跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡淑評
研究生(外文):Shu-Ping Hu
論文名稱:以基本解法求解赫姆霍茲、擴散及柏格斯方程式
論文名稱(外文):Applications of the Method of Fundamental Solutions to the Helmholtz, Diffusion and Burgers’ Equations
指導教授:楊德良楊德良引用關係
指導教授(外文):Der-Liang Young
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:126
中文關鍵詞:無網格法基本解法赫姆霍茲方程式特徵值奇異值分解法波導管擴散方程式史托克斯第一問題史托克斯第二問題尤拉-拉格朗日法柏格斯方程式柯爾霍普夫轉換
外文關鍵詞:MeshlessMethod of fundamental solutionsHelmholtz equationEigenvalueSingular value decompositionWaveguidesStokes’ first problemStokes’ second problemBurgers’ equationEulerian-Lagrangian methodCole-Hopf transformation.
相關次數:
  • 被引用被引用:2
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討和應用無網格基本解法求解赫姆霍茲、擴散及柏格斯方程式。首先是波導管問題之赫姆霍茲方程式。同邊界元素法僅需邊界點和源點,但無需點與點間的關係和數值積分,即可以基本解法結合奇異值分解法求得波導管的截止波數,進而求得模態圖,成功模擬橢圓波導管問題,此法可有效省下記憶體空間。其次,求解半無窮域之史托克斯第一問題及第二問題。僅有唯一受制邊界條件,基本解法無受限於計算域形式,可成功求解半無窮域和外域問題。以基本解法求解非穩態問題,直接應用具時間項的基本解,不需拉普拉斯轉換也不需要時間微分項的離散,可簡化程式,加速運算時間。以往基本解法多應用於線性問題上,本論文成功應用基本解法求解非線性的柏格斯方程式。文中分別以兩個方法將非線性柏格斯方程式轉換成線性擴散方程式,進而以基本解法求解擴散方程式後,由逆轉換求得柏格斯方程式的解。其一為尤拉-拉格朗日法,其二為柯爾霍普夫轉換。此二法均經由在空間-時間域中擺放源點,便可求解出不斷隨著時間變化的解直達穩態。由於各個數值實驗均獲得準確結果,也符合數值的穩定性與一致性,因此無網格基本解法乃一值得研究發展的高效率計算方法。
The method of fundamental solutions (MFS) is one of the popular meshless methods, gaining attention in the recent past. Since this method is free from the integration of the singular functions, this method has been applied for the solution of partial differential equations representing many engineering problems. The present thesis focuses on the application of the MFS to simulate problems of elliptical waveguides, Stokes’ first and second problems and Burgers’ equation.

Initially the MFS was utilized to solve elliptical waveguide problems by solving the Helmholtz equation using the singular value decomposition (SVD) method. The method could predict the results for the cutoff wavelengths in close agreement with analytical results. Later the MFS was applied to solve unsteady Stokes’ first and second problems. The time derivatives are handled by a time-space domain concept, which completely avoids the requirement of Laplace transformation or the finite difference scheme to discretize the time derivatives. Results obtained for the unsteady Stokes’ first and second problems indicate that the MFS could predict results closer to the analytical solutions. An error analysis carried out also demonstrates that the proposed numerical scheme based on the MFS can produce stable numerical results for unsteady problems solved on semi-infinite domain.

Finally, the MFS procedure was extended to solve non-linear Burgers’ equation in combination with the Eulerian-Lagrangian method and the Cole-Hopf transformation independently. The numerical experiments demonstrate that the MFS performs very well in combination with the above schemes to solve non-linear partial differential equations as well. Results obtained for many test cases of the non-linear Burgers’ equations in 1-D and 2-D domains indicate the present scheme could produce results closer to the analytical results. The results discussed in the thesis show that the MFS is a powerful meshless numerical scheme to solve non-linear partial differential equations.
摘要 I
ABSTRACT II
LIST OF FIGURES VI
LIST OF TABLES IX
SYMBOLS XI
ACRONYM GLOSSARY XII

CHAPTER 1
INTRODUCTION 1
1.1 NUMERICAL METHODS 2
1.2 MESHLESS METHOD 3
1.3 THE METHOD OF FUNDAMENTAL SOLUTIONS 4
1.4 THE THEORY OF THE MFS 7
1.5 THE SWOT ANALYSIS FOR THE MFS 10
1.6 OBJECTIVES OF THE PRESENT THESIS 10
1.7 ORGANIZATION OF THE THESIS 11
REFERENCES 11

CHAPTER 2
ANALYSIS OF ELLIPTICAL WAVEGUIDES BY THE METHOD OF FUNDAMENTAL SOLUTIONS 21
2.1 INTRODUCTION 22
2.2 GOVERNING EQUATION AND BOUNDARY CONDITIONS 23
2.3 APPLICATION OF THE MFS 24
2.4 NUMERICAL RESULTS 26
2.5 CONCLUSIONS 28
REFERENCES 29

CHAPTER 3
THE METHOD OF FUNDAMENTAL SOLUTIONS FOR STOKES’ FIRST & SECOND PROBLEMS 36
3.1 INTRODUCTION 37
3.2 MATHEMATICAL FORMULATION 39
3.3 NUMERICAL METHOD 41
3.4 RESULTS AND DISCUSSIONS 42
3.5 CONCLUSIONS 44
REFERENCES 45

CHAPTER 4
THE EULERIAN-LAGRANGIAN METHOD OF FUNDAMENTAL SOLUTIONS FOR BURGERS’ EQUATION 53
4.1 INTRODUCTION 54
4.2 GOVERNING EQUATION 56
4.3 NUMERICAL METHOD 57
4.4 RESULTS AND DISCUSSIONS 59
4.5 CONCLUSIONS 64
REFERENCES 65

CHAPTER 5
APPLICATION OF THE METHOD OF FUNDAMENTAL SOLUTIONS AND COLE-HOPF TRANSFORMATION TO SOLVE THE BURGERS'' EQUATION 83
5.1 INTRODUCTION 84
5.2 TEST PROBLEMS 85
5.3 NUMERICAL METHOD 87
5.4 NUMERICAL RESULTS 90
5.5 CONCLUSIONS 93
REFERENCES 93

CHAPTER 6
CONCLUSIONS AND SCOPE FOR FUTURE WORK 124
6.1 CONCLUSIONS 125
6.2 SCOPE FOR FUTURE WORK 126
[1]V.D. Kupradze, M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, USSR Computational Mathematics and Mathematical Physics, 4 (1964) 82-126.
[2]R. Mathon, R.L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM Journal on Numerical Analysis, 14 (1977) 638-650.
[3]C.S. Chen, M.A. Golberg, Las Vegas method for diffusion equations, in: Boundary Element Technology XII, eds. J.I. Frankel, C.A. Brebbia and M.A.H. Aliabadi (Computational Mechanics Publications, Southampton, 1997) 299–308.
[4]C.S. Chen, Y.F. Rashed, M.A. Golberg, A mesh-free method for linear diffusion equations, Numerical Heat Transfer, Part B, 33 (1998) 469-486, 1998.
[5]C.C. Tsai, Meshless Numerical Methods and their Engineering Applications, Ph.D. thesis, Department of Civil Engineering, National Taiwan University, Taiwan, (2002).
[6]M.A. Golberg, C.S. Chen. The method of fundametnal solutions for potential, Helmholtz and diffusion problems, In Boundary Integral Methods - Numerical and Mathematical Aspects, ed. M.A. Golberg, (Computational Mechanics Publications 1998)103-176.
[7]D.L. Young, C.C. Tsai, K. Murugesan, C.M. Fan, C.W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Elements, 29 (2004) 1463-1473.
[8]D.L. Young, C.C. Tsai, C.M. Fan, Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods, Journal of the Chinese Institute of Engineers, 27 (2004) 597-609.
[9]K. Balakrishnan, P.A. Ramachandran, The method of fundamental solutions for linear diffusion-reaction equations, Mathematical and Computer Modelling, 31 (2000) 221-237.
[10]C.M. Fan, D.L. Young, C.C. Tsai, C.W. Chen, K. Murugesan, Solution of the Advection-diffusion equation using the Eulerian-Lagrangian method of fundamental solutions. Journal of Computational Physics (submitted).
[11]R.P. Shaw, R.P. Shaw, G.S. Gipson, Interrelated fynfamental solutions for various heterogeneous potential wave and advective-diffiffusive problems, Engineering Analysis with Boundary Elements, 16 (1995) 29-33.
[12]G. Burgess, E. Mahajerin, A comparison of the boundary element and superposition methods, Computers & Structures, 19 (1984) 697–705.
[13]G.C. de Medeiros, PW. Partridge, J.O. Brandao, The method of fundamental solutions with dual reciprocity for some problems in elasticity, Engineering Analysis with Boundary Elements, 28 (2004) 453-461.
[14]G. Burgess, E. Mahajerin, A comparison of the boundary element and superposition methods, Computers & Structures, 19(5/6) (1984) 697-705.
[15]D.L. Young, J.W. Ruan, Method of fundamental solutions for scattering problems of electromagnetic waves, CMES: Computer Modeling in Engineering and Sciences, 7(2) (2005) 223-232.
[16]A. Karageorghis, The method of fundamental solutions for the solution of steady-state free boundary problems, Journal of Computational Physics, 98 (1992) 119–128.
[17]W. Chen, Meshfree boundary particle method applied to Helmholtz problems, Engineering Analysis with Boundary Elements, 26 (2002) 577-581.
[18]W. Chen, Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection–diffusion problems, Computer Methods in Applied Mechanics and Engineering, 192 (2003) 1859-1875.
[19]A. Karageorghis, The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation, Applied Mathematics Letters, 14 (2001) 837-842.
[20]X. Lin, Convergence of the method of fundamental solutions for solving the boundary value problem of modified Helmholtz equation, Applied Mathematics and Computation, 159 (2004) 113-125.
[21]A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM Journal on Numerical Analysis, 22 (1985) 644–669.
[22]G. De Mey, Integral equations for potential problems with the source function not located on the boundary, Computers & Structures, 8 (1978) 113–115.
[23]M.A. Golberg, C.S. Chen, The method of fundamental solution for potential, Helmholtz and diffusion problems, In Boundary Integral Methods – Numerical and Mathematical Aspects, M.A. Golberg (ed.), Computational Mechanics Publications, Boston, (1998) 103-176.
[24]R. Mathon, R.L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM Journal on Numerical Analysis, 14 (1977) 638–650.
[25]S. Murashima, H. Kuahara, An approximate method to solve two-dimensional Laplace’s equation by means of superposition of Green’s functions on a Riemann surface, Journal of Information Processing, 3 (1980) 127–139.
[26]D.L. Young, S.J. Jane, C.M. Fan, K. Murugesan, C.C. Tsai, The method of fundamental solutions for 2D and 3D Stokes problems, Journal of Computational Physics (In press)
[27]D.L. Young, C.W. Chen, C.M. Fan, K. Murugesan, C.C. Tsai, The method of fundamental solutions for Stokes flow in a rectangular cavity with cylinders, European Journal of Mechanics B/Fluids. (In press)
[28]S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth- Heinemann, Stoneham, 1991).
[29]H. Zhou, C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, Journal of Computational Physics, 117 (1995) 79–89.
[30]S.P. Hu, C.M. Fan, C.W. Chen, D.L. Young, Method of fundamental solutions for Stokes’ first and second problems, Journal of Mechanics, 21(1) (2005) 31-37.
[31]D.L. Young, S.P. Hu, C.W. Chen, C.M. Fan, K. Murugesan, Analysis of elliptical waveguides by the method of fundamental solutions, Microwave and Optical Technology Letters, 44(6) (2005) 552-558.
[32]G Fairweather, A. Karageorghis. The method of fundamental solution for elliptic boundary value problems. Advances in Computaitonal Mathematics, 9 (1998) 69-95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊