跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晟煒
研究生(外文):Cheng-Wei Lee
論文名稱:含超強奇異性無網格法於靜電學及電磁波散射問題之應用
論文名稱(外文):The application of hypersingular meshless method for electrostatic and electromagnetic wave scattering problems
指導教授:楊德良楊德良引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:80
中文關鍵詞:含超強奇異性無網格法基本解法雙層勢能徑向基底函數去除奇異性技術靜電問題電磁波傳問題完全導體柱靜電問題領域分割法
外文關鍵詞:Hypersingular meshless methodmethod of fundamental solutionsdouble layer potentialradial basis functiondesingularized techniqueelectrostatic problemelectromagnetic wave scattering problemperfectly conducting cylindermulti-domain technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個含超強奇異性無網格法求解靜電及電磁波散射問題。藉由所提出的去除奇異性技術將含奇異與超強奇異的核函數正規化,本方法因此改善基本解法的缺點,同時將傳統基本解法的無網格的優良的性質被保留下來,而且不用遭遇奇異與數值積分的問題。因為核函數奇異與超奇異性被消除了,源點因此可被放置在真實邊界上且與邊界點重合,具爭議性的虛擬邊界也就可以不用管它了。再則,使用本法並配合領域分割法解決退化邊界的秩不足問題。最後在求解靜電與電磁波散射問題的數值結果例子中與解析解和對偶邊界元素法比較後,證明本法確實可行且精確的。
In this thesis, a hypersingular meshless method (HMM) is proposed to solve electrostatic and electromagnetic wave scattering problems. This method modifies the method of fundamental solutions (MFS) by using the desingularized technique to regularize the singularity and hypersingularity of the proposed kernel functions. In the meantime the meshless features of conventional MFS are preserved without singularity and numerical integration. The source points can be located on the real boundary coincident with boundary points since the diagonal terms of influence matrices are determined after the singularity and hypersingularity having being eliminated. So that testing to the controversial off-boundary distance can be avoided. Furthermore, by using the HMM in conjunction with domain decomposition technique, we also solve for the rank-deficiency problem with degenerate boundary. The numerical results are demonstrated it valid and accuracy in solving a number of testing cases for electrostatic and electromagnetic wave scattering problems after comparing with exact solutions and the results made by dual boundary element method.
誌謝…………………………………………………………………………………………………….. I
中文摘要...……………………………………………………………………………………………. II
Abstract……………………………………………………………………………………………......III
Table List…………………………………………………………………..………………………… VI
Figure List………………………………………………………………………………..…………..VII
Chapter 1. Introduction................................................................................................................. 1
1-1. Motivation........................................................................................................................................... 1
1-2. Contents of the thesis .......................................................................................................................... 3
Chapter 2. HMM for solving electrostatic problems.................................................................... 5
2-1. Introduction........................................................................................................................................ 5
2-2. Formulation ........................................................................................................................................ 6
2-2.1. Electrostatic preliminary.............................................................................................................................. 6
2-2.2. Conventional method of fundamental solutions.......................................................................................... 7
2-2.3. Formulation of HMM................................................................................................................................... 8
2-2.4. HMM for interior electrostatic problem ...................................................................................................... 9
2-2.6. Treatment of degenerate boundary problems ............................................................................ 12
2-3. Numerical simulation with HMM for interior electrostatic problems ......................................... 13
2-3.1. Case 1-Circular domain with discontinuous Dirichlet BCs...................................................................... 13
2-3.2. Case 2-Rectangular domain with discontinuous Dirichlet BCs ............................................................... 14
2-3.3. Case 3-Rectangular domain with mixed-type problem (discontinuous BC)........................................... 14
2-3.4. Case 4-Arbitrary domain cases (cases 4-1 to 4-3)...................................................................................... 15
2-3.5. Case 5-Degenerate boundary interior problems ....................................................................................... 16
2-4. Numerical simulation with HMM for exterior electrostatic problems......................................... 16
2-5. Remark.............................................................................................................................................. 17
Chapter 3. HMM for solving electromagnetic wave scattering problems................................. 18
3-1. Introduction...................................................................................................................................... 18
3-2. Formulation ...................................................................................................................................... 19
3-2.1. Governing equation .................................................................................................................................... 19
3-2.1.1. Maxwell’s equations ........................................................................................................................... 19
3-2.1.2. Wave equations .................................................................................................................................. 21

3-2.1.3. Helmholtz equation ............................................................................................................................ 21
3-2.2. Analytical solution for a circular conducting cylinder.............................................................................. 24
3-2.3. Formulation of HMM for electromagnetic wave scattering problems .................................................... 26
3-2.3.1. Formulation of double layer potentials............................................................................................. 27
3-2.3.2. Derivation of diagonal coefficients of influence matrices for arbitrary domain using a HMM.. 29
3-3. Numerical results for homogeneous electromagnetic wave scattering problems........................ 31
3-3.1. Scattering through a circular cylinder ....................................................................................................... 32
3-3.2. Scattering through a rectangular cylinder................................................................................................. 33
3-3.3. Scattering through a peanut-shaped cylinder............................................................................................ 34
Chapter 4. Conclusions and further researches......................................................................... 35
4-1. Conclusions ....................................................................................................................................... 35
4-2. Further studying............................................................................................................................... 35
Appendix A. The detail derivations of equations for both Laplace’s equation and Helmholtz
equation. ………………………………………………………………………………………37
Appendix B. Discretization process of MFS for single and double layer potentials.................... 38
References………………………………………………………………………………………......... 42
[1] V.D. Kupradze and M. A. Aleksidze (1964), The method of functional equations for the approximate solution of certain boundary value problems, U.S.S.R. Computational mathematics and mathematical physics, Vol. 4, pp.82-126.
[2] R. L. Johnston and G. Fairweather (1984), The method of fundamental solutions for problems in potential flow, Appl. Math. Modeling, Vol.8, pp. 265-270.
[3] M. A. Golberg (1995), The method of fundamental solutions for Poisson’s equation, Eng. Anal. Bound. Elem., Vol.16, pp. 205-213.
[4] A. Karagoerghis and G. Fairweather (1987), The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys., Vol.69, pp.434-459.
[5] D. L. Young, C. C. Tsai, K. Murugesan, C. M. Fan and C. W. Chen (2004), Time-dependent fundamental solutions for homogeneous diffusion problems, Eng. Anal. Bound. Elem., Vol.28, pp.1463-1473.
[6] G. Fairweather and A. Karageorghis (2003), The method of fundamental solutions for scattering and radiation problems, Eng. Anal. Bound. Elem., Vol.27, pp.759-769.
[7] G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math. 9 1998 69-95.
[8] G. Fairweather, A. Karageorghis and P. A. Martin (2003), The method of fundamental solutions for scattering and radiation problems, Engineering Analysis with Boundary Elements, Vol. 27, pp. 759-769.
[9] W. S. Hwang, L. P. Hung, C. H. Ko, Non-singular boundary integral formulations for plane interior potential problems, Int. J. Numer. Meth. Eng. 53 2002 1751-1762.
[10] M. A. Tournour, N. Atalla, Efficient evaluation of the acoustic radiation using multipole expansion, Int. J. Numer. Meth. Eng. 46 1999 825-837.
[11] C. C. Tsai, Meshless numerical methods and their engineering applications. Ph.D. Dissertation of Institute of Civil Engineering, National Taiwan University, Taiwan, 2002.
[12] W. C. Tang, M. G. Lim, and R. T. Howe, Electrostatic comb drive levitation and control method, J. Microelectromech. Syst., vol.1, no.4, pp. 170-178, 1992.
[13] YS Liao, S,W. Chyuan and JT Chen, Computational study of the effect of finger width and aspect ratios for the electrostatic levitating force of MEMS combdrive, J. Microelectromech. Syst., vol 14, no.2, pp 305-312, 2005.
[14] P. P. Silvester and F. L. Ferrari, finite elements for electrical engineers, Cambridge: Cambridge University Press, 1983.
[15] C. A. Brebbia, The boundary element method for engineers, New York : Wiley, 1978.
[16] R. A.Gingold, J. J. Maraghan, Smoothed particle hydrodynamics: theory and applications to non-spherical stars, Man. Not. Astro. Soc., Vol. 181 1977 375-389.
[17] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: An overview and recent developments, comput. meth. appl. Mech. Engrg., 139 1996 pp.3-47.
[18] W. Chen, Tanaka M, A meshless, integration-free, and boundary-only RBF technique, comput. math. appl. Vol.43 2002, 379-391.
[19] J.T. Chen, S.R. Lin, K. H. Chen, I.L. Chen, S. W. Chyuan, Eigenanalysis for membranes with stringers using conventional BEM in conjunction with SVD technique, Comput. Methods Appl. Mech. Engrg., 192 (2003) 1299-1322.
[20] Y. S. Liao, S.-W. Chyuan and J. T. Chen, An alternatively efficient method (DBEM) for simulating the electrostatic field and levitating force of a MEMS combdrive, J. Micromech. Microeng. 14 (2004) 1258–1269.
[21] David K. Cheng, field and wave electromagnetics, Addison-Wesley Pub., 1989.
[22] Balanis, Constantine A., Advanced engineering electromagnetics, New York : Wiley, 1989.
[23] J. T. Chen, M. H. Chang, K. H. Chen and I. L. Chen (2002), Boundary collocation method for acoustic eigenalysis of three-dimensional cavities using radial basis function, Computational Mechanics, Vol.29, pp.392-408.
[24] J. T. Chen, M. H. Chang, K. H. Chen and S. R. Lin (2002), The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function, J. Sound and Vibration, Vol.257, pp.667-711.
[25] N. Engheta, W. D. Murphy, V. Rokhlin and M.S. Vassiliou (1992), The fast multipole method for electromagnetic scattering problems, IEEE Trans. Antennas and propagation, Vol. 40, pp. 634-641.
[26] M. Di Vico, F. Frezza, L. Pajewski and G. Schettini (2005), Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: a spectral-domain solution, IEEE Trans. Antennas and Propagation, Vol 53, pp. 719-727.
[27] A. K. Hamid and M. I. Hussein (2003), Iterative solution to the electromagnetic plane wave scattering by two parallel conducting elliptic cylinders, J. Electromagn. Waves and Appl., Vol. 17, pp. 813-828.
[28] T. Roy, T. K. Sarkar, A. R. Djordjevic and M. Salazar-Palma (1998), Time-domain analysis of TM scattering from conducting cylinders using a hybrid method, IEEE Trans. Microwave theory and techniques, Vol. 46, pp. 1471-1477.
[29] D. L. Young and J. W. Ruan (2005), Method of fundamental solutions for scattering problem of electromagnetic waves, Computer Modeling in Engineering and Science, Vol. 7, pp. 223-232.
[30] L. Marin and D. Lesnic (2005), The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations, Computers & Structures, Vol.83, pp. 267-278.
[31] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulation graphs and mathematical tables, New York, Dover, 1972.
[32] K. K. Mei and J. G van Bladel (1963), Scattering by perfectly-conducting rectangular cylinders, IEEE Transactions on antennas and propagation, Vol. 11, pp. 185-193.
[33] M. Golberg, Boundary integral methods: numerical and mathematical aspects, WIT press, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 方紫薇(1990)。團體評估與團體研究(一)。諮商與輔導,61,27-32。
2. 莫藜藜(1992)。社會團體工作在台灣。東吳社會工作學報,1,201-222。
3. 陳奕良(2002)。比較團體歷程觀察方法並評估可行性。諮商與輔導,194,19-21。
4. 周庭芳(2000)。觀察者在團體歷程評估過程中的必要性。諮商與輔導,174,17-20。
5. 莊宜佳、陳靜敏、蔡仁貞、李龍騰(2005)。影響北市社區健康營造中心志工推行健康促進活動成效探討。新臺北護理期刊,7:1,35-44。
6. 陳秀美(2004)。社區健康營造推動內涵與策略之探討-以淡水鎮社區健康營造為案例。社區發展季刊,107,253-262。
7. 陳毓璟、黃松元(2003)。臺東縣社區健康營造推動的現況與困難之研究。衛生教育學報,20,171-200。
8. 陳毓璟、黃松元(2003)。台北市社區健康營造推動的現況與困難之研究。衛生教育學報,19,179-211。
9. 林順安(1999)。健康促進與疾病預防。中師體育,1,4-6。
10. 鄭惠美(2001)。應用自我導向學習策略培養社區志工-以台北縣雙溪鄉社區健康營造中心為例。護理雜誌,48(1),43-48。
11. 邱淑媞(2001)。宜蘭縣營造健康社區之過程與現況。護理雜誌,48,28-35。
12. 于漱、楊桂鳳(2003)。在地化:社區健康營造永續發展的策略。臺灣醫學,7(1),132-136。
13. 陳富莉、李蘭(2001)。臺灣地區不同年齡層民眾的健康行為聚集型態。公共衛生,28(1),37-47。
14. 李蘭(1999)。健康促進取向之研究構想。國家衛生研究院簡訊,4(4),21-26。
15. 【鄧振源與曾國雄1989】鄧振源,曾國雄,層級分析法(AHP)的內涵特性與應用(上),中國統計學報,1989年。