|
[1] V.D. Kupradze and M. A. Aleksidze (1964), The method of functional equations for the approximate solution of certain boundary value problems, U.S.S.R. Computational mathematics and mathematical physics, Vol. 4, pp.82-126. [2] R. L. Johnston and G. Fairweather (1984), The method of fundamental solutions for problems in potential flow, Appl. Math. Modeling, Vol.8, pp. 265-270. [3] M. A. Golberg (1995), The method of fundamental solutions for Poisson’s equation, Eng. Anal. Bound. Elem., Vol.16, pp. 205-213. [4] A. Karagoerghis and G. Fairweather (1987), The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys., Vol.69, pp.434-459. [5] D. L. Young, C. C. Tsai, K. Murugesan, C. M. Fan and C. W. Chen (2004), Time-dependent fundamental solutions for homogeneous diffusion problems, Eng. Anal. Bound. Elem., Vol.28, pp.1463-1473. [6] G. Fairweather and A. Karageorghis (2003), The method of fundamental solutions for scattering and radiation problems, Eng. Anal. Bound. Elem., Vol.27, pp.759-769. [7] G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math. 9 1998 69-95. [8] G. Fairweather, A. Karageorghis and P. A. Martin (2003), The method of fundamental solutions for scattering and radiation problems, Engineering Analysis with Boundary Elements, Vol. 27, pp. 759-769. [9] W. S. Hwang, L. P. Hung, C. H. Ko, Non-singular boundary integral formulations for plane interior potential problems, Int. J. Numer. Meth. Eng. 53 2002 1751-1762. [10] M. A. Tournour, N. Atalla, Efficient evaluation of the acoustic radiation using multipole expansion, Int. J. Numer. Meth. Eng. 46 1999 825-837. [11] C. C. Tsai, Meshless numerical methods and their engineering applications. Ph.D. Dissertation of Institute of Civil Engineering, National Taiwan University, Taiwan, 2002. [12] W. C. Tang, M. G. Lim, and R. T. Howe, Electrostatic comb drive levitation and control method, J. Microelectromech. Syst., vol.1, no.4, pp. 170-178, 1992. [13] YS Liao, S,W. Chyuan and JT Chen, Computational study of the effect of finger width and aspect ratios for the electrostatic levitating force of MEMS combdrive, J. Microelectromech. Syst., vol 14, no.2, pp 305-312, 2005. [14] P. P. Silvester and F. L. Ferrari, finite elements for electrical engineers, Cambridge: Cambridge University Press, 1983. [15] C. A. Brebbia, The boundary element method for engineers, New York : Wiley, 1978. [16] R. A.Gingold, J. J. Maraghan, Smoothed particle hydrodynamics: theory and applications to non-spherical stars, Man. Not. Astro. Soc., Vol. 181 1977 375-389. [17] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: An overview and recent developments, comput. meth. appl. Mech. Engrg., 139 1996 pp.3-47. [18] W. Chen, Tanaka M, A meshless, integration-free, and boundary-only RBF technique, comput. math. appl. Vol.43 2002, 379-391. [19] J.T. Chen, S.R. Lin, K. H. Chen, I.L. Chen, S. W. Chyuan, Eigenanalysis for membranes with stringers using conventional BEM in conjunction with SVD technique, Comput. Methods Appl. Mech. Engrg., 192 (2003) 1299-1322. [20] Y. S. Liao, S.-W. Chyuan and J. T. Chen, An alternatively efficient method (DBEM) for simulating the electrostatic field and levitating force of a MEMS combdrive, J. Micromech. Microeng. 14 (2004) 1258–1269. [21] David K. Cheng, field and wave electromagnetics, Addison-Wesley Pub., 1989. [22] Balanis, Constantine A., Advanced engineering electromagnetics, New York : Wiley, 1989. [23] J. T. Chen, M. H. Chang, K. H. Chen and I. L. Chen (2002), Boundary collocation method for acoustic eigenalysis of three-dimensional cavities using radial basis function, Computational Mechanics, Vol.29, pp.392-408. [24] J. T. Chen, M. H. Chang, K. H. Chen and S. R. Lin (2002), The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function, J. Sound and Vibration, Vol.257, pp.667-711. [25] N. Engheta, W. D. Murphy, V. Rokhlin and M.S. Vassiliou (1992), The fast multipole method for electromagnetic scattering problems, IEEE Trans. Antennas and propagation, Vol. 40, pp. 634-641. [26] M. Di Vico, F. Frezza, L. Pajewski and G. Schettini (2005), Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: a spectral-domain solution, IEEE Trans. Antennas and Propagation, Vol 53, pp. 719-727. [27] A. K. Hamid and M. I. Hussein (2003), Iterative solution to the electromagnetic plane wave scattering by two parallel conducting elliptic cylinders, J. Electromagn. Waves and Appl., Vol. 17, pp. 813-828. [28] T. Roy, T. K. Sarkar, A. R. Djordjevic and M. Salazar-Palma (1998), Time-domain analysis of TM scattering from conducting cylinders using a hybrid method, IEEE Trans. Microwave theory and techniques, Vol. 46, pp. 1471-1477. [29] D. L. Young and J. W. Ruan (2005), Method of fundamental solutions for scattering problem of electromagnetic waves, Computer Modeling in Engineering and Science, Vol. 7, pp. 223-232. [30] L. Marin and D. Lesnic (2005), The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations, Computers & Structures, Vol.83, pp. 267-278. [31] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulation graphs and mathematical tables, New York, Dover, 1972. [32] K. K. Mei and J. G van Bladel (1963), Scattering by perfectly-conducting rectangular cylinders, IEEE Transactions on antennas and propagation, Vol. 11, pp. 185-193. [33] M. Golberg, Boundary integral methods: numerical and mathematical aspects, WIT press, 1999.
|