (1997), “Testing of Reinforced Slopes in a Geotechnical Centrihuge,” Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 4, pp. 470-480.
19.徐木城 (1979),「定床水工模型試驗相似律之研究」,碩士論文,國立台灣大學土木工程學研究所。
20.毛壽彭 (1987),「水工模型試驗」,中國土木水利工程學會出版。
21.李怡先 (1991),「地工合成材與土壤互制作用之力學性質」,碩士論文,國立台灣大學土木工程學研究所。
22.張達德、林炳昌、顏呈仰、陳佑昌、楊岡順 (1998),「加勁路堤系列研究:地工格網於砂土圍壓下之大尺度拉出行為研究」,交通部科技顧問室。
23.洪勇善 (1999),「土釘擋土結構之力學行為」,博士論文,國立台灣大學土木工程學研究所。
24.謝啟萬、郭耀章、張達德、吳政翰 (1999),「地工蜂格網應用於路基加勁之研究」,第八屆大地工程學術研究討論會論文集,第1717-1725頁。
25.陳宏杰 (2000),「土釘擋土牆力學行為之探討」,碩士論文,國立台灣大學土木工程學研究所。
26.胡衍榮、謝宗榮、劉家男、張達德、謝啟萬、陳榮河、郭勝雄、李維峰、周南山 (2001),「地工合成材料加勁擋土結構設計與施工手冊」,中華地工材料協會。
27.陳建仁 (2002),「土釘加勁邊坡之耐震研究」,碩士論文,國立台灣大學土木工程學研究所。
28.張家豪(2004),「地工蜂巢格網加勁於砂土路基之承載能力研究」,碩士論文,私立中原大學土木工程學系。
29.葉雅芸 (2004),「地工袋應用於擋土結構之探討」,碩士論文,國立台灣大學土木工程學研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top