(3.236.100.6) 您好!臺灣時間:2021/04/24 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬齊文
研究生(外文):Chi-Wen Ma
論文名稱:粉體組成對活性粉混凝土微巨觀力學性質之影響與高分子改質之效益
指導教授:詹穎雯詹穎雯引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:285
中文關鍵詞:活性粉混凝土微硬度試驗奈米二氧化矽高分子材料
外文關鍵詞:Reactive Powder ConcretesMicrohardness testNano-SiO2Polymer Materials
相關次數:
  • 被引用被引用:10
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究定位在RPC 工業領域應用發展之基礎研究,主要可分為三部分:
首先,以「堆積密度」與「化學鍵結水比」作為評估堆積、水化性質之指標,探討組成材料對RPC 相關性質之影響。其次,對RPC 進行微硬度試驗並將結果與陶瓷材料比較,以確立二者之間的差距。最後,仿照陶瓷材料上釉之原理,對RPC 進行表面處理,探討不同處理材料對RPC 抗壓強度與阻止水份進入能力之影響。
水化性質之研究結果指出,RPC 內水化程度約40~55%、化學鍵結水比約30~40%,二指標均偏低。
膠結粉體之研究則結果指出,RPC 中水泥主要之貢獻在於提供水化反應所需之原料;矽灰部分,相較於水化性質,其在堆積指標上展現出較明顯的效益,其細小的粒徑可使RPC 達到緻密填充的目
標;石英粉的主要作用則是在不影響力學性質的前提下取代水泥,達到提高流動性、降低水化熱與成本的效果。另外,本研究結果並指出,除了「堆積密度」外,「化學鍵結水比」亦會對RPC 抗壓強度造成影響,此二指標可以完整地描述堆積、水化性質對RPC 力學性質之影響。
添加奈米二氧化矽(NS)於RPC 之研究則指出,NS 與SF 之結合可以有效地提升RPC 之抗壓強度達200MPa 左右,僅添加SF 則無法達到此效果。至於強度提升之機理,目前尚無法提出合理之解釋。該結果初步確認RPC 中添加奈米粉體的可行性。
微觀硬度之試驗結果則指出,RPC 之低荷重硬度約1100~1400MPa 左右,高於軟陶瓷,約為硬陶瓷之1/2;而微硬度試驗結果則指出,RPC 微結構之強度與均質性介於一般水泥材料與陶瓷材料之間。
高分子材料與RPC 之複合試驗結果指出,二者須以表面處理的方式才能複合。而以高黏度(熱固性高分子)材料表面處理後之RPC,其抗壓強度、水蒸氣擴散試驗與水吸附試驗結果均優於未表面處理之對照組;至於低黏度材料處理後之RPC 相關性質表現不如高黏度材料。本研究結果初步確認RPC表面處理之可行性。
第一章 緒論............................................................................................1
1.1 引言................................................................................................................1
1.2 研究目的........................................................................................................2
1.3 研究內容與論文架構....................................................................................3
1.4 研究前提說明................................................................................................5
第二章 文獻回顧....................................................................................6
2.1 活性粉混凝土概述........................................................................................6
2.1.1 發展歷史....................................................................................................6
2.1.2 活性粉混凝土製程機理與組成粉體........................................................8
2.1.2.1 水泥.........................................................................................................8
2.1.3 活性粉混凝土組成配比之決定..............................................................14
2.1.3 活性粉混凝土水化性質與孔隙性質......................................................17
2.1.4 力學性質與耐久性質..............................................................................21
2.1.5 未來可能應用方向與問題......................................................................26
2.2 水泥材料之微硬度試驗..............................................................................28
2.2.1 硬度試驗簡介..........................................................................................28
2.2.2 微硬度試驗與壓痕尺寸效應..................................................................29
2.2.3 水泥材料之微硬度試驗..........................................................................31
2.3 奈米粉體於水泥材料之應用......................................................................36

2.3.1 相關文獻概述..........................................................................................36
2.3.2 文獻整理與分析......................................................................................44
2.4 高分子材料於水泥材料之應用..................................................................45
2.4.1 應用原則與方式......................................................................................45
2.4.2 相關文獻概述..........................................................................................47
第三章 實驗計畫..................................................................................52
3.1 實驗計畫......................................................................................................52
3.1.1 實驗架構..................................................................................................52
3.1.2 實驗概述與配比設計..............................................................................52
3.2 活性粉混凝土的製程..................................................................................56
3.2.1 組成材料..................................................................................................56
3.2.2 標準拌合與養護方式..............................................................................58
3.3 堆積性質之量測與計算方式......................................................................59
3.3.1 堆積密度..................................................................................................59
3.3.2 相對密度..................................................................................................60
3.4 水化性質之量測與計算方式......................................................................61
3.4.1 化學鍵結水比........................................................................................62
3.4.2 水化程度................................................................................................64
3.5 力學性質之量測..........................................................................................65
3.6 微觀硬度性質之試驗與計算方式..............................................................67
3.6.1 表面前處理與微硬度試驗步驟..............................................................67
3.6.2 硬度值與壓痕尺寸效應之計算..............................................................67
3.7 奈米二氧化矽之添加與性能評估..............................................................68
3.7.1 「不同預處理方式下NS對水泥漿體之影響」研究變數與實驗方式
............................................................................................................................68
3.7.2「奈米二氧化矽添加量對RPC相關性質之影響」研究變數與實驗方
式........................................................................................................................70
3.8 高分子材料之添加與性能評估..................................................................71
3.8.1 「直接添加高分子材料於活性粉混凝土之可行性研究」研究變數
與試驗方式........................................................................................................71

3.8.2 「表面處理對活性粉混凝土性質之影響」研究變數與試驗方式......72
第四章 水灰比對活性粉混凝土相關性質之影響..............................81
4.1 水灰比對活性粉混凝土堆積性質之影響..................................................81
4.2 水灰比對活性粉混凝土水化性質之影響.................................................83
4.3 水灰比對活性粉混凝土力學性質之影響.................................................86
4.4 堆積、水化指標之意義與比較..................................................................87
4.5 結論..............................................................................................................92
第五章 膠結粉體對活性粉混凝土相關性質之影響..........................93
5.1 矽灰對活性粉混凝土相關性質之影響......................................................93
5.1.1 矽灰對流動性質之影響..........................................................................93
5.1.2 矽灰對堆積性質之影響..........................................................................94
5.1.3 矽灰對水化性質之影響..........................................................................95
5.1.4 矽灰對力學性質之影響..........................................................................96
5.1.5 矽灰影響之小結......................................................................................98
5.2 石英粉對活性粉混凝土相關性質之影響..............................................100
5.2.1 石英粉對流動性質之影響..................................................................100
5.2.2 石英粉對堆積性質之影響..................................................................101
5.2.3 石英粉對水化性質之影響..................................................................101
5.2.4 石英粉對力學性質之影響..................................................................102
5.2.5 石英粉影響之小結..............................................................................104
5.3 水泥對活性粉混凝土相關性質之影響..................................................105
5.3.1 水泥對流動性質之影響......................................................................105
5.3.2 水泥對堆積性質之影響......................................................................105
5.3.3 水泥對水化性質之影響......................................................................106
5.3.4 水泥對力學性質之影響......................................................................108
5.3.5 水泥影響之小結..................................................................................110
5.4 矽砂對活性粉混凝土相關性質之影響.................................................. 111
5.4.1 矽砂對堆積、水化與力學性質之影響.............................................. 111
5.4.2 活性粉混凝土砂漿與泥漿性質之比較..............................................114

5.4.3 組成粉體對抗壓強度之貢獻..............................................................122
5.5 活性粉混凝土相關性質之統計分析以及預測公式之建立..................126
5.5.1 堆積密度之統計分析............................................................................126
5.5.2 利用Aim-Goff公式模擬活性粉混凝土堆積密度.................................128
5.5.3 化學鍵結水比之統計分析....................................................................134
5.5.4 化學鍵結水比之理論分析....................................................................135
5.5.5 抗壓強度之統計分析............................................................................138
5.5.6 堆積、水化性質與活性粉混凝土抗壓強度之關係............................141
5.6 結論..........................................................................................................145
第六章 奈米二氧化矽於活性粉混凝土之應用................................146
6.1 不同預處理方式下奈米二氧化矽對水泥漿相關性質之影響................146
6.1.1 奈米二氧化矽對水泥漿堆積、水化與力學性質之影響....................146
6.1.2 奈米二氧化矽與矽灰之比較................................................................151
6.1.3 與文獻之比較........................................................................................154
6.2 奈米二氧化矽添加量對活性粉混凝土之影響........................................158
6.2.1 奈米二氧化矽對活性粉混凝土堆積、水化與力學性質之影響........158
6.2.2 奈米二氧化矽提升活性粉混凝土抗壓強度之機制............................163
6.3 討論............................................................................................................167
第七章 活性粉混凝土之微觀硬度性質............................................168
7.1 水灰比對活性粉混凝土微硬度之影響....................................................168
7.1.1 水灰比對低荷重硬度之影響................................................................168
7.1.2 水灰比對微硬度與壓痕尺寸效應(ISE)之影響....................................172
7.2 膠結粉體對活性粉混凝土低荷重硬度之影響........................................175
7.2.1 矽灰對活性粉混凝土低荷重硬度之影響............................................175
7.2.2 石英粉對活性粉混凝土低荷重硬度之影響........................................177
7.2.3 水泥對活性粉混凝土低荷重硬度之影響............................................179
7.3 膠結粉體對活性粉混凝土微硬度與壓痕尺寸效應之影響....................181
7.3.1 矽灰對活性粉混凝土微硬度與壓痕尺寸效應之影響........................181
7.3.2 石英粉對活性粉混凝土微硬度與壓痕尺寸效應之影響....................182

7.3.3 水泥對活性粉混凝土微硬度與壓痕尺寸效應之影響........................183
7.4 活性粉混凝土硬度性質與力學性質之關係............................................185
7.4.1 活性粉混凝土硬度值與抗壓強度之關係............................................185
7.4.2 活性粉混凝土壓痕尺寸效應之特徵....................................................190
7.4.3 膠結粉體對活性粉混凝土壓痕尺寸效應之影響................................192
7.4.4 活性粉混凝土相關性質對壓痕尺寸效應之影響.................................196
7.4.5 表面處理對活性粉混凝土壓痕尺寸效應之影響................................202
7.5 結論............................................................................................................210
第八章 高分子材料於活性粉混凝土之應用.................................... 211
8.1 直接添加高分子材料於活性粉混凝土之可行性研究............................211
8.1.1 酚醛樹脂改質前處理:乙醇添加之影響..........................................211
8.1.2 直接添加酚醛樹脂於活性粉混凝土之可行性研究..........................215
8.1.3 直接添加聚丙烯酸酯於活性粉混凝土之可行性研究......................216
8.1.4 直接添加高分子材料之問題..............................................................217
8.2 表面處理對活性粉混凝土性質之影響....................................................218
8.2.1 新養護流程時間之研究......................................................................218
8.2.2 新養護流程溫度之研究......................................................................225
8.2.3 表面處理之效率及其對活性粉混凝土抗壓強度之影響....................233
8.2.4 表面處理對活性粉混凝土耐久性質之影響........................................242
8.3 結論............................................................................................................253
第九章 結論與建議............................................................................254
9.1 結論............................................................................................................254
9.2 建議............................................................................................................256
參考文獻................................................................................................259
1. N. Roux, C. Andrade and M. A. Sanjuan, “Experimental Study of Durability
of Reactive Powder Concrete”, J. of Material In Civil Engineering , Vol.8,
No.1, pp1∼6, 2000.”
2. J. Dugat, N. Roux …etc, “Mechanical Properties of Reactive Powder
Concretes”, Materials and Structures, Vol.29, pp233∼240, 1996.
3. http://www.imagineductal.com/imagineductal/home.asp
4. V. Matte, M. Moranville, “Durability of Reactive Powder Composites:
influence of Silica Fume on the Leaching Properties of very low Water/Binder
Pastes”, Cement and Concrete Composites, Vol.21, pp1∼9, 1999.
5. Martin Jooss, Hans W. Reinhardt, “Permeability and Diffusivity of Concrete as
Function of Temperature”, Cement and Concrete Research, Vol. 32, pp. 1497~1504,
2002.
6. Pierre R., Marcel C., “Composition of Reactive Powder Concrete ”, Cement
and Concrete Research, Vol.25, No.7, pp1501∼1511, 1995.
7. 楊伯科主編,”混凝土實用新技術手冊”,pp1159∼1160,1998 年。
8. 苗伯霖,”新型高性能超高強建築材料--活性粉混凝土”,營建知訊,162
期,pp52∼60,民國85 年。
9. R.Adeline,M.Lachemi and P.Blais,”Design and Behaviour of the Sherbrooke
Footbridge”, International Symposium on High-Performance And
Reactive-Powder Concretes,Vol.3, pp.89-97,1998.
10. Dowd W., O’Neil E., ”Development of Reactive Powder Concrete (RPC)
Precast Products for the USA Market”,4th Int Symposium on Utilization of
HPC,Paris. pp.1391-1398,1995.
11. 李介充,”溫度製程對超高強高性能混凝土力學性質影響研究”,碩士論
文,國立台灣大學,民國八十七年。
12. 譚業成,”活性粉混凝土力學行為之研究”,碩士論文,國立台灣大學,民
國八十八年。
13. 朱書賢,”鋼纖維與活性粉混凝土間界面性質研究”,碩士論文,國立台灣
大學,民國八十九年。
260
14. 何曜宇,”活性粉混凝土破壞行為之研究”,碩士論文,國立台灣大學,民
國八十九年。
15. 謝孟翰,”超高強高性能混凝土之衝擊力學性質研究”,碩士論文,國立台
灣大學,民國八十八年。
16. 陳冠勳,”活性粉混凝土淺梁之撓曲行為”,碩士論文,國立台灣大學,民
國九十年。
17. 蔡榮聰,”活性粉混凝土深梁之剪力行為研究”,碩士論文,國立台灣大學,
民國九十一年。
18. 陳高惇,”加勁UHPC 圍束混凝土之單軸抗壓行為”,碩士論文,國立台灣
大學,民國九十一年。
19. 馮乃謙主編,”實用混凝土大全”,科學出版社,2001。
20. 黃兆龍,”混凝土性質與行為”,詹氏書局,1997。
21. 隋建奎,”混凝土外加劑的原理與應用”,中國計畫出版社,1997。
22. 馮浩,朱清江,”混凝土外加劑工程應用手冊”,中國建築工業出版社,
1999。
23. J. A. Lewis, Hiro Matsuyama, …etc., “Polyelectrolyte Effects on the
Rheological Properties of Concentrated Cement Suspensions”, Journal of the
American Ceramic Society, Vol. 83, No. 8, pp1905~1913 2000.
24. H. Uchikawa, D. Sawaki, …etc., “Influence of kind and added timing of
organic admixture on the composition, structure and property of fresh cement
paste”, Cement and Concrete Research, Vol. 25, No. 2, pp353~364, 1995.
25. 王燕謀、蘇慕珍、張量,硫鋁酸鹽水泥”,北京工業大學出版社,1999。
26. Renhe Yang, John H. Sharp, ”Hydration Characteristics of Portland Cement
after Heat Curing: I, Degree of Hydration of the Anhydrous Cement Phases”,
Journal of the American Ceramic Society, Vol. 84, No. 3, pp608~614, 2001.
27. Renhe Yang, John H. Sharp, ”Hydration Characteristics of Portland Cement
after Heat Curing: II, Evolution of Crystalline Aluminate-Bearing Hydrates”,
Journal of the American Ceramic Society, Vol. 84, No. 5, pp1113~1119, 2001.
28. A. M. Boddy, R. D. Hooton, …etc., “The effect of the silica content of silica
fume on its ability to control alkali-silica reaction”, Cement and Concrete
Research, Vol. 33, pp1263~1268, 2003.
29. M. I. Sanchez de Rojas, …etc., “Influence of the microsilica state on
261
pozzolanic reaction rate”, Cement and Concrete Research, Vol. 29, pp945~949,
1999.
30. Yin-Wen Chan, Shu-Hsien Chu, “Effect of silica fume on steel fiber bond
characteristics in reactive powder concrete”, Cement and Concrete Research,
Vol. 34, pp1167~1172, 2004.
31. N. Isu, H. Ishida …etc, “Influence of Quartz Particle Size on the Chemical
and Mechanical Properties of Autoclaved Aerated Concrete(I) Tobermorite
Formation”, Cement and Concrete Research, Vol.25, No.2, pp243∼248, 1995.
32. N. Isu, H. Ishida …etc, “Influence of Quartz Particle Size on the Chemical
and Mechanical Properties of Autoclaved Aerated Concrete(II) Fracture
Toughness, Strength and Micropore”, Cement and Concrete Research, Vol.25,
No.2, pp249∼254, 1995.
33. Q. B. Yang, S. Q. Zhang, …etc., “Effect of ground quartz sand on properties
of high-strength concrete in the steam-autoclaved curing”, Cement and
Concrete Research, Vol. 30, pp1993-1998, 2000.
34. D. S. klimesch, A. Ray, …etc, “Autoclaved cement-quartz pastes: The effects
on chemical and physical properties when suing ground quartz with different
surface areas. Part I: Quartz of wide particles size distribution”, Cement and
Concrete Research, Vol. 26, pp1399-1408, 1996.
35. D. S. klimesch, A. Ray, …etc, “Autoclaved cement-quartz pastes: The effects
on chemical and physical properties when suing ground quartz with different
surface areas. Part II: Results of accelerated carbonation”, Cement and
Concrete Research, Vol. 27, pp1073-1083, 1997.
36. D. S. Klimesch, A. S. Ray, “Metakaolin additions to autoclaved cement-quartz
pastes: evaluation of the acid-insoluble residue”, Advances in Cement
Research, Vol. 9, No. 36, pp157-165, 1997.
37. Helene Z., Marcel C. … etc, “Investigation of Hydration and Pozzolanic
Reaction in Reactive Powder Concrete (RPC) Using 29Si NMR”, Cement and
Concrete Research, Vol.26, No.1, pp93∼100, 1996.
38. S. Mansoutre, N. Lequeux, “Quantitative Phase Analysis of Portland Cements
from Reactive Powder Concretes by X-ray Powder Diffraction”, Advances in
Cement Research, Vol. 8, No.32, pp175∼182, 1996.
39. Olivier B., Christian V. … etc, “Characterization of the Granular Packing and
Percolation Threshold of Reactive Powder Concrete”, Cement and Concrete
Research, Vol.30, pp1861∼1867, 2000.
40. A. Feylessoufi, M. Crespin, P. Dion, F. Bergaya, H. Van Damme and P.
262
Richard, “Controlled Rate Thermal Treatment of Peactive Powder Concretes”,
Advanced Cement Based Materials, Vol.6, pp21~27, 1997.
41. A. Feylessoufi, F. Cohen Tenoudji, V. Morin, P. Richard, “Early Ages
Shrinkage Mechanisms of Ultra-High Performance Cement-Based materials”,
Cement and Concrete Research, Vol. 31, pp. 1573~1579, 2001.
42. V. Morin, F. Cohen-Tenoudji, A. Feylessoufi, P. Richard, “Evolution of the
capillary network in a reactive powder concrete during hydration process”,
Cement and Concrete Research, Vol.32, pp1907∼1914, 2002.
43. Marcel C., Vincent M. … etc, “Microstructural Analysis of RPC(Reactive
Powder Concrete)”, Cement and Concrete Research, Vol.25, No.7, pp1491∼
1500, 1995.
44. C. Porteneuve, H. Zanni …etc, “Nuclear magnetic resonance characterization
of high- and ultrahigh-performance concrete”, Cement and Concrete Research,
Vol.31, pp1887∼1893, 2001.
45. A. Poitou, F. Chinesta, and G. Bernier, “Orienting Fibers by Extrusion in
Reinforced Reactive Powder Concrete”, Journal of Engineering Mechanics,
Vol. 127, No. 6, pp593~598, June 2001.
46. V. Matte, M. Moranville,…etc, “Simulated microstructure and transport
properties of ultra-high performance cement-based materials”, Cement and
Concrete Research, Vol.30, pp1947~1954, 2000.
47. C. Porteneuve, J.-P. Korb, …etc., “Structure-texture correlation in
ultra-high-performance concrete A nuclear magnetic resonance study”,
Cement and Concrete Research, Vol.32, pp97~101, 2002.
48. V. Morin, F. Cohen Tenoudji, …etc., “Superplasticizer effects on setting and
structuration mechanisms of ultrahigh-performance concrete”, Cement and
Concrete Research, Vol.31, pp63~71, 2001.
49. A. Feylessoufi, F. Villieras, …etc., “Water Environment and Nanostructural
Network in a Reactive Powder Concrete”, Cement and Concrete Composites,
Vol. 18, pp23~29, 1996.
50. O. Bonneau, M. Lachemi, …etc., “Mechanical Properties and Durability of
Two Industrial Reactive Powder Concretes”, ACI Materials Journal, Vol. 94,
No. 4, pp286~290, July-August, 1997.
51. C. Vernet, J. Lukasik, E. Prat,”Nanostructure, porosity, permeability, and
diffusivity of Ultra High Performance Concretes (UHPC)”, International
Symposium on High-Performance And Reactive-Powder Concretes, Vol.3,
pp.17-36, 1998.
263
52. 廖基良,”活性粉混凝土配比本土化及微觀物理性質之研究”,碩士論文,
國立台灣大學,民國八十七年。
53. “Standard Test Method for Microhardness of Materials”, ASTM E384-89.
54. “Standard Test Method for Vickers Hardness of Metallic Materials”, ASTM
E92-82.
55. ‘陶瓷技術手冊’,中華民國產業科技發展協會,pp.206~212,民國83 年7
月。
56. S. Igarashi, A. Bentur and S. Mindess, “Microhardness Testing of
Cementitious Materials”, , Advanced Cement Based Materials, Vol. 4, pp.
48~57, April, 1996.
57. S. Igarashi, A. Bentur, S. Mindess, “Characterization of the microstructure and
strength of cement paste by microhardness testing”, Advances in Cement
Research, Vol. 8, No. 30, pp. 87~92, April, 1996.
58. H. Kim, T. Kim, “Measurement of hardness on traditional ceramics”, Journal
of the European Ceramic Society, Vol. 22, pp. 1437~1445, 2002.
59. W. M. Cross, K. H. Sabnis, L. Kjerengtroen and J. J. Kellar, “Microhardness
Testing of Fiber-Reinforced Cement Paste”, ACI Materials Journal, Vol. 97,
No. 2, pp.162~167, 2000.
60. J. Gong, J. Wu, Z. Guan, “Examination of the Indentation Size Effect in
Low-load Vickers Hardness Testing of Ceramics”, Journal of the European
Ceramic Society, Vol. 19, pp. 2625~2631, 1999.
61. J. H. Gong, “Determining Indentation Toughness by Incorporating True
Hardness Into Fracture Mechanics Equations”, Journal of the European
Ceramic Society, Vol. 19, pp. 1585~1592, 1999
62. I. S. McColin, “Ceramic Hardness”, Plenum Press: New York, 1990.
63. C. Ullner, A. Germak, H. L. Doussal, …etc, “Hardness testing on advanced
technical ceramics”, Journal of the European Ceramic Society, Vol. 21, pp.
439~451, 2001
64. A. K. Mokhopadhyay, S. K. Datta and D. Chakraborty, “On the Microhardness
of Silicon Nitride and Sialon Ceramics”, Journal of the European Ceramic
Society, Vol. 6, pp. 303~311, 1990.
65. H. Li, and R. C. Bradt, “The Microhardness Indentation Load/Size Effect in
Rutile and Cassiterite Single Crystals”, Journal of the Materials Science, Vol.
28, pp.917~926, 1993
264
66. A. H. Asbridge, C. L. Page, …etc., “Effects of metakaolin, water/binder ratio
and interfacial transition zones on the microhardness of cement mortars”,
Cement and Concrete Research, Vol. 32, pp1365-1369, 2002.
67. H. Li, R. C. Bradt, “The microhardness indentation load/size effect in rutile
and cassiterite single crystals”, Journal of materials Science, Vol. 28,
pp917~926, 1993.
68. 徐國財,張立德,”奈米複合材料”,化學工業出版社,2002。
69. A. S. Edelstein, R. C. Cammarata, “Nanomaterials: Synthesis, Properties and
Applications”, 1996.
70. 曹茂盛…等編著,”奈米材料導論”,哈爾濱工業大學出版社,2001。
71. 咸才軍主編,”奈米建材”, 化學工業出版社,2003。
72. A. Balderas, H. Navarro, …etc., “Properties of Portland Cement Pastes
Incorporating Nanometer-Sized Franklinite Particles Obtained from
Electric-Arc-Furnace Dust”, Journal of the American Ceramic Society, Vol. 84,
No. 12, pp2909~2913 2001.
73. 巴桓靜、馮奇、楊英姿,”粉煤灰、矽灰及納米矽與C3S 水化反應產物的
顯微結構研究”,Journal of the Chinese Ceramic Society, Vol. 30, No. 6,
December, 2002.
74. 張澤南,隨榮升…等,”納米SiO2 與水泥硬化漿體中Ca(OH)2 的反應” ,
Journal of the Chinese Ceramic Society, Vol. 31, No. 5, May, 2003.
75. 唐明,巴桓靜、李穎,”納米級SiOx 與矽灰對水泥基材料的複合改性效應
研究”,Journal of the Chinese Ceramic Society, Vol. 30, No. 6, December,
2002.
76. GengyingLi, “Properties of high-volume fly ash concrete incorporating
nano-SiO2”, Cement and Concrete Research, Vol. 34, pp1043-1049, 2004.
77. 熊國宣,徐玲玲,唐明述,”水泥基複合材料的吸波性能”,Journal of the
Chinese Ceramic Society, Vol. 32, No. 10, December, 2004.
78. Hui Li, Hui-gang Xiao, …etc., “A study on mechanical and pressure-sensitive
properties of cement mortar with nanophase materials”, Cement and Concrete
Research, Vol. 34, pp435-438, 2004.
79. 韓寶國,關新春…etc., “納米氧化鈦與碳纖維水泥石的電阻率及壓敏
性” ,Journal of the Chinese Ceramic Society, Vol. 32, No. 7, July, 2004.
80. Y. Ohama, “Polymer-Based Admixtures”, Cement and Concrete Composites,
265
Vol.20, pp189∼212, 1998.
81. D. Gerry Walters, “Comparison of Latex-Modified Portland Cement Mortars”,
ACI Materials Journal, Vol.87, No.4, pp371∼377, 1990.
82. J. M. Gao, C. X. Qian …etc, “Experimental Study on Properties of
Polymer-Modified Cement Mortars with Silica Fume”, Cement and Concrete
Research, Vol.32, pp41∼45, 2002.
83. M. Hasegawa, T. Kobayashi …etc, “A New of High Strength, Water and Heat
Resistant Polymer-Cement Composite Solidified by An Essentially Anhydrous
Phenol Resin Precursor”, Cement and Concrete Research, Vol.25, No.6,
pp1191∼1198, 1995.
84. G. K. Dinilprem, T. Kobayashi …etc, “The Processing, Properties, and
Applications of Calcium Aluminate-Phenol Resin Composite”, Cement and
Concrete Research, Vol.29, pp121∼132, 1999.
85. G. K. Dinilprem, T. Kobayashi …etc, “High Alumina Cement-Phenol Resin
Composite: Water Resistivity and Effect of Post Hydration of Unreacted
Cement on Durability”, Cement and Concrete Research, Vol.27,No. 9, pp1393
∼1405, 1997.
86. G. K. Dinilprem, T. Kawano …etc, “Chemical Characterization of Calcium
Aluminate-Phenol Resin Composite”, Advances in Cement Based Materials,
Vol. 6,pp45∼52,1997.
87. P. G. Desai, J. A. Lewis, …etc, “Unreacted cement content in
macro-defect-free composites: impact on processing-structure-property
relations”, Journal of Materials Science”, Vol. 29, pp6445-6452, 1994.
88. 謝有均,劉寶舉,龍慶成,”水泥複合膠凝材料體系密實填充性能研究”,
矽酸鹽學報,Vol. 29,No.6,pp512~517,2001。
89. T. C. Powers, T. L. Brownyard, “Studies of the Physical Properties of Hardened
Portland Cement Paste”,Research Laboratories of the Portland Cement Association,
Bulletin 22, March, 1948.
90. I. Natali Sora, R. Pelosato, D. Botta, G. Dotelli, “Chemistry and
microstructure of cement pastes admixed with organic liquids”, Journal of
European Ceramic Society, Vol. 22, pp.1463~1473,2002.
91. Ole Mejlhede Jensen, Per Freiesleben Hansen, “Water-entrained cement-based
materials I. Principles and theoretical background”, Cncrete and Cement
Research, Vol. 31, pp647-654, 2001.
92. Hansen, T.C., “Physical Structure of Hardened Cement Paste. A Classical Approach”,
266
Materials and Constructions, Vol.19, No. 114,pp.423~436,1986.
93. J. G. Cabrera, P. A. Claisse, “Oxygen and water vapour transport in
cement-silica fume pastes”, Construction and Building Materials, Vol. 13,
pp405~414, 1999.
94. H. Kamimoto, M. Wakasugi, “Effect of coating with flexible polymer
modified cement mortar on inhibition of alkali silica reaction”,
Polymer-Modified Hydraulic-cement mixtures, pp.34~43, 1993.
95. M. Delucchi, A. Barbucci and G. Cerisola, “Study of the physico-chemical
properties of organic coatings for concrete degradation”, Construction and
Building Materials, Vol. 11,No. 7~8, pp365~371, 1997.
96. L. Basheer, J. Kropp,…etc., “Assessment of the durability of concrete from its
permeation properties: a review”, Construction and Building Materials, Vol.
15, pp93~103, 2001.
97. E. P. Kearsley, P. J. Wainwright, “Porosity and permeability of foamed
concrete”, Cncrete and Cement Research, Vol. 31, pp805-812, 2001.
98. S. Y. N. Chan, X. Ji, “Water sorptivity and chloride diffusivity of oil shale ash
concrete”, Construction and Building Materials, Vol. 12, pp177~183, 1998.
99. A. M. Loukili, A. H. Jhelidj, …etc, “Hydration kinetics, change of relative
humidity, and autogenous shrinkage of ultra-high-strength concrete”, Cement
and Concrete Research, Vol. 29, pp577-584, 1999.
100. O. Bonneau, C. Vernet, M. Moranville, “Optimization of the Rheological
Behavior of Reactive Powder Concretes(RPC)”, International Symposium on
High- Performance and Reactive Powder Concretes, Vol.3, pp99~118, August,
1998.
101. M. Nehdi, S. Mindess, P.-C. Aitcin, “Rheology of High-Performance
Concrete: Effect of Ultrafine Particles”, Cement and Concrete Research, Vol.
28, No. 5, pp. 687~697, 1998.
102. Yunxing Shi, Isamu Matsui, Naiqian Feng, “Effect of Compound Mineral
Powders on Workability and Rheological Property of HPC“, Cement and
Concrete Research, Vol. 32, pp. 71~78, 2002.
103. 任國斌…等編,”Al2O3-SiO2 系 實用耐火材料”,北京冶金工業出版社,
1995。
104. S.N. Caliskan, “Aggregate/mortar interface: influence of silica fume at the
micro-a and macro-level”, Cement and Concrete Composites, Vol. 25,
pp557-564, 2003.
267
105. F. D. Larrard, T. Sedran, “Optimization of ultra-high-performance concrete
by the use of a packing model”, Cement and Concrete Research, Vol. 24,
pp997-1009, 1994.
106. F. D. Larrard,”混凝土混合料的配合”,北京化學工業出版社,2003。
107. P. J. Sandberg, F. Doncaster, “On the mechanism of strength enhancement of
cement paste and mortar with triisopropanolamine”, Cement and Concrete
Research, Vol. 34, pp973-976, 2004.
108. H. M. Jennings, “Advanced cement-based matrices for composites”, High
performance fiber reinforced cement composites, pp3~17, 1991.
109. E. Douglas, G. Pouskouleli, “Prediction of compressive strength of mortars
made with Portland cement – blast-furnace slag – fly ash blends”, Cement and
concrete Research, Vol. 21, pp523-534, 1991.
110. S. Bhanja, B. Sengupta, “Modified water-cement ratio law for silica fume
concretes”, C.C.R., Vol.33, 447-450, 2003.
111. N. K. Kantiranis, “Hydration of high-calcium quicklime with methanol-water
mixtures”, Construction and Building Materials, Vol. 17, pp91-96, 2003.
112. 鄭慶鴻,”活性粉混凝土於高溫下行為研究”,碩士論文,國立台灣大學,
民國九十年。
113. G. A. Khoury, C. E. Majorana, F. Pesavento and B. A. Schrefler, “Modelling
of heated concrete”, Magazine of Concrete Research, Vol. 54, No.2,
pp.77~101, April, 2002.
114. G. Pan, W. Sun, …etc., “Experimental
study on the micro-aggregate effect in high-strength and super-high-strength
cementitious composites”, Cement and Concrete Research, Vol. 28, pp171-176,
1998.
115. F. P. Glasser, S. Hong, “Thermal treatment of C-S-H gel at 1 bar H2O
pressure up to 200 ”, Cement and Concrete Research, ℃ search, Vol. 33, pp271-279,
2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔