跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/29 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉俊麟
研究生(外文):Chun-Lin Yeh
論文名稱:高細粒料土壤動力三軸試驗試體孔隙水壓激發之探討
論文名稱(外文):Pore Water Pressure Generation with High Fines Content Specimens in Dynamic Triaxial Tests
指導教授:翁作新翁作新引用關係
指導教授(外文):Tsuo-Shin Ueng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:77
中文關鍵詞:細粒料含量液化三軸動力試驗孔隙水壓反覆剪應力比
外文關鍵詞:sandfine contentliquefactiondynamic triaxial testpore water pressurecyclic stress ratio
相關次數:
  • 被引用被引用:3
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
一般動力三軸試驗於液化試驗中,如CKC動力三軸試驗儀常以硬管線連接孔隙水壓量測系統於試體頂座與底座,三軸試驗在不排水情況下,試體及量測系統均假設沒有體積變化,但實際上體積變化是存在於整個動態三軸試驗系統,如壓力變化對管路截面積、孔隙水壓感應子等之量測設備均會造成體積改變。因此當試體某一點孔隙水壓變化時,在其他位置的土壤或管路之另一端水壓計,因為上述試驗系統之體積變化,則必須要有水流產生,才能感受到此變化。這對於純淨砂透水性高的試體,水流流動可迅速傳達至孔隙水壓感應子來即時反應孔隙水壓;然而,在高細粒料含量或細粒料土壤之試體,因其孔隙比較小,透水性較低,而水流流動相較於純淨砂試體亦較慢,使得孔隙水壓感應子在試體兩端量得之孔隙水壓變化,在較快動態載重作用頻率下,不足以即時反應土壤內部之孔隙水壓情況。

針對上述問題,本研究結果指出在土壤動態試驗中,具細粒料成分之試孔隙水壓量測之主要影響原因如下;

(1)土壤滲透性(Permeability),不同細粒料含量土壤試體,其試體滲透性質亦不同,細粒料含量較高試體,通常會有較低的滲透性,使前述孔隙水壓量測系統較不易即時反應土壤內部之孔隙水壓情況。

(2)反覆載重作用頻率(Frequency),比較在同樣應力比情況下,當載重作用頻率較高時,單位時間載重施加較為迅速,使得前述水壓量測設備因系統體積變化,而無法即時反應試體內部水壓情況。相反的當載重作用頻率較低時,施加載重作用時間延長,其系統水壓量測比較能反應試體內部之狀況。

(3)反覆剪應力比(Cyclic Stress Ratio, CSR),採用較大反覆剪應力比時,將會激發較大超額孔隙水壓力,使管線有較大體積變化,也較容易影響試驗系統孔隙水壓量測之結果。
Pore Water Pressure Generation with High Fines Content Specimens in Dynamic Triaxial Tests

Abstract

In the typical CKC cyclic triaxial tests, the researchers often use small and stiff tubes to connect the cap and bottom of the specimens to the pore water pressure sensors. They assume that there is no change in the volume of specimens and measure systems in undrained tests.

In fact, the volume change exists in the triaxial measurement systems when water pressure changes. Therefore, when the pore water pressure changes in certain location of the sample, the soil in other location or at another end of the water pressure measurement of the pipeline can experience the pressure change only when water flow occurs. Flowing can occur and reflect the pore water pressure change rapidly for sand of high permeability, but there is lower permeability in the sand of a high fines content. The pore water pressure measurement cannot reflect the pore water pressure changes within the specimen immediately.

This research pointed out the major factors of pore water pressure measurements for high fines content soil in dynamic triaxial tests as follow:

(1)Permeability: There are different permeabilities for soils of different fines contents. The higher fines content the lower permeability of the soil, so it cannot reflect true pore water pressure situation within specimen immediately in the pore water pressure measurements.

(2)Frequency of cyclic loading: There is a longer duration of loading during tests of lower frequency, and pore water pressure measurement can obtain better pore water pressure within the samples.

(3)Cyclic stress ratio, CSR: Higher pore water pressure changes usually occur in the triaxial tests with larger CSR, and result in more volume change in the pipeline section.
目 錄

誌 謝 I
摘 要 II
ABSTRACT III
目 錄 IV
表目錄 VII
圖目錄 VIII
照片目錄 XI
第一章 緒 論 1
1-1 研究動機與目的 1
1-2 研究內容與方法 3
第二章 文獻回顧 5
2-1 液化現象與定義 5
2-2 反覆動態三軸試驗原理 6
2-3 細粒料對液化潛能之影響 7
2-3-1 細粒料含量對土壤動態強度之影響 7
2-3-2 細粒料塑性程度對土壤動態強度之影響 9
2-4 試驗系統之體積變化 10
2-4-1 體積變化之影響因素 10
2-4-2 橡皮膜貫入效應 12
2-5 試體孔隙水壓之量測 13
第三章 試驗內容 23
3-1 試驗土樣之基本性質 23
3-2 試驗儀器與設備 23
3-2-1 CKC動力三軸試驗儀 24
3-2-2 改良型動力三軸室 26
3-3 試驗步驟 27
3-3-1 儀器校正 27
3-3-2 重模試體準備與製作 27
3-3-3 重模試體安裝 28
3-3-4 通氣通水階段 29
3-3-5 飽和階段 30
3-3-6 壓密階段 31
3-3-7 滲透性試驗 31
3-3-8 液化強度試驗 31
3-3-9 試驗資料分析處理 32
第四章 試驗結果與討論 41
4-1 不同細粒料含量砂土之性質 41
4-2 不同細粒料含量砂土之動態性質 41
4-2-1 破壞準則定義 41
4-2-2 不同細粒料含量之砂土動態性質之影響 42
4-3 裝置不鏽鋼測管之土壤試體動態性質驗證 42
4-4 反覆應力作用下細粒料含量對液化破壞形式之影響 43
4-5 細粒料含量對試體內部孔隙水壓激發之影響 44
4-6 初始液化定義與試體內部孔隙水壓激發之關係 46
4-7 反覆剪應力對試體內部孔隙水壓激發之影響 48
4-8 不同頻率載重下試體內部孔隙水壓激發之情形 49
第五章 結論與建議 72
5-1 結論 72
5-2 建議 73
參考文獻 75
參考文獻

[1] 陳界文,未發表數據,國立台灣大學土木工程學研究所,(2001)。

[2] Seed, H.B. (1979), “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255.

[3] Kramer, Steven L. (1996), ”Geotechnical Earthquake Engineering,” Prentice Hall, New Jersey.

[4] Seed, H.B. and Lee, K.L. (1966), ”Liquefaction of saturated sands during cyclic loading,” Journal of ASCE, 92, SM6, pp. 105-34.

[5] Ishihara, K. (1996), “Soil Behavior in Earthquake Geotechnics,” Oxford, Tokyo.

[6] Chien, Lien-Kwei., Oh, Yan-Nam. and Chang, Chih-Hsin. (2002), “Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil,” Canada Geotech. J., Vol. 39, pp. 1-12.

[7] 陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文 (2001)。

[8] 孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文 (2002)。

[9] 余定縣,「貓羅溪高細粒料土壤抗液化強度之研究」,國立台灣大學土木工程學研究所,碩士論文 (2003)。

[10] Lee, K. L. and Fitton, J. A. (1969), “Factors affecting the cyclic loading strength of soil,” vibration effects of earthquakes on soils and foundations, ASTM STP 450, American Society for Testing and Materials, pp. 71-95.

[11] Chung, Kin, Y. C. and Wong, I. H. (1982), “Liquefaction potential of soils with plastic fines”, Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 887-897.

[12] EI Hosri, M. S., Biarez, H. and Hicher, P. Y. (1984), ”Liquefaction characteristics of silty clay”, Proceedings of the Eighth World Conference on Earthquake Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984, Vol.3, pp. 277-284.

[13] Guo, Tianqiang. and Prakash, Shamsher. (1999), ”Liquefaction of silts and Silt Clay mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.8, pp. 706-710.

[14] Sandoval, J. (1989), ”Liquefaction and settlement characteristics of silt soils”, PhD thesis, University of Missouri-Rolla.

[15] Prakash, S., and Sandoval, J. A. (1992), ”Liquefaction of low plasticity silts”, J. Soil Dyn. and Earthquake Engrg., 71(7), pp. 373-397.

[16] Head, K. H. (1986), “Manual of soil laboratory testing,” Vol.3, ELE international limited, London.

[17] Leong, E. C., Agus, S. S. and Rahardjo, H. (2004), “Volume Change Measurement of Soil Specimen in Triaxial Test,” Geotechnical Testing Journal, Vol. 27, No. 1, pp. 47-56.

[18] Lade, P. V. and Hernandez, S. B. (1977), ”Membrane penetration effect in undrained tests,” J. Geo. Eng. Div. ASCE, Vol. 103, No. GT2, pp. 109-125.

[19] Hight, D. W. (1982), “A simple piezometer probe for the routine measurement of pore pressure in triaxial tests on saturated soils,” Geotechnique, Vol. 32, No. 4, pp. 396-401.

[20] Fourie, A. B. and Xiaobi, D. (1991), “Advantage of Midheight Pore Pressure Measurements in Undrained Triaxial Testing,” Geotechnical Testing Journal, Vol. 14, No. 2, pp. 138-145.

[21] 詹松儒,「排水狀況對台北盆地粉土質砂土液化特性行為之研究」,國立台灣大學土木工程學研究所,博士論文 (2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top