跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭台新
研究生(外文):Tai-Shin Cheng
論文名稱:雙金屬Pt-Fe支撐式觸媒檢測及巴豆醛選擇性氫化之研究
論文名稱(外文):Characterizations of Bimetallic Pt-Fe Supported Catalysts and Selective Hydrogenation of Crotonaldehyde
指導教授:吳紀聖
指導教授(外文):Jeffrey Chi-Sheng Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:159
中文關鍵詞:巴豆醛選持性氫化Pt-Fe/BN catalyst
外文關鍵詞:crotonaldehydeselective hydrogenationPt-Fe/BN catalyst
相關次數:
  • 被引用被引用:2
  • 點閱點閱:659
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要以BN支撐雙金屬觸媒在巴豆醛的選擇性氣相氫化反應,利用共臨濕含浸法將Pt與Fe的前軀物負載於BN上,Pt含量為1.1wt%,而鐵含量則從0.1至0.6wt%。此外,也製備單金屬觸媒Pt1.1wt%/BN及Fe0.8wt%/BN並選用以BN結構類似之石墨載體與商用觸媒載體γ-Al2O3作為比較。以三種載體支撐之雙金屬觸媒巴豆醇的選擇性皆隨著鐵含量的增加而增加,但活性卻反而降低。以BN及石墨支撐Pt-Fe雙金屬觸媒其鐵含量為0.2wt%時有巴豆醇產率最適值,其巴豆醇的選擇性而提升不儘是陽電性的Fe與高還原電位Pt之間彼此電子傳遞Pt電子密度提高而抑制C=C雙鍵的氫化,Fe以氧化態形式(Fen+)存在於表面更能吸附而活化C=O。此外,BN與石墨也提供其電子至Pt使得C=C更難活化。觸媒檢測包括N2吸附BET比表面積測定、氫氣與一氧化碳化學吸附測定、XRD、XPS、TEM、SEM-EDAX、ICP-AES、TPR進行鑑定。綜合TPR、XPS、XRD、TEM結果除了證明以BN支撐之雙金屬觸媒Pt-Fe/BN有PtFe合金相的產生外,覆蓋於其上之Fen+極化了C=O使巴豆醇選擇性提升許多。以石墨支撐之雙金屬反應結果與BN類似,但更能抑制C=C雙鍵氫化而得到最高的巴豆醇選擇性0.82(Fe/Pt=1.91),但在相同鐵含量下活性略低於BN觸媒。石墨亦為惰性物質,負載於其上之金屬也會出現聚集,TPR得知不同金屬含量的還原溫度也與BN觸媒相近,XRD也顯示純BN與石墨載體結構相似,XPS亦顯示Fen+存在,但Pt訊號較不明顯。以γ-Al2O3支撐之雙金屬觸媒對巴豆醇選擇性不佳,雖然XPS得知觸媒表面有Fen+存在,其選擇性的微幅增加是由於丁醛的生成量大幅減少,可能與Pt分散度降低有關,並推論Fen+所存在的環境可能缺乏氫原子以致於無法促進C=O氫化的速率外,Fen+易與γ-Al2O3作用有關。
The selective hydrogenation of crotonaldehyde was studied in gas phase over bimetallic BN-supported catalysts which were prepared by co-incipient wetness impregnation. The compositions of these catalysts were platinum 1.1wt% and iron varied from 0.1 to 0.6 wt%. Monometallic catalysts Pt1.1wt%/BN and Fe0.8wt%/BN were prepared for comparison. Some commercial catalyst supports, graphite and γ-Al2O3, were chosen to compare with BN. The reaction results revealed that the higher iron content on three bimetallic supported catalysts, the higher selectivity to crotyl alcohol was, but the activity was depressed at the same time. On BN and graphite bimetallic Pt-Fe supported catalysts, there was an optimum yield of crotyl alcohol at 0.2wt% Fe (Fe/Pt=0.635).The improvement of selectivity to crotyl alcohol was not only attributed to the electropositive metal B (Fe) acting as an electron-donor that increased the electron density on metal A (Pt), thus depressing the C=C hydrogenation, but also the electropositive metal (oxidized metal species) on the surface acting as electrophilic or Lewis sites for the adsorption and activation of the C=O. In addition, the BN and graphite also donated their pi electron to Pt, thus the C=C hydrogenation was hardly to activate. The catalysts were characterized by BET surface area measurement by N2 adsorption , H2 and CO chemisorption, X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) , transmission electron microscope (TEM), scanning electron microscope/energy dispersive spectrometer (SEM/EDX), inductively coupled plasma-atomic emission spectrometer (ICP-AES) , and temperature programming reduction (TPR).Summarized XRD,XPS,TEM and TPR results, Pt-Fe alloy were formed on Pt-Fe/BN and the Fen+ above (or next to ) the alloy polarized the C=O to enhance the selectivity to crotyl alcohol appreciably. The reaction results on Pt-Fe/graphite were similar to that of Pt-Fe/BN. But graphite provided more pi electrons to Pt which raised the electron density to depress the C=C hydrogenation, resulting in the highest selectivity to crotyl alcohol-0.82 (Fe/Pt=1.91),but the yield of crotyl alcohol on Pt-Fe/graphite was lower than Pt-Fe/BN at the same iron content. Graphite is also a inert species, we found the reduction temperature of various metal compositions loaded on graphite were almost the same with loaded on BN ,and the structure of pure support graphite and BN(graphitic-like)were identical to each other revealed by XRD pattern. The selectivity to crotyl alcohol on γ-Al2O3 supported catalysts was not increased efficiently. However, the Fen+ presented at the surface which was detected by XPS. The slightly improvement of selectivity to crotyl alcohol was attributed to the yield of butyraldehyde decreasing appreciably and it might caused by the decrease of Pt dispersion. We suggested that there were not sufficient hydrogen atoms surrounding with Fen+ to enhance the rate of C=O hydrogenation and also related to Fen+ easily interacting with γ-Al2O3.
目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 XI

第一章 1

第二章 文獻回顧 3
2.1α,β-未飽和醛類的選擇性氫化反應 3
2.2金屬的本質特性 7
2.3 金屬表面的立體效應(steric effect) 8
2.4 載體及配位基電子效應 (support and ligand electronic effect) 10
2.5 反應產物及毒化的效應(effect of reaction products and poisons) 13
2.6分散金屬觸媒(dispersed metal catalysts) 14
2.6.1 氧化鋁載體 15
2.6.2 BN載體 16
2.6.3 石墨載體 18
2.7 雙金屬觸媒(bimetallic catalysts) 19
2.7.1 幾何效應 20
2.7.2 雙金屬觸媒在α, β-未飽和醛選擇性氫化的研究 24

第三章 實驗方法 35
3.1 使用藥品 35
3.1.1觸媒製備 35
3.2 觸媒檢測 42
3.2.1 BET比表面積測定 42
3.2.2 雷射光繞射法粒徑分析 43
3.2.3 氫氣與一氧化碳化學吸附測定 43
3.2.4 X光繞射(X-ray diffraction, XRD) 45
3.2.5 X射線光電子分光儀(X-ray photoelectron Spectroscopy, XPS) 46
3.2.6 穿透式電子顯微鏡(transmission electron microscope, TEM) 48
3.2.7 掃瞄式電子顯微鏡及X光能量分散光譜(SEM-EDX) 49
3.2.8 感應耦合電漿原子發射光譜分析儀(Inductively coupled plasma-atomic emission spectrometer,ICP-AES ) 50
3.2.9 程溫規劃還原(temperature programmed reduction, TPR) 50
3.3 反應裝置及操作步驟 51
3.4 標準校正線製作 54

第四章 觸媒特性分析與結果討論 61
4.1 載體檢測 61
4.1.1 BET比表面積測定結果 61
4.2 氫氣與一氧化碳化學吸附測定 63
4.3 XRD測定結果 73
4.4 X射線光電子分光儀 (XPS) 79
4.5 穿透式電子顯微鏡(TEM) 84
4.6 掃瞄式電子顯微鏡(SEM-EDX) 89
4.7 感應耦合電漿原子發射光譜分析儀 (ICP-AES) 92
4.8 程溫規劃還原(TPR) 95
4.9 觸媒檢測綜合討論 98

第五章 巴豆醛反應結果與討論 101
5.1 固定Pt含量改變鐵含量對反應性的效應 103
5.1.1以BN載體支撐不同含量Pt-Fe雙金屬觸媒反應結果 103
5.1.2以γ-Al2O3載體支撐不同含量Pt-Fe雙金屬觸媒反應結果 110
5.1.3以石墨載體支撐不同含量Pt-Fe雙金屬觸媒反應結果 117
5.2 改變滯留時間對反應性的效應 125
5.3 氫氣與巴豆醛進料比的效應 127
5.4 失活測試 128
5.5 不同純氫氣前處理(還原)溫度的效應 131
5.6 觸媒鍛燒的效應 135
5.7反應結果討論 141

第六章 結論 149

第七章 參考文獻 151











表目錄
表2-1 鉑與銠的顆粒大小對cinnamaldehyde氫化選擇率的影響 11
表2-2 桂皮醛在Pt/C氫化,Alkali Hydroxides的效應 13
表2-3 crotonaldehye與methylcrotonaldehyde在不同晶面之氫化反應結果 30
表2-4 cinnamaldehyde在不同觸媒之氫化結果 30
表2-5 SMSI狀態下觸媒對氫化選擇性的提升 34
表3-1 觸媒的組成成分與其標示方法 38
表3-2 GC的操作條件 57
表3-3 GC加熱爐(Oven)的升溫程序 57
表4-1 三種載體之BET比表面積 61
表4-2 三種觸媒經過300℃氫氣還原前後BET比表面積結果 62
表4-3 以H2在不同金屬組成BN支撐之化學吸附結果 71
表4-4 以H2在不同金屬組成graphite支撐之化學吸附結果 72
表4-5 以H2在不同金屬組成γ-Al2O3支撐之化學吸附結果 72
表4-6 以CO在不同金屬組成γ-Al2O3支撐之化學吸附結果 72
表4-7 各載體的平均晶粒大小 74
表4-8 各觸媒晶相判定(所有觸媒在300℃氫氣還原兩小時) 76
表4-9 Pt4.4Fe0.8/BN(i.e. Pt1.1Fe0.2/BN)觸媒經過三種不同前處理溫度之晶相判定 76
表4-10 JCPDS-Pt 77
表4-11 JCPDS-FePt 77
表4-12 三種雙金屬觸媒經過300℃還原前後其Fe(2p3/2)的束縛能(eV)變化 83
表4-13 BN與石墨支撐單、雙金屬觸媒經過300℃還原前後其Pt(4f7/2)的束縛能(eV)變化 84
表4-14 Pt4.4Fe0.8/BN(Pt1.1Fe0.2/BN) 經過不同前處理步驟之XPS半定量結果 84
表4-15 Pt1.1Fe0.2/BN經300℃純氫氣還原之EDX組成分析 92
表4-16 Pt1.1Fe0.2/BN觸媒先經由300℃空氣鍛燒兩小時後,並在此溫度下以He purge半小時降至室溫,再昇溫至300℃氫氣還原兩小時之EDX組成分析。 92
表4-17 ICP定量Pt1.1Fe0.2/BN觸媒經過三種不同前處理溫度之Fe/Pt (molar ratio) 94
表5-1 本研究以不同載體支撐雙金屬Pt-Fe觸媒反應結果 143
表5-2 不同觸媒之巴豆醛反應性比較 143








圖目錄
圖2-1 巴豆醛氫化的自由能變化 4
圖2-2 α, β-未飽和醛的氫化反應路徑 5
圖2-3 cinnamadehyde在小金屬顆粒及金屬平面上的吸附情形 10
圖2-4 氧化鋁相變化圖 15
圖2-5 BN晶粒大小與溫度之關係圖 17
圖2-6 BN的結構 18
圖2-7 六方晶系的石墨晶體結構 19
圖2-8 在雙金屬觸媒上可能的金屬粒子的微結構 20
圖2-9 Cu-Ni合金觸媒對乙烷氫解為甲烷及環己烷脫氫為苯之活性,其中乙烷的氫解反應是在乙烷及氫氣壓力分別為0.03和0.20atm下進行;環己烷脫氫反應是在環己烷及氫氣壓力分別為0.17和0.83atm下進行 22
圖2-10 Au-Pt(100)與Au-Pt(111)在兩小時後正己烷的總轉化率,與表面覆蓋率是函數關係 23
圖2-11每個表面原子(含Pt與Au)的TOF與Au的表面覆蓋率之關係 23
圖2-12 C=O藉由在Pt表面上陽電的Fe原子活化的機制 25
圖2-13 不同Fe/Pt對cinnamaldehyde氫化的初始反應速率及選擇率變化 27
圖2-14 鐵含量與cinnamaldehyde氫化速率的關係 29
圖2-15 C=O鍵為陽離子Snn+活化機制 32
圖3-1 以BN支撐觸媒製備流程 39
圖3-2 以氧化鋁支撐觸媒製備流程 40
圖3-3 石墨支撐觸媒製備流程 41
圖3-4 X-ray繞射示意圖 46
圖3-5 電子束打入試片後產生的訊號 48
圖3-6 TPR裝置圖 53
圖3-7 反應系統裝置圖 56
圖3-8 橫軸為各試樣的滯留時間(min),縱軸分別為FID、TCD
訊號。1.470、2.388、4.004、5.554、(6.258與6.448)分別為
氫氣、丁醛、巴豆醛、丁醇及巴豆醇之GC分析圖譜 58
圖3-9 buryraldehyde檢量線 59
圖3-10 crotonaldehyde檢量線 59
圖3-11 butanol檢量線 60
圖3-12 crotyl alcohol檢量線 60
圖4-1 BN的粒徑分佈圖 62
圖 4-2 γ-Al2O3的粒徑分佈圖 62
圖4-3 graphite的粒徑分佈圖 63
圖4-4 Pt1.1/BN氫氣化學吸附結果 65
圖4-5 Pt1.1Fe0.1/BN之氫氣化學吸附結果 65
圖4-6 Pt1.1Fe0.2/BN之氫氣化學吸附結果 66
圖4-7 Pt1.1Fe0.4/BN之氫氣化學吸附結果 66
圖4-8 Pt1.1Fe0.6/BN之氫氣化學吸附結果 67
圖4-9 Pt1.1/γ-Al2O3之氫氣化學吸附結果 67
圖4-10 Pt1.1Fe0.2/γ-Al2O3之氫氣化學吸附結果 68
圖4-11 Pt1.1Fe0.4/γ-Al2O3之氫氣化學吸附結果 68
圖4-12 Pt1.1Fe0.6/γ-Al2O3之氫氣化學吸附結果 69
圖4-13 Pt1.1/G之氫氣化學吸附結果 69
圖4-14 Pt1.1Fe0.2/G之氫氣化學吸附結果 70
圖4-15 Pt1.1Fe0.4/G之氫氣化學吸附結果 70
圖4-16 Pt1.1Fe0.6/G之氫氣化學吸附結果 71
圖4-17 BN與石墨之XRD圖譜 75
圖4-18 γ-Al2O3之XRD圖譜 76
圖4-19 以BN支撐不同金屬組成XRD圖譜 78
圖4-20 Pt4.4Fe0.8/BN三種不同前處理溫度之XRD圖譜 78
圖4-21 以γ-Al2O3支撐不同金屬組成XRD圖 79
圖4-22 Pt4.4Fe0.8/BN(i.e. Pt1.1Fe0.2/BN)還原前後Fe(2p)之XPS
圖譜 81
圖4-23 Pt4.4Fe0.8/BN(i.e. Pt1.1Fe0.2/BN)還原前後Fe(2p)之XPS圖譜 82
圖4-24 Pt1.1Fe0.4/γ-Al2O3還原前後Fe(2p)之XPS圖譜 82
圖4-25 各觸媒還原前後Pt(4f)之XPS圖譜 83
圖4-26 Pt1.1/BN的TEM圖 86
圖4-27 Pt1.1Fe0.1/BN的TEM圖 86
圖4-28 Pt1.1Fe0.2/BN的TEM圖 87
圖4-29 Pt1.1Fe0.4/BN的TEM圖 87
圖4-30 Pt1.1Fe0.6/BN的TEM圖 88
圖4-31 Fe0.8/BN的TEM圖 88
圖4-32 Pt1.1Fe0.2/BN經300℃純氫氣還原之SEM/EDX圖 90
圖4-33 Pt1.1Fe0.2/BN觸媒先經由300℃空氣鍛燒兩小時後,並在此溫度下以He purge半小時降至室溫,再昇溫至300℃氫氣還原兩小時之SEM/EDX圖。 91
圖4-34 Fe離子濃度的校正曲線 94
圖4-35 Pt濃度的校正曲線 94
圖4-36 Pt前軀物(H2PtCl6.6H2O)之TPR圖譜 96
圖4-37 以BN支撐不同金屬組成之TPR圖譜 96
圖4-38 以石墨支撐不同金屬組成之TPR圖譜 97
圖4-39 以γ-Al2O3支撐不同金屬組成之TPR圖譜 97
圖5-1 巴豆醛氫化的反應路徑 101
圖5-2 Pt1.1/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 105
圖5-3 Pt1.1Fe0.1/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 106
圖5-4 Pt1.1Fe0.2/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 106
圖5-5 Pt1.1Fe0.4/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 107
圖5-6 Pt1.1Fe0.6/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 107
圖5-7 Fe0.8/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 108
圖5-8 固定Pt含量(1.1wt%),以BN支撐不同Fe含量(wt%)在40℃的反應結果 108
圖5-9 固定Pt含量(1.1wt%),以BN支撐不同Fe含量(wt%)在60℃的反應結果 109
圖5-10 固定Pt含量(1.1wt%),以BN支撐不同Fe含量(wt%)在80℃的反應結果 109
圖5-11 固定Pt含量(1.1wt%),以BN支撐不同Fe含量(wt%)在100℃的反應結果。 110
圖5-12 Pt1.1/γ-Al2O3觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 112
圖5-13 Pt1.1Fe0.2/γ-Al2O3觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 112
圖5-14 Pt1.1Fe0.4/γ-Al2O3觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 113
圖5-15 Pt1.1Fe0.6/γ-Al2O3觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 113

圖5-16 Fe0.8/γ-Al2O3觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59)
114
圖5-17 固定Pt含量(1.1wt%),以γ-Al2O3支撐不同Fe含量(wt%)在40℃的反應結果 114
圖5-18 固定Pt含量(1.1wt%),以γ-Al2O3支撐不同Fe含量(wt%)在60℃的反應結果 115
圖5-19 固定Pt含量(1.1wt%),以γ-Al2O3支撐不同Fe含量(wt%)在80℃的反應結果 115
圖5-20 固定Pt含量(1.1wt%),以γ-Al2O3支撐不同Fe含量(wt%)在100℃的反應結果 116
圖5-21 固定Pt含量(1.1wt%),以γ-Al2O3支撐不同Fe含量(wt%)在120℃的反應結果 116
圖5-22 Pt1.1/G觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 119
圖5-23 兩種未飽和醛系列,左欄依序為acrolein、crotonaldehyde、3-methyl-crotonaldehyde;右欄依序為methyl vinyl ketone、acrolein、methacrolein。 119
圖5-24 Pt1.1Fe0.2/G觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 120
圖5-25 Pt1.1Fe0.4/G觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 120
圖5-26 Pt1.1Fe0.6/G觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 121
圖5-27 Fe0.8/G觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 121

圖5-28 固定Pt含量(1.1wt%),以graphite支撐不同Fe含量(wt%)在40℃的反應結果
122
圖5-29 固定Pt含量(1.1wt%),以graphite支撐不同Fe含量(wt%)在60℃的反應結果 122
圖5-30 固定Pt含量(1.1wt%),以graphite支撐不同Fe含量(wt%)在80℃的反應結果 123
圖5-31 固定Pt含量(1.1wt%),以graphite支撐不同Fe含量(wt%)在100℃的反應結果 123
圖5-32 固定Pt含量(1.1wt%),以graphite支撐不同Fe含量(wt%)在120℃的反應結果 124
圖5-33 兩種填充床反應器的排列方式 126
圖5-34 Pt1.1Fe0.2/BN觸媒改變不同滯留時間之反應結果(反應壓力1atm,反應物流量為50ml/min,氫氣/巴豆醛=59) 126
圖5-35 不同H2/crotonaldehyde進料比30、59及90之轉化率及選擇性的趨勢(觸媒用量0.3g,反應壓力1atm,反應物流量為50ml/min) 128
圖5-36 三觸媒進行巴豆醛氫化反應十小時後之活性趨勢。觸媒用量0.3g,反應壓力1atm,反應物流量為50ml/min,氫氣/巴豆醛=59。 130
圖5-37 Pt1.1Fe0.2/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59,前處理條件:以30ml/min在200℃純氫氣還原兩小時) 133
圖5-38 Pt1.1Fe0.2/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59,前處理條件:以30ml/min在450℃純氫氣還原兩小時) 134
圖5-39 Pt1.1Fe0.2/BN觸媒分別經過不同前處理之載體上雙金屬示意圖:(a) 300℃氫氣還原兩小時 (b) 300℃空氣鍛燒兩小時後,並在此溫度下以He purge半小時降至室溫,再昇溫至300℃氫氣還原兩小時。 137
圖5-40 兩種新鮮觸媒觸媒先經300℃空氣鍛燒降至室溫後再進行TPR 138
圖5-41 兩種新鮮觸媒直接進行TPR 138
圖5-42 Pt1.1Fe0.2/BN觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59,前處理條件:先以300℃空氣鍛燒兩小時後,並在此溫度下以He purge半小時降至室溫,再昇溫至300℃氫氣還原兩小時) 139
圖5-43 Pt1.1Fe0.2/G觸媒之巴豆醛反應結果。(觸媒用量0.3g,反應壓力為1atm,反應物流量為50ml/min,氫氣/巴豆醛=59,前處理條件:先以300℃空氣鍛燒兩小時後,並在此溫度下以He purge半小時降至室溫,再昇溫至300℃氫氣還原兩小時) 140
圖5-44 推論BN上Fen+活化C=O的機制 142
圖5-45 以BN支撐不同金屬組成其反應速率(取log)對溫度倒數作圖 147
圖5-46 以γ-Al2O3支撐不同金屬組成其反應速率(取log)對溫度倒數作圖 148
[1]陳威誌,雙金屬觸媒Pt-Sn/BN在巴豆醛選擇性氫化之研究,國立台灣大
學碩士論文
[2]P. Gallezot and D. Richard, Selective Hydrogenation of α,β-Unsaturatated Aldehydes, Catalysis Review-Science and Engineering, 40(1998) 81-126
[3]M. A. Vannice and B. Sen, Metal-Support Effects on the Intramolecular Selectivity of Crotonaldehyde Hydrogenation over Pt, Journal of Catalysis, 115(1989)65-78.
[4]J. March, Advanced Organic Chemistry, McGraw-Hill Kogakusha, Tokyo, 1977, p829.
[5]J. SimonïK and L. Beránek, Mono and Bimolecular Mechanisms in the Catalytic Isomerization of Crotyl Alcohol to Butyraldehyde, Journal of Catalysis, 24(1972) 348-360.
[6]H. Noller and W. M. Lin, Activity and Selectivity of Ni-Cu/Al2O3 Catalysts for Hydrogenation of Crotonaldehyde and Mechanism of Hydrogenation, Journal of Catalysis, 85(1984)25-30.
[7]J. M. Campelo, A. Garcia, D. Luna and J. M. Marinas, Rh/AlPO4 Catalysts IX. Liquid-Phase Hydrogenation and Isomerization of α,β-Unsaturated Alcohols, Journal of Catalysis, 113(1988)172-184.
[8]F. Delbecq and P. Sautet, Competitive C=C and C=O Adsorption of α,β--Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions: A Theoretical Approach, Journal of Catalysis, 152( 1995)217-236.
[9]D. V. Sokol’skii, N. V. Anisimova, A. K.Zharmagambetova, S. G. Mukhamedzhanova and L. N. Edygenova, Reaction Kinetics- Catalytic Letters ,33(1987)399.
[10]

[11]G. Gordier, Y. Colleuille, and P. Fouilloux, in Catalysepar les Metaux (B. Imerlik er al., eds),Edition du CNRS,Paris,1984,p.349
G. Gordier, French Patent F 2,329,628(1975),to Rhone-Poulene S.A; Chemical Abstracts.,87,38862s (1997)
[12]D.V. Sokol’skii, A.M. Pak, M.A.Hinzburg, and V.A.Zavorin, Hydrogenation of Citral to Citronellal on Ni-Al2O3 , Kinetics and Catalysis 20 (3): 531-536 1979
[13]T. Birchem, C.M. Pradier, Y. Berthier, and G. Cordier, Reactivity of 3-Methyl-Crotonaldehyde on Pt(111) ,Journal of catalysis,146,503(1994)
[14]P, Beccat, J. C. Bertolini, Y. Gauthier, J. Massardier, and P. Ruiz, Crotonaldehyde ans Methylcrotonaldehyde Hyfrogenation over Pt(111) and Pt80Fe20(111) single crystals,Journal of Catalysis,126,451 (1990)
[15]A. Giroir-Fendler,D .Richard, and P. Gallezot, in proceedings of the 9th international Congress on Catalysis (M.J. Phillips and M. Terman,eds),Calgary,Canada, 1998, p. 1074
[16]A. Giroir-Fendler,D .Richard, and P. Gallezot, Chemoselectivity in cinnamaldehyde hydrogenation induced by shape selectivity effects in Pt-y-zeolite catalysts,Catalysis Letters 5 (2): 169-174 1990
[17]C. Minot, and G. Gallezot, Competitive Hydrogenation of Benzene and Toluene: Theoretical Study of Their Adsorption on Ruthenium, Rhodium, and Palladium, Journal of Catalysis, 123(1990)341-348.
[18]B. Coq,F. Figueras, C. Moreau, P. Moreau, and M. Warawdekar,Hydrogenation of substituted acrolein over alumina-supported ruthenium catalysts , Catalysis Letters 22 (3): 189-195 1993
[19]V. Satagopan and S. B. Chandalia, Selectivity aspects in the multiphase hydrogenation of alpha,beta-unsaturated aldehydes over supported noble-metal catalysts .1. Journal of Chemical Technology and Biotechnology 59 (3): 257-263 MAR 1994


[20]V. Satagopan and S. B. Chandalia, Selectivity aspects in the multiphase hydrogenation of alpha,beta-unsaturated aldehydes over supported noble-metal catalysts .2, Journal of Chemical Technology and Biotechnology 60 (1): 17-21 MAY 1994
[21]A. Giroir-Fendler, D. Richard and P. Gallezot, Selectivity in cinnamaldehyde hydrogenation of group-viii metals supported on graphite and carbon, in M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier and G. Pérot, Heterogeneous Catalysis and Fine Chemicals, Studies in Surface and Catalysis Vol. 41, Elsevier,Amsterdam, 1988, 171-178.
[22]F. Coloma, A. Sepúlveda-Escribano, J. L. G. Fierro, F. and Rodríguez- Reinoso, Improvement of the selectivity to crotyl alcohol in the gas-phase hydrogenation of crotonaldehyde over platinum/activatd carbon catalysts , Applied catalysis A: General, 123(1996)L1.
[23]S. Galvagno,G Capanelli,G Neri, A. Donato,and R. Pietropaolo, Hydrogenation of cinnamaldehyde over Ru/C catalysts - effect of Ru particle-size, Journal of Molecular Catalysis,64,237 (1991)
[24]V. Vandersput, in Catalysis in Organic Synthesis (W. H. Jones,ed.)Academy Press,New York, 1980,p. 11.
[25]G. J.Hutchings,F. King, I.P. Okoye, and C.H.Rochester, Influence of sulfur poisoning of copper alumina catalyst on the selective hydrogenation of crotonaldehyde , Applied Catalysis A:General 83 (2): l7-l13 apr 21 1992
[26]K. Foger, Dispersed Metal Catalysts, in J. R. Anderson and M. Boudart, Catalysis Science and Technology Vol. 6, Berli, New York, 1984, Chapter 4, 228-305.
[27]C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, Second Edition, McGraw-Hill, New York, 1991, p. 114-123, p. 175-208, p. 131-174.
[28]W. M. Gitzen, Alumina as a Ceramic Material, Am. Ceram. Soc., Columbus, 1970.
[29]K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum, Alcoa
Laboratories, 1987.
[30]M. Hubacek, M. Ueki, T. Sato and V. Brozek, High Temperature Behavior of
Hexagonal Boron Nitride, Thermochimica Acta 282/283, 1996,
[31]K. Niedenzu, J. W. Dawson, Boron-Nitrogen Compounds, Academic press, New York, 1965.
[32]L.Smart, and E. Moore, Solid State Chemistry An Introduction P4,1992
[33]H.J. Gumtherodt, and R. Wiesendabger, Scanning Tunneling Microscopy I,1992
[34]J. Osing,and I.V. Shvets, Bulk defects in graphite observed with a scanning tunnelling microscope, Surface Science 417,145-150,1998
[35]J. H. Sinfelt, Bimetallic Catalysts, John Wiley & Sons, New York, 1983, p. 20-28.
[36]V Ponec, On the roles of promoters in Hydrogenation on metals; α,β-unsaturated aldehydes and ketones, Applied catalysis A:General 149 (1997)27-48
[37]Gabor A. Somorjal and Jose Carrazza, Structure sensitivity of Catalytic Reactions, Industrial & Engineering Chemistry Fundamentals 1986,25,63-69
[38]D. Richard, J. Ockelford, A. Giroir-Fendler and P. Gallezot, Composition and catalytic properties in cinnamaldehyde hygrogenation of charcoal-supported, platinum catalysts modified by FeCl2 addtives, Catalysis Letters, 3(1989)53-58.
[39]W. H. Carothers and R. Adams, Platinum Oxide as a Catalyst in The Reduction of Organic Compounds. V. The Preparation of Primary Alcohols by The Catalytic Hydrogenation of Aldehydes, Journal of the American Chemical Society, 46(1924)1675.

[40]
W.F. Tuley and R.Adams, THE REDUCTION OF CINNAMIC ALDEHYDE TO CINNAMYL ALCOHOL IN THE PRESENCE OF PLATINUM-OXIDE PLATINUM BLACK AND PROMOTERS. XI, Journal of the American Chemical Society,47,3061 (1925)
[41]P. N .Rylander, N. Himelstein, and m. Kilroy, Engelhard Ind. Tech. Bull.,4,49 (1963)
[42]S. Galvagno,A. Donato,G Neri,R. Pietropaolo,and D. Pietropaolo,
HYDROGENATION OF CINNAMALDEHYDE OVER PLATINUM
CATALYSTS - INFLUENCE OF ADDITION OF METAL CHLORIDES,
Journal of Molecular Catalysis,49, 223 (1989)
[43]F. Delbecq and P. Sautet, Electronic and Chemical Properties of the Pt80Fe20(111) single crystal, Journal of Catalysis, 164( 1996)152-165.
[44]W. Yu, Y. Wang, H. Liu, and W. Zheng, Preparation and characterization of polymer-protected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde, Journal of Molecular catalysis A:General,112,105 (1996)
[45]P. Fouilloux, Selective Hydrogenation of Cinnamaldehyde to Cinnamyl
Alcohol on Pt-Co and Pt-Ru/C Catalysts, in M. Guisnet et al., Heterogeneous
Catalysis and Fine Chemicals, Studies in Surface and Catalysis Vol. 41,
Elsevier, Amsterdam, 1988, p. 123.
[46]A. Girior-Fendler, D. Richard, and P. Gallezot, Preparation of Pt-Ru bimetallic particles on functionalized carbon supports by co-exchange, Faraday Discussions,92,69 (1991)
[47]D. Goupil, P. Fouilloux and R. Maurel, Activity and selectivity of Pt-Fe/C alloys for the liquid-phase hydrogenation of cinnamaldehyde to cinnamyl alcohol , Reaction Kinetics and Catalysis Letters 35 (1-2): 185-193 1987


[48]

Z. Poltarzewski, S. Galvagno, R Pietropaolo, and P. Staiti, Hydrogenation of
α,β-unsaturated aldehydes over Pt-Sn/Nylon, Journal of Catalysis,102,190
(1986)
[49]F. Coloma, A. Sepúlveda-Escribano, J. L. G. Fierro, F. Rodríguez-Reinoso,
Crotonaldehyde hydrogenation over bimetallic Pt-Sn catalysts supported on
pregraphized carbon black. Effect of the Sn/Pt atomic ratio, Applied Catalysis
A: General 136(1996)231-248.
[50]G. Neri, C. Milone, A. Donato, L. Mercadante and A. M. Visco, Selective
Hydrogenation of citral over Pt-Sn Supported on Activated carbon, Journal of
Chemical Technology and biotechnology, 60(1994)83-88.
[51]Christian G. Rabb and Johannes A, Lercher, Activity and selectivity of
NiPt/SiO2 catalysts for hydrogenation of crotonaldehyde, Journal of molecular
Catalysis 75 (1992) 71-79
[52]Englisch, Martin; Ranade, Vidyadhar S.; Lercher, Johannes A , Hydrogenation
of crotonaldehyde over Pt based bimetallic catalysts ,Journal of Molecular
Catalysis A: Chemical 121 (1997)69-80
[53]J. Kaspar, M. Graziani, G. P. Escobar, and A. Trovarelli, Chemoselective
hydrogenation of unsaturated carbonyl compounds over group 8 and 9
titania-supported metal catalysts, Journal of Molecular Catalysis, 72(1992)243.
[54]Ajit Dandekar1and M. Albert Vannice, Crotonaldehyde Hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI Catalysts, Journal of Catalysis 183, 344–354 (1999)
[55]俞國平,雷射光散射法,呂維明.戴怡德編,粉粒體粒徑量測技術,高立圖書有限公司,台北,1998,第六章,113-166。
[56]S.T.Strinivas and P. Kanta Rao, Direct Obsevation of Hydrogen Spillover on
Carbon-Supported Platinum and Its Influence in the Hydrogenation of Benzene, Journal of Catalysis 148 ,470-477 (1994)
[57]B. D. Ratner and D. G. Castner, Electron Spectroscopy for Chemical Analysis, in J. C. Vickerman, Surface Analysis-The Principal Techniques, John Wiley &
Sons, New York, 1997, Chapter 3, 43-98.
[58]D.B. Williams and C.B. Carter, Transmission electron microscopy, Plenum
Press,New York and London,1996,p7-8
[59]Skoog, Principles of Instrumental Analysis,4th edition,p217-237
[60]S. Subramanian and J. A. Schwarz, Stoichiometric composition of
platinum, iridium and platinum-iridium catalytic precursors, Applied
Catalysis 68(1991)131-147.
[61]P. A. Webb and C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp.,USA,1997,p.60-63
[62]C.H. Yang and J.G. Goodwin, JR, Reversible chemisorption on highly dispersed Ru catalysts, Journal of Catalysis, 78(1982)182-187.
[63]H. Lieske and J. Volter, State of Tin in PtSn/Al2O3 Reforming Catalysts
Investigated by TPR and Chemisorption, Journal of Catalysis 90,96-105 (1984)
[64]International centre for diffraction data (JCPDS-ICDD PDF-2 Database wersion 2.15,Academia Sinica (1987)
[65]葉君棣,陳志堅合譯,X射線光電子分光儀應用手冊,黎明書店,新竹,1983 p.81,p.157,p.190,原著:C.D. Wagner,W.M. Riggs,L.E. Davis, J.F. Moulder and G.E. Muilenburg (Editer),Handbook of X-ray photoelectron spectroscopy,1st edition,Perkin-Elmer Corporation,Minnesota,1979

[66]
Dmitry I. Jerdev, Bruce E. Koel ,Fe deposition on Pt(111):a route to Fe-containing Pt-Fe alloy surface ,Surface Science 513 (2002) L391-L396
[67]N. Berret, C. Guillot, Bulk and Surface core level binding energies in the Pt80Fe20(111) alloy, Surface Science 260 (1992) L11
[68]
Eleanor M. Crabb, Robert Marshall, Properties of alumina supported Pd-Fe and Pt-Fe catalysts prepared of using surface organometallic chemistry, Applied Catalysis 217 (2001)41-53
[69]B. Moraweck,P. Bondot,D. Goupil,P. Fouilloux and A. J. Renouprez, Journal de Physuque,C8,48(1987) 297
[70]T.B.L.W. Marinelli,S Nabuurs,and V .Ponec, Activity and Selectivity in the reactions of substituted α,β-Unsaturated Aldehydes, Journal of Catalysis 151,431-438 (1995)
[71]H. Scott Fogler, Elements of Chemical Engineering, third edition,p. 716
[72]G. Lafaye, T. Ekou, C. Micheaud-Especel, C. Montassier, P. Marecot, Citral hydrogenation over alumina supported Rh-Ge catalysts, Effects of the reduction temperature, Applied Catalysis A: General 257 (2004) 107–117
[73]M. Consonni, D. Jokic, D. Yu Murzin, and R. Touroude, High Performances of Pt/ZnO Catalysts in Selective Hydrogenation of Crotonaldehyde, Journal of catalysis 188 (1999)165-175
[74]B. Bachiller-Baeza, Role of the residual chlorides in platinum and ruthenium catalysts for the hydrogenation of a,b-unsaturated aldehydes, Applied Catalysis A: General 192 (2000) 289–297
[75]Narcis Homs, Jordi Llorca, Pilar Ramirez de la Piscina,Francisco Rodriguez-Reinoso, Antonio Sepulveda-Escribano and Joaquin Silvestre-Albero, Vapour phase hydrogenation of crotonaldehyde over magnesia-supported platinum.tin catalysts, Phys.Chem.Chem,Phys.,2001,3,1782-178

[76]
Yuriko Nitta ,Yushifumi Hiramatsu, and Toshinibu Manaka, Effects of preparation Variables On The Selective Hydrogenation of α,β-Unsaturated Aldehydes , Journal of catalysis,126 (1990) 235
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 崔述與顧頡剛 路新生著 孔孟學報 第64期 頁135-155 1992年9月
2. 姚際恆與顧頡剛 林慶彰著 中國文哲研究集刊 第15期 頁431-458 1999年9月
3. 顧頡剛與錢玄同 林慶彰著 中國文哲研究集刊 第17期 頁405-430 2000年9月
4. 范寧及其《穀梁集解》 王熙元著 國文學報 1974年第3期 頁1-9 1974年
5. 唐代後期經學的新發展 林慶彰著 東吳文史學報 1990年第8期 頁159-163 1990年
6. 春秋經始魯隱公的劃時代意義析究 張添丁著 孔孟學報 第67期 頁96-130 1994年3月
7. 《左傳》與《詩經》 黃開國著 孔孟學報 第67期 頁78-95 1994年3月
8. 從敘事文學角度看《左傳》與《國語》的關係 王靖宇著 中國文哲研究集刊 第6期 頁1-30 1995年3月
9. 《春秋左傳注》商兌 魯毅著 孔孟學報 第71期 頁157-177 1996年3月
10. 春秋國際愬訟制度研究 張輝誠著 孔孟學報 第72期 頁59-77 1996年9月
11. 《左傳》、《國語》與《易經》 黃開國著 孔孟學報 第74期 頁75-97 1997年9 月
12. 論漢代《公羊》、《穀梁》之爭 郜積意著 孔孟學報 第80期 頁31-60 2002年9月
13. 漢代今、古學之爭的再認識-以賈逵與《公羊》之爭為例 郜積意著 中國文哲研究集刊 總第二十二期 頁223-258 2003年3月
14. 臺灣近五十年來《春秋》經傳研究綜述(上) 張高評著 漢學研究通訊 第23卷第3期 頁1-18 2004年8月
15. 臺灣近五十年來《春秋》經傳研究綜述(下) 張高評著 漢學研究通訊 第23卷第4期 頁1-10 2004年11月