跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡政育
研究生(外文):Cheng-Yu Tsai
論文名稱:實尺寸兩層樓挫屈束制支撐子結構雙向受震擬動態試驗與分析
論文名稱(外文):Pseudo Dynamic Tests and Analysis of A Full Scale Two-story Steel Buckling Restrained Braced Substructure under Bi-directional Earthquake Loads
指導教授:蔡克銓蔡克銓引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:181
中文關鍵詞:挫屈束制支撐構架擬動態試驗
外文關鍵詞:Buckling Restrained BracePseudo Dynamic Tests
相關次數:
  • 被引用被引用:4
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來有關挫屈束制支撐(BRB)之研究,均證實此種消能斜撐為一種十分有效的耐震消能元件。因其在受壓時並不會產生挫屈的現象,所以在反覆加載之下可以產生飽滿的遲滯迴圈行為,而能消散大量的能量。因此近幾年來在台灣、日本與美國此種斜撐皆已漸受廣泛的採用。但在過去的這些研究當中,往往是以單軸拉壓的方式進行挫屈束制支撐構件試驗,而在整體構架試驗結果方面仍顯不足。此外,由在2003年於國家地震工程研究中心所進行的實尺寸三層樓之挫屈束制支撐CFT/BRB構架試驗,可得知接合板若依習見設計方法而不採適當的加勁將有可能發生挫屈。因此為進一步研究接合板的耐震設計方法並考慮真實結構物受雙向地震作用下之受力與變形對接合板的效應,本研究進行一座實尺寸二層挫屈束制支撐構架雙向受震之擬動態子結構試驗。
本研究探討挫屈束制支撐與其接合在結構中之行為外,亦探討網路子結構擬動態實驗技術。而本研究的主要項目有:1)探討整體構架之耐震設計方法,比較試驗所得與數值分析的結果。2)檢討挫屈束制支撐於構架中之耐震行為,包括斜撐消能情形、斜撐累積塑性韌性表現、斜撐端部轉角與斜撐韌性等。3) 探討接合板之耐震行為與ABAQUS有限元素分析結果,包括接合板之設計方法、側向變形計算方法。試驗顯示斜撐之接合板在經過加勁後,歷經三組不同危害度(50年超越機率分別低於50%, 10% 與2%)之雙向地震歷時後,構架中完全無挫屈或其他的明顯破壞現象產生,驗證有限元素分析及所提設計方法的可用性,試驗結果顯示可使用有效長度係數K=1.0 於Whitmore與Thornton之方法來設計加勁後之接合板。挫屈束制支撐於構架中行為表現良好,幾乎承受全部樓層剪力之外,一樓BRB之累積塑性韌性CPD值已超過140。
In recent years, several researchers have confirmed that buckling restrained brace (BRB) is a very effective energy dissipation element to reduce seismic responses of building structures. It has been shown in many research laboratories that BRB components can sustain large cyclic inelastic strain reversals and stably absorb a significant amount of energy without failure. Thus, buckling restrained braced frame (BRBF) has gained wide acceptance in Japan, Taiwan and North America. While most of the BRB tests have confirmed the excellent performance of the BRB component in absorbing energy, recent pseudo dynamic tests conducted in October 2003 in the National Center for Research on Earthquake Engineering (NCREE) on a full scale three-story BRBF has revealed the importance of the gusset plate details. Gusset plates designed according to the conventional methods may not require any gusset edge stiffener, but could be buckled under large BRB compressive forces. In order to further investigate the gusset plate design methodology, a full scale two-story BRBF is tested in NCREE in this study using substructure pseudo dynamic test procedures and considering bi-directional earthquake load effects of three different seismic hazard levels.
The objectives of this study include: 1) investigate the current and modified design criteria of the BRB gusset plate subjected to axial load and out-of-plane bending, 2) conduct the ABAQUS finite element analysis to investigate the buckling strength of the gusset plate details adopted in the 2-story BRBF specimen, 3) incorporate the Platform for Inelastic Structural Analysis for 3D System (PISA3D) into the servo-control loop for substructure hybrid tests, 4) provide seismic design recommendations for the BRB gusset plate subjected to bi-directional force and deformations.
Test results showed that the 2-story BRBF specimen can be very effectively tested by using the substructure pseudo dynamic test procedures, particularly with real-time webcasting of test results. The 2-story BRBF specimen sustained three sets of ground accelerations (scaled to represent less than 50%, 10% and 2% chance of exceedance in 50 years) without any sign of strength of stiffness degradation. It is found from the tests that the out-of-plane deformational demand imposed on the gusset plates can be satisfactorily estimated by linear interpolation of the inter-story drift considering the dimension of the gusset plate with respect to the story height. It is confirmed from the test and ABAQUS analysis results that after adding the gusset plate edge stiffeners, an effective length factor of K=1.0 can be incorporated into the Whitmore and Thornton methods for the design of gusset plates.
誌謝 一
中文摘要 二
英文摘要 三
目錄 四
表目錄 九
圖目錄 十
照片目錄 十六
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與內容 3
1.4 論文架構 4
第二章 含挫屈束制支撐構架之力學行為與基本特性 6
2.1 挫屈束制支撐簡介 6
2.2 挫屈束制支撐之組成 6
2.3 挫屈束制支撐之基本力學原理與特性 9
2.4 文獻回顧 11
2.5 含挫屈束制支撐構架之設計流程 15
第三章 試驗計畫 18
3.1 試體介紹 18
3.2 構架設計 19
3.3 試體組裝 21
3.3.1 主結構與傳力系統 21
3.3.2 側向支撐 23
3.3.3 柱軸力系統 24
3.3.4 BRB製作與安裝 24
3.4 BRB彈性校準試驗與結果 25
3.4.1 彈性校準試驗之目的與方式 25
3.4.2 彈性校準試驗結果 26
3.5 施力系統、量測儀器與資料收集系統 28
3.5.1 施力系統 28
3.5.2 量測儀器 29
3.5.3 資料收集系統 31
3.5.4 試驗加載歷時 32
3.5.5 試體材料強度試驗結果 32
第四章 接合板分析與設計 34
4.1 理論基礎 34
4.2 接合板強度檢核 37
4.3 有限元素軟體分析 38
4.4 接合板設計結果 39
第五章 擬動態試驗與位移計控制方法 41
5.1 網路擬動態試驗介紹 41
5.2 外部位移計配置 43
5.3 外部位移計控制方法 43
5.3.1 控制方法相關研究 43
5.3.2 本試驗之位移控制轉換推導 44
5.4 不同控制方法之比較與範例應用 47
5.4.1 位移轉換之適用範圍 47
5.4.2 位移轉換之範例比較 49
第六章 試驗過程 51
6.1 柱軸力施加與鉸支承安裝 51
6.2 反力架加勁 52
6.3 樓板修復 53
6.4 拉線式外部位移計與Temposonics 53
6.5 試驗經過 54

第七章 試驗結果與分析 57
7.1 整體構架行為探討 57
7.1.1 樓層側位移與樓層剪力 57
7.1.2 樓層遲滯行為 59
7.2 BRB行為探討 60
7.2.1 斜撐之非線性行為 60
7.2.2 斜撐消能情形 61
7.2.3 累積塑性韌性量(CPD) 62
7.2.4 斜撐韌性 64
7.3 接合板行為探討 65
7.3.1 接合板面外變形量 65
7.3.2 接合板面外變形量與樓層側位移角 65
7.3.3 接合板面外變形量與斜撐軸力 67
7.3.4 接合板應力分布 68
7.3.5 接合板應力比計算 69

第八章 結論與建議 71
8.1 結論 71
8.2 建議 72

參考文獻 73
附錄A 向量法位移轉換檢核程式 174
附錄B 幾何計算法位移轉換檢核程式 178
1.Aiken, I., Clark, P., Tajirian, F., Kasai, K., Kimura, I., Ko, E. (2000), “Unbonded Braces in the United States─Design Studies, Large-scale Testing and the First Building Application”, Proceedings of Passive Control Structure Symposium , March 10-11 , 2000 , Japan , pp. 203~217

2.AISC (American Institute of Steel Construction) (1999), “Manual of Steel Construction: Load & Resistance Factor Design Volume II Connections.”, Chicago, IL.

3.Black, C.J., Makris, N., and Aiken, I.D. (2002), “Component Testing, Stability Analysis and Characterizational of Buckling Restrained Braces”. Report No. PEER 2002/08, University of California, Berkeley.

4.Chen, C.H., Hsiao, P.C., Lai, J.W., Lin, M.L., Weng, Y.T., and Tsai K.C. (2004), “Pseudo-Dynamic Test of a Full-Scale CFT/BRB Frame: Part 2 - Construction and Testing”, Proceedings, Paper No. 2175, 13th World Conference on Earthquake Engineering, Vancouver, Canada.

5.Lin M. L., Tsai K. C., Hsiao P. C., and Tsai C. Y. (2005), “Compressive Behavior of Buckling Restrained Brace Gusset Connections,” the First International Conference on Advances in Experimental Structural Engineering (AESE), Nagoya, Japan.

6.Molina, F.J., Verzeletti, G., Magonette, G., Buchet, PH., and Geradin, M. (1999), “Bi-directional Pseudodynamic Test of a Full-size Three-story building”. Earthquake Engineering and Structural Dynamics, 28, pp. 1541~1566.

7.Nakamura, H., Takeuchi, T., Maeda, Y., Nakata, Y., Sasaki, T., Iwata, M., and Wada, A. (2000), “Fatigue Properties of Practical-Scale Unbonded Braces” , Nippon Steel Technical Report , No.82, Jul., 2000 , pp.51~57.

8.SAC (1997) , “Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Experimental Specimens. Appendix E: Loading Protocol for Stepwise Increasing Cyclic Tests”, SAC Background Document SAC/BD-97/02..

9.Thornton, W.A. (1984), ”Bracing Connections for Heavy Construction.”, Engineering Journal, AISC, Vol.21,No.3, pp. 139~148.

10.Tsai K. C., Wang K. J., Chen C. H., Weng Y. T., Lin M. L., Lai J. W., Hsiao P. C., and Tsai C. Y. (2005), “Seismic Experiments on Large Scale Frame Structures,” the First International Conference on Advances in Experimental Structural Engineering (AESE), Nagoya, Japan.

11.Wang. K. J., Wang, S. J., Cheng, W. C.,Yang, Y. S. and Tsai, K. C. (2005) “A platform for networked collaborative structural experiments.” the First Conference on Advances in Experimental Structural Engineering (AESE), Nagoya, Japan.

12.Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M.(1988), “Properties of Brace Encased in Buckling-Restraining Concrete and Steel Tube.”, Proceedings of Ninth World Conference on Earthquake Engineering, August 2-9, Tokyo-Kyoto, Japan.(Vol. IV-719~724).

13.Weng, Y.T., Lin, J.L., Tsai, C.Y. and Tsai, K.C. (2005), "Analytical Assesssment of a 2-story BRBF for Full-scale 3D Sub-structural Pseudo Dynamic Testing", the First Conference on Advanced in Experimental Structural Engineering, Nagoya, Japan.

14.Whitmore, R.E. (1952), “Experimental Investigation of Stresses in Gusset Plates.”, Bulletin No.16, Engineering Experiment Station, University of Tennessee.

15.李正芳、陳正誠、李超雄(1994), “BIB及韌性同心斜撐系統之消能及抗震行為研究”,第二屆結構工程研討會,南投,民國八十三年。

16.陳正誠(2000), “韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計”,結構工程,第十五卷,第一期,第53~78頁。

17.陳正誠、王錦華與黃添進(2001), ”韌性斜撐構材之挫屈防止設計及其在補強上之運用”,土木技術,第四卷,第一期,第98~117頁。

18.內政部建築研究所(2002), “建築物耐規範條文與解說2002年草案修正版”。

19.黃彥智、蔡克銓 (2002), “ 含挫屈束制消能支撐構架耐震性能之試驗與分析研究”,國立台灣大學地震工程研究中心報告,CEER編號 R91-03。

20.翁崇興、蔡克銓(2002), “雙鋼管型挫屈束制消能支撐之耐震行為與應用研究”國立台灣大學地震工程研究中心,CEER編號R91-02。

21.賴俊維、蔡克銓(2002), “鋼骨消能支撐構架之耐震研究”,結構工程,第十七卷,第二期。

22.林柏州、蔡克銓(2003),”物件導向非線性靜動態三維結構分析程式之研發” 國立台灣大學地震工程研究中心,CEER編號R92-04

23.林聖霖、蔡克銓 (2003), “全鋼型與可拆型挫屈束制消能支撐之試驗與研究”,國立台灣大學土木工程學研究所碩士論文。

24.蕭博謙、蔡克銓 (2004) , ” 實尺寸三層樓挫屈束制支撐CFT柱構架擬動態試驗行為與分析”,國立台灣大學土木工程學研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top