|
[1] A. Borkowski, Analysis of Skeletal Structural Systems in the Elastic and Elastic-PlasticRange, Polish Scientific Publishers, Warszawa, 1988. [2] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, 1999. [3] L. Bousshine, A.Chaaba and G. De Saxce, Plastic limit load of plane frames with frictional contact supports, International Journal of Mechanical Sciences, Vol.44, pp.2189-2216, 2002. [4] G. Cocchetti and G. Maier, Elastic-plastic and limit-state analyses of frames with softening plastic-hinge models by mathematical programming, International Journal of Solids and Structures, Vol.40, pp.7219-7244, 2003. [5] H.F. Chen and D.W. Shu, A numerical method for lower bound limit analysis of 3-D structures with multi-loading systems, International Journal of Pressure Vessels and Piping, Vol.76, pp.105-112, 1999. [6] M.Z. Cohn and G. Maier (eds.), Engineering plasticity by mathematical programming, Pergamon, New York, 1979. [7] W.F. Chen, Plasticity, limit analysis and structural design, International Journal of Solids and Structures, Vol.37, pp.81-92, 2000. [8] O.D. Donato and G. Maier, Mathematical programming methods for the inelastic analysis of reinforced concrete frames allowing for limited rotation capacity, International Journal Numerical for Methods in Engrgineering, Vol.4, pp.307-329, 1972. [9] M.C. Ferris and F. Tin-Loi, Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints, International Journal of Mechanical Sciences, Vol.43, pp.209-224, 2001. [10] M.C. Ferris and J.-S. Pang (eds.), Complementarity and Variational Problems, SIAM, Philadephia, 1997. [11] M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems, SIAM Reviews, Vol.39, No.4, pp.669-713, 1997. [12] M. Fukushima and J.-S. Pang, Some feasibility issues in mathematical programs with equilibrium constraints, SIAM Journal on Optimization, Vol.8, No.3, pp.673-681, 1998. [13] D.A. Gokhfeld and O.F. Cherniavsky, Limit Analysis of Structures at Thermal Cycling, Sijthoff & Noordhoff, Alphen and den Rijn, The Netherlands, 1980. [14] H.-K. Hong and C.-S. Liu, Internal symmetry in the constitutive model of perfect elastoplasticity, International Journal of Non-Linear Mechanics, Vol.35, pp.447-466, 2000. [15] J. P. Ignizio and T. M. Cavalier, Linear Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1994. [16] M. Jirasek and Z.P. Bazant, Inelastic analysis of structures, Wiley, West Sussex, England, 2002. [17] A. Lucia, J. Xu and K.M. Layn, Nonconvex process optimization, Computers and Chemical Engngineering, Vol.20, No.12, pp.1375-1398, 1996. [18] Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, New York, 1996. [19] Z.-Q. Luo, J.-S. Pang, D. Ralph and S.-Q. Wu, Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints, Mathematical Programming, Vol.75, pp.19-76, 1996. [20] B. Michel and D. Plancq, Lower bound limit load of a circumferentially cracked pipe under combined mechanical loading, Nuclear Engineering and Design, Vol.185, pp.23-31, 1998. [21] G. Maier, A quadratic programming approach for certain classes of nonlinear structural problems, Meccanica, Vol.3, pp.121-130, 1968. [22] G. Maier, A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, Vol.5, pp.54-66, 1970. [23] G. Maier, Incremental plastic analysis in the presence of large displacement and physical instabilizing effects, International Journal of Solids and Structures, Vol.7, pp.345-372, 1971. [24] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988. [25] C. van de Panne, Methods for Linear and Quadratic Programming, North-Holland, Amsterdam, 1975. [26] L. Palizzolo, Optimal design of trusses according to a plastic shakedown criterion, Journal of Applied Mechanics , ASME, Vol.71, pp.240-246, 2004. [27] W. Prager, Problem types in the theory of perfectly plastic materials, Journal of the Aeronautical Sciences, Vol.15, pp337-341, 1948. [28] A.U. Raghunathan and L.T. Biegler, Mathematical programs with equilibrium constraints (MPECs) in process engineering, Computers and Chemical Engineering, Vol.27, pp.1381-1392, 2003. [29] J.B. Rosen, O.L. Mangasarian and K. Ritter, Nonlinear programming : proceedings, Academic Press, New York, 1970. [30] D.L. Smith (ed), Mathematical Programming Methods in Structural Plasticity, Springer-Verlag, New York, 1990. [31] W.Q. Shen, limit analyses of plane frames with a penalty linear programming method, Computers and Structures, Vol.56, No.4, pp.687-695, 1995. [32] F. Tin-Loi, A constraint selection technique in limit analysis, Applied Mathematical Modelling, Vol.13, pp.442-446, 1989. [33] F. Tin-Loi and Y.F. Lo, Collapse limit surface generation for multiparametric loading, Applied Mathematical Modelling, Vol.16, pp.491-497, 1992. [34] F. Tin-Loi and J.-S. Pang, Elastoplastic analysis of structures with nonlinear hardening, Computer Methods in Applied Mechanics and Engineering, Vol.107, pp.299-312, 1993. [35] Z. Wan, Further investigation on feasibility of mathematical programs with equilibrium constraints, Computers and Mathematics with Applications, Vol.44, pp.7-11, 2002. [36] J.L. Zhou, A.L. Tits and C.T. Lawrence, User’s Guide for FFSQP Version 3.7: A FORTRAN Code for Saving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints. [37] W.I. Zangwill, Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. [38] Y.-G. Zhang and M.-W. Lu, An algorithm for plastic limit analysis, Computer Methods in Applied Mechanics and Engineering, Vol.126, pp.333-341, 1995. [39] 劉浚明, 數學規劃:理論與實務, 宏明書局, 臺北, 1995.
|