(100.25.42.117) 您好!臺灣時間:2021/04/21 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈斯凱
研究生(外文):Si-Kai Shen
論文名稱:以微機電製程探討微尺度結構表面接觸角與微滴操控之研究
論文名稱(外文):A Study of Contact Angle on Micro-Patterned Substrates and Preliminary Development of MEMS for Droplet Control
指導教授:陳俊杉陳俊杉引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:102
中文關鍵詞:微機電系統液滴接觸角表面改質法靜電式微致動器微滴操控技術
外文關鍵詞:MEMScontact anglesurface modificationelectrostatic actuatordroplet control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的為使用微機電系統製程製作具有可操控液滴接觸角變化之可逆性及雙穩定性微滴操控系統,此微滴操控系統所採用之方法是以機械方式改變表面之幾何構造,使液滴能隨著表面結構變化而具有不同之接觸角。為了探討液滴接觸角與表面粗糙度的關係,本論文設計了具有孔洞狀與柱狀之微尺度結構表面,並且將量測結果與Cassie’s Formula做比較,所預測的結果與實際接觸角非常符合,在孔洞狀及柱狀結構表面上接觸角則僅有6°及10°差異,此一實驗結果提供了後續之微滴操控系統在設計表面結構上的參考。
微滴操控系統應用靜電式微致動器與接觸角原理,以微機電系統中的面型微加工技術製作而成,此系統設計部分主要可以分為表面結構與微致動器兩部分。表面設計部分以微尺度表面結構接觸角的研究為參考並配合微致動器的幾何設計而成,微致動器部分則以相關設計原則及製程設計,並且輔以有限元素分析軟體進行結構行為分析以及使用靜電力理論求解驅動電壓。製程上則使用五層光罩,以25個操作步驟製作。
此微滴操控系統尚於開發階段,無法即時觀測接觸角在微滴操控系統上的變化,但已可對已完成的微滴操控系統元件進行靜態的液滴接觸角量測與微致動器之結構行為探討。此系統經接觸角量測後,實際值與理論值具有15°的差異,並且可使液滴接觸角具有13°的變化量,與理論值16°則相當接近。微致動器之結構經實驗測試後亦具有足夠強度以抵抗變形。
In this thesis, we develop a reversible and bi-stable droplet-controlling system (RBDCS) to control the contact angle. The device is fabricated by MEMS. The method focuses on changing the surface geometry on which the contact angle can vary mechanically. In order to investigate the relationship between the surface roughness and the contact angle, we fabricate micro-hole and micro-pillar surfaces. The measurements of the contact angle show a very good agreement in comparing with those predicted by Cassie’s formula.
The development of the RBDCS aims to combine those theories from electrostatic microactuator and contact angle. The device is fabricated in 25 processes with 5 masks by surface micromachining. The design of RBDCS is divided into two parts. One is the design of the surface, which takes advantage of the above-mentioned study of contact angle on micro-patterned substrates, but is restricted to the design of the microactuator. The other is the design of the microactuator which is restricted to both the rules about RBDCS and the manufacture processes. The design is also analyzed by FEM and the applied voltage is solved by the electrostatic theory.
The RBDCS is still under development. It cannot be used to measure the real-time contact angle of droplets. Nevertheless we can statically measure the contact angle of droplets on the surface component of the RBDCS and investigate the structural behaviors. The results indicate the difference in contact angle between the theoretical value and the practical value is fifteen, and the microactuator is strong enough to resist mechanical deformation.
致  謝 I
摘 要 III
ABSTRACT V
目  錄 VII
圖 目 錄 XI
表 目 錄 XV
第一章 導論 1
1.1 研究動機與目的 1
1.2 微滴操控技術 2
1.3 論文架構 7
第二章 微尺度結構表面之接觸角量測 9
2.1 理論基礎 9
2.1.1 蓮花效應 9
2.1.2 接觸角理論 11
2.2 微尺度結構表面之幾何設計 16
2.3 微尺度結構表面之微機電系統製程 17
2.3.1 微尺度結構表面製程 18
2.3.2 隨高度變化之微尺度結構表面製程 19
2.4 接觸角量測 21
2.4.1 電鍍鎳表面粗糙度之接觸角量測 21
2.4.2 柱狀及孔洞狀結構表面之接觸角量測 23
2.4.3 受高度影響之接觸角變化 26
2.4.4 液滴於親斥水性交界表面之運動行為 29
2.5 討論與小結 31
第三章 微滴操控系統設計與分析 33
3.1 設計概念 33
3.1.1 操控方法 33
3.1.2 研究方法 34
3.2 理論基礎 35
3.2.1 靜電力理論 35
3.2.2 吸咐電壓(Pull-in Voltage) 36
3.3 微致動器之設計 40
3.3.1 設計原則 40
3.3.2 幾何設計 41
3.4 可逆式雙穩定性微滴操控系統之分析 45
3.4.1 微致動器驅動電壓分析 45
3.4.2 微滴操控系統液滴接觸角分析 45
第四章 微滴操控系統製程與實驗量測 49
4.1 可逆式雙穩定性微滴操控系統製程 49
4.2 細部構造觀察與改進方法 64
4.2.1 可逆式雙穩定性微滴操控系統表面結構觀察 65
4.2.2 微致動器之觀察 68
4.3 初步成果 70
4.3.1 微滴操控系統表面接觸角量測 70
4.3.2 微致動器結構行為測試 71
4.4 討論與小結 72
第五章 結論與未來展望 75
5.1 結論與建議 75
5.2 未來展望 76
參考文獻 79
附錄A 相關製程參數 83
附錄B 可逆式雙穩定性微滴操控系統光罩圖案 95
附錄C 可逆式雙穩定性微滴操控系統實驗紀錄 99
Bartholott, W. (1997), “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, Vol. 202, pp. 1-8.
Bierbaum, K., M. Grunze, A. A. Baski, L. F. Chi, W. Schrepp, A. B. D. Cassie, and S. Baxter (1944), Trans. Faraday Soc. ,Vol. 40,pp. 546.
Bico, J., C. Marzolin, and D. Quéré (1999), “Pearl drops,” Europhys. Lett.,Vol. 47(2),pp. 220-226.
He, B., N. A. Patankar, and J. Lee (2003), “Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir, Vol. 19, pp. 4999-5003.
Cassie, A. B. D., and S. Baxter (1944), “Wettability of Porous Surfaces,” Trans. Faraday Soc., Vol. 40,pp. 546.
Du, J.W. , J. Hajas, W. Scholz, A. Wooker, A. Frank, M. Jadliwala, B. Weber and W. WesselsGermany(2003), “New Additive to Enhance Surface Cleanability,” http://www.pcimag.com/CDA/ArticleInformation/coverstory/BNPCoverStoryItem/0,1848,101463,00.html (2005/4/19, WWW)
Lahann, J., S. Mitragotri, T. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, R. Langer (2003), “A Reversibly Switching Surface,” Science, Vol. 288, pp. 371-374.
Minko, S., M. Müller, M. Motornov, M. Nitschke, K. Grundke and M. Stamm (2003), “Two-Level Structured Self-Adaptive Surfaces with Reversibly tunable Properties,” J. AM. CHEM. SOC., Vol. 125,pp. 3896-3900.
MEMS Industry Group,Industry statics,(2005)http://www.memsindustrygroup.org/industry_statistics.asp (2005/4/19, WWW)
Nakajima, A., K. Hashimoto, T. Watanabe (2001), “Incited Review: Recent Studies on Super-Hydrophobic Films” Monatshefte für Chemie, Vol. 132, pp. 31-41.
Neil, J. S., A. Sanaa, E. Carl, M. Glen, M. I. Newton, C. C. Perry, and P. Roach(2004), “The use of high aspect ratio photoresist(SU-8) for super-hydrophobic pattern prototypeing,” Journal of micromechanics and microengineering, Vol. 14, pp. 1384-1389.
Nishino, T., M. Meguro, K. Nakamae, M. Matsushita,and Y. Ueda(1999), “The Lowest Surface Free Energy Based on -CF3 Alignment,” Langmuir, Vol. 15, pp. 4321.
Öner, D., and T. J. McCarthy(2000),“Ultraydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, Vol. 16, pp. 7777-7782.
Patankar, N. A.(2003), “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, Vol. 19, pp. 1249-1253.
Rosario, R., D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey, and S. T. Picraux(2004),“Lotus Effect Amplifies Light-Induced Contact Angle Switching,” J.Phys. Chem. B, Vol. 108, pp. 12640-12642.
Sun, R. D., A. Nakajama, A. Fujishima, T. Watanabe, and K. Hashimoto (2001),“ Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films,” J. Phys. Chem. B, Vol. 105, pp. 1984-1990.
Sun, T., G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang and D. Zhu(2004), “Reversible Switching between Superphydrophilicity and Superphobicity,” Angew. Chem. Int. Ed, Vol. 43, pp. 357-360.
Trimmer, W. S. N.(1989) , “Microrobots and micromechanical systems,” Sensors and Actuators A, Vol. 19, pp. 268.
Wang, R., K. Hashimoto, A. Fujishima, M. Chikun, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe(1997),“Light-induced amphiphilic surfaces” Nature, Vol. 388, pp. 431-432.
Wang, R., K. Hashimoto, A. Fujishima, M. Chikun, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe(1998),“Photogeneration of highly ampliphilic TiO2 surface,” Advanced Materials, Vol. 10(2), pp. 135-138.
Wenzel, RN(1949),J Phys Colloid Chem , Vol. 53, pp. 1466.
Yakushiji, T., and S. Kiyotaka(1998),“Graft Architectural Effects on Thermoresponsive Wettability Changes of Poly-Modified Surface,” Langmuir , Vol. 14, pp. 4657-4662.
Young, T.(1805), “An essay on the cohesion of fluids,” Philos. Trans. R. Soc. London, Vol. 95, 65-87.
精儀中心(2003),「微機電系統技術與應用」,行政院國家科學委員會精密儀器發展中心,台北。
張祐嘉(2004),「具抗反射及疏水特性之奈米結構表面設計與先導性製程研究」,碩士論文,國立台灣大學應用力學研究所,台北。
劉安順(2002),「製造奈微米局部結構之系統之研製」,碩士論文,國立台灣大學應用力學研究所,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔