跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫柏奇
研究生(外文):Po-Chi Wu
論文名稱:矽酸鍶與氧化釔螢光材料之改質及特性分析
論文名稱(外文):Modification and Characterization of Strontium Orthosilicate and Yttrium Oxide Phosphors
指導教授:呂宗昕
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:148
中文關鍵詞:螢光粉白光二極體場發射顯示器
外文關鍵詞:phosphorswhite light emitting diodefield emission display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:577
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽酸鍶(Sr2SiO4:Eu2+)由於可以提供在UV/Blue區間的寬廣吸收帶,因此提供一個以GaN晶片為基礎產生白光新的螢光粉應用方向。由熱分析及結晶繞射圖譜可以確定其生成機制是由擴散所控制; 由Brounshtein -Ginstling 模型計算出其活化能為139.6 kJ/mol。利用檸檬酸及乙二醇進行溶膠-凝膠反應合成均勻分散的Sr2SiO4:Eu2+螢光粉。藍綠光是由處於Sr(I)位置的Eu2+經由f-d能階轉換產生,而黃光則由Sr(II)位置的Eu2+所產生。此外,由黃光放射峰所模擬的激發光譜也較藍光放射峰模擬的激發光譜更為寬廣,暗示著Sr(II)可以在晶格內提供較大的晶場;當Eu2+的濃度增加時,黃光的放射峰最主導整個發光現象。在適當的條件下合成下會產生最強螢光強度與粒徑約150奈米的均勻分散Sr2SiO4:Eu2+螢光粉。

紅光螢光粉(Y2O3:Eu3+)的合成與改質被研究。研磨會將缺陷導入晶格內,使用溶膠凝膠法合成的Y2O3:Eu3+奈米粉體具有較強的螢光強度和結晶性。於1200℃鍛燒下,Eu3+相對於其他鍛燒溫度會有更不對稱的環境,因此會有最強的611 nm的放射峰。當鋰離子加入螢光粉內會有較強的結晶性,放射強度與更均勻的粒子型態;這是當鋰離子進入晶格內產生的氧缺陷會下降晶體裡的對稱性,造成增加electric-dipole的5D0→7F2能量轉換之放射峰。當導電層氧化錫包覆於螢光粉表面,可以從CL光譜中可以發現:在高電流密度操作下,未包覆導電層的螢光粉亮度很快就達到飽和;此時,包覆氧化錫的Y2O3:Eu3+螢光粉亮度依然持續增加,因此暗示了導電層可以有效地移除電荷於螢光粉表面,造成發光效率提高。
Strontium orthosilicate (Sr2SiO4:Eu2+) provides the broadband absorption in UV/Blue region, giving rise to a new phosphor approach for application of GaN-based white LEDs. From the TG/DTA and XRD analysis, the formation of Sr2SiO4 is confirmed to be governed by diffusion controlled mechanism. According to the Brounshtein-Ginstling model, the activation energy is suggested to be 139.6 kJ/mol. A sol-gel process employing citric acid and ethylene glycol as polymerizing agent was developed for synthesizing well-dispersed Sr2SiO4:Eu2+ phosphors. The blue-green band originates from the f-d transition of the Eu2+ ion on the Sr(I) site. On the other hand, the emission of the Eu2+ ion on the Sr(II) site is identified as the yellow band. The excitation spectra monitored at the yellow band also showed broader excitation range than that monitored at blue-green band, implying large crystal field provided by Sr(II) site. With increase of europium concentration in Sr2SiO4, the yellow broadband emission will be more dominate. Sr2SiO4:Eu2+ synthesized at the appropriate condition showed the enhanced luminescent intensity and well dispersed particles with grain size around 150 nm.

The synthesis and modification of red oxide phosphors (Y2O3:Eu3+) were investigated. The nano-sized Y2O3:Eu3+ phosphors synthesized via the sol-gel route showed the enhanced crystallinity and luminescent intensity. The europium ions of the sol-gel derived phosphors calcined at 1200℃ are in a more asymmetric environment than those calcined at other temperatures, resulting in the strongest emission intensity at 611 nm. The particles after Li+ ions doping had the advantages of enhanced the crystallinity, improved morphology, and emission intensity. It implies that oxygen defects created after Li+ ions doping would lead to lowering symmetry, resulting in enhanced the 5D0→7F2 electric-dipole emission (611 nm).Tin oxide was used as the coating material on the Y2O3:Eu3+ phosphor. At high current density, the brightness of the uncoated phosphor was quickly saturated. On the other hand, the CL intensity of SnO2-coated Y2O3:Eu3+ phosphor still increased monotonously, suggesting the removal of charge on the surface by conductive material effectively.
摘要
Abstract
Contents I
List of Figures III
List of Tables VIII
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Solid State Kinetics 3
1.2.1 Theoretical Calculations 3
1.2.2 Solid-State Reaction Rate Equations 4
1.3 Luminescent Materials 5
1.3.1 Types of Luminescence 6
1.3.2 Mechanisms of Luminescence 6
1.3.3 Application of Phosphors 8
1.3.4 White Light LED Phosphor 8
1.3.5 FED Phosphor 9
1.4 Luminescence Theory 11
1.4.1 Symbols of Quantum Numbers 12
1.4.2 Spin-Orbit Coupling and j-j Coupling 13
1.4.3 Radiative and Nonradiative Transitions 14
1.4.4 Hund’s Rules and Selection Rules 16
1.4.5 Crystal-Field Theory and Stark Splits 17
1.4.6 The Rare Earth Ions 18
1.4.7 4fn-15d1states and Charge Transfer States 19
1.4.8 Emission Characteristics of Eu2+ Ions-the f-d Transition 20
1.4.9 Emission Characteristics of Eu3+ Ions-the f-f transition 21
1.5 Introduction to Strontium Orthosilicate 21
1.5.1 Structure of Strontium Orthothilicate 22
1.5.2 Spectroscopy of Sr2SiO4:Eu2+ 23
1.6 Introduction to Yttrium Oxide 23
1.6.1 Structure of Yttrium Oxide 23
1.6.2 Spectroscopy of Y2O3:Eu3+ 24
1.6.3 Synthesis Methods of Y2O3:Eu3+ 25
1.7 Research Objective 27
Chapter 2 Investigation on Reaction Kinetics and Europium Activated Photoluminescence Properties of Sr2SiO4 42
2.1 Introduction 42
2.2 Experimental 43
2.2.1 Synthesis of Sr2SiO4 via the Solid-State Method 43
2.2.2 Synthesis of Sr2SiO4:Eu2+ via a Sol-Gel Route 44
2.2.3 Analysis Technique 44
2.3 Investigation Reaction Mechanism and Kinetics of Sr2SiO4 through Isothermal Method 46
2.3.1 Investigation of the Reaction Kinetics 46
2.3.2 Reaction Kinetic Analysis 47
2.4 Investigation on Sr2SiO4:Eu2+ Phosphor Prepared via the Sol-Gel Route 52
2.4.1 Effects of Europium Doping Amount on Crystal Structure and Photoluminescence Properties 52
2.4.2 Luminescence and Microstructure Studies of Sr2SiO4:Eu2+ Synthesized at Different pH Value 55
2.5 Summary 60
Chapter 3 Investigation on Fluorescence Properties of Y2O3:Eu3+ Phosphor 87
3.1 Introduction 87
3.2 Experimental 88
3.2.1 Synthesis of Y2O3:Eu3+ via Solid-State Method 88
3.2.2 Synthesis of Nano-Sized Y2O3:Eu3+ via Sol-Gel Process 89
3.2.3 Process of Coating SnO2 on the Nano-Sized Y2O3:Eu3+ 89
3.2.4 Analysis Technique 90
3.3 Preparation of Y2O3:Eu3+ Phosphors via Solid-State Method 91
3.4 Photoluminescence Studies of Nano-Sized Y2O3:Eu3+ Prepared by Sol-Gel Process 93
3.5 Investigation on Luminescent Properties of Li+ Doped Nano-Sized Y2O3:Eu3+ 99
3.6 Luminance Studies of Thin SnO2 Coating on Nano-Sized Y2O3:Eu3+ 104
3.7 Summary 108
Chapter 4 Conclusion 141
References 144
References
[1] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994).
[2] C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, Adv. Funct. Mater., 13, 511 (2003).
[3] J. D. Hancock and J. H. Sharp, J. Am. Ceram. Soc., 55, 74 (1972).
[4] G. A. Rossetti, Jr., D. J. Watson, R. E. Newnhanm, and J. H. Adair, J. Cryst. Growth, 116, 251 (1992).
[5] K. W. SEO and J. K. OH, J. Ceram. Soc. Jpn., 108, 691(2000).
[6] S. Shionoya and W. M. Yen, Phosphor Handbook, CRC Press, Washington DC (1999).
[7] B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, Plenum (1990)
[8] J. K. Park, C. H. Kim, S. H. Park, H. D. Park, and S. Y. Choi, Appl. Phys. Lett., 84, 1647 (2004)
[9] J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, Appl. Phys. Lett., 85, 3696 (2004)
[10] T. Tamura, T. Setomoto, and T. Taguchi, J. Lumin., 87-89, 1180 (2000).
[11] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett., 84, 1647 (2004).
[12] Y. Sato, N. Takahashi, and S. Sato, Jpn. J. Appl. Phys., 35, L838 (1996).
[13] Y. D. Huh, J. H. Shim, Y. H. Kim, and Y. R. Do, J. Electrochem. Soc., 150, H57 (2003).
[14] J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Choi, H. L. Park, and T. W. Kim, Jpn. J. Appl. Phys., 43, 989 (2004).
[15] C. A. Spindt, J. Appl. Phys., 39, 3504 (1968).
[16] A. A. Talin, K. A. Dean, and J. E. Jaskie, Solid State Electron., 45, 963 (2001).
[17] A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver, A. Newport, and D. Barber, J. Vac. Sci. Technol. B, 17, 750 (1999).
[18] P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, and W. J. Thomes, J. Vac. Sci. Technol. B, 17, 758 (1999).
[19] J. H. Gwak, S. H. Park, J. E. Jang, S. J. Lee, J. E. Jung, J. M. Kim, Y. W. Jin, N. W. Jin, N. S. Lee, W. K. Yi, and V. A. Vorobyov, J. Vac. Sci. Technol. B, 18, 1101 (2000).
[20] H. Kominami, T. Nakamura, K. Sowa, Y. Nakanishi, Y. Hatanaka, and G. Shimaoka, Appl. Surf. Sci., 113/114, 519 (1997).
[21] C. H. Chang, B. S. Chiou, K. S. Chen, and J. C. Ho, Appl. Surf. Sci., 243, 55 (2005).
[22] J. Y. Kim, Y. C. You, J. H. Kang, D. Y. Jeon, and I. Yu, J. Mater. Res., 18, 1505 (2003).
[23] W. Park, B. K. Wanger, G. Russel, K. Yasuda, C. J. Summers, Y. R. Do, and H. G. Yang, J. Mater. Res., 15, 2288 (2000).
[24] J. Y. Kim, D. Y. Jeon, Il Yu, and H. G. Yang, J. Electrochem. Soc., 147, 3559 (2000).
[25] A. S. Ethiraj, N. Hebalker, S. K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Kumpf, and E. Umbach, J. Chem. Phys., 118, 8945 (2003).
[26] D. F. Shriver and P. W. Atkis, Inorganic Chemistry, Oxford (1999).
[27] G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin (1994).
[28] G. Herzberg and J. W. T. Spinks, Atomic Spectra and Atomic Structure, Dover, New York (1944).
[29] R. C. Ropp, Luminescence and the Solid State, Elesevier (1991).
[30] P. Dorenbos, J. Lumin., 104, 239 (2003).
[31] M. Yang and S. Zhang, J. Phys. Chem. Solids, 64, 213 (2003).
[32] G. Blasse and A. Bril, Philips Tech. Rev., 32, 304 (1970).
[33] J. M. Fields, P. S. Dear, and J. J.Brown, J. Am. Ceram. Soc., 55, 585 (1972).
[34] M. Catti, G. Gazzoni, G. Ivaldi, and G. Zanini, Acta Cryst., B39, 674 (1983).
[35] M. Catti, G. Gazzoni, and G. Ivaldi, Acta Cryst., C39, 29 (1983).
[36] T. L. Barry, J. Electrochem. Soc., 115, 1181 (1968).
[37] G. Blasse, W. L. Wanmaker, J. W. ter Vrugt, and A. Bril, Philips Res. Rep., 23, 189 (1968).
[38] M. Faucher, Acta Cryst., B36, 3209 (1980).
[39] W. van Schaik and G. Blasse, Chem. Mater., 4, 410 (1992).
[40] J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, and C. H. Lu, J. Phys. Chem., 105, 11098 (2001).
[41] X. Jing, T. Ireland, C. Gibbons, D. J. Barber, J. Silver, A. Vecht, G. Fern, P. Trowga, and D. C. Morton, J. Electrochem. Soc., 146, 4654 (1999).
[42] M. I. Martinez-Rubio, T. G. Ireland, J. Silver, G. Fern, C. Gibbons, and A. Vecht, Electrochem. Solid-State Lett., 3, 446 (2000).
[43] J. Silver, T. G. Ireland, and R. Withnall, J. Electrochem. Soc., 151, H66 (1999).
[44] J. Zhang, Z. Zhang, Z. Tang, Y. Lin, and Z. Zheng, J. Mater. Process. Technol., 121, 265 (2002).
[45] J. Zhang, Z. Tang, Z. Zhang, W. Fu, J. Wang, Y. Lin, Mater. Sci. Eng. A, 334, 246 (2002).
[46] M. H. Lee, S. G. Oh, and S. C. Yi, J. Colloid Interface Sci., 226, 65 (2000).
[47] M. H. Lee, S. G. Oh, S. C. Yi, D. S. Seo, J. P. Hong, C. O. Kim, Y. K. Yoo, and J. S. Yoo, J. Electrochem. Soc., 147, 3139 (2000).
[48] H. Huang, G. Q. Xu, W. S. Chin, L. M. Gan, and C. H. Chew, Nanotechnology, 13, 318 (2002).
[49] Y. Tao, G. Zhao, W. Zhang, and S. Xia, Mater. Res. Bull., 32, 501 (1997).
[50] L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Mater. Lett., 10, 437 (1990).
[51] W. W. Zhang, W. P. Zhang, P. B. Xie, M. Y., H. T. Chen, L. Jing, Y. S. Zhang, L. R. Lou, and S. D. Xia, J. Colloid Interface Sci., 262, 588 (2003).
[52] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, Springer, Berlin (2004).
[53] M. Yamada, Y. Narukawa, and T. Mukai, Jpn. J. Appl. Phys., 41, L246 (2002).
[54] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. , 84, 2931 (2004).
[55] J. S. Yoo, S. H. Kim,W. T. Yoo, G. Y. Hong, K. P. Kim, J. Rowland, and P. H. Holloway, J. Electrochem. Soc., 152, G382 (2005).
[56] A. Nag and T. R. N. Kutty, J. Mater. Chem., 14, 1598 (2004).
[57] J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park and S. Y. Choi, Appl. Phys. Lett., 82, 683 (2003).
[58] A. M. Ginstling and B. L. Brounshtein, J. Apply. Chem. USSR, 23, 1327 (1950).
[59] C. H. Lu and C. C. Tsai, J. Mater. Res., 11, 1219 (1996).
[60] C. H. Lu, W. T. Hsu, and J. T. Lee, J. Mater. Res., 19, 2956 (2004)..
[61] F. C. Palilla, A. K. Levine, and M. R. Tomkus, J. Electrochem. Soc., 115, 642 (1968).
[62] T. Nakamura, T. Takeyama, N. Takahashi, R. Jagannathan, A. Karthikeyani, G. M. Smith, P. C. Riedi, J. Lumin., 102-103, 369 (2003).
[63] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, Solid State Commun., 133, 187 (2005).
[64] W. Kuang, Y. Fan, K. Yao, and Yi Chen, J. Solid State Chem., 140, 354 (1998).
[65] B. J. Hwang, R. Santhanam, and D. G. Liu, J. Power Sources, 101, 86 (2001).
[66] K. H. Wu, C. H. Yu, Y. C. Chang, and D. N. Horng, J. Solid State Chem., 140, 354 (1998).
[67] P. Vaqueiro and M. A. L. Quintela, Chem. Mater., 9, 2836 (1997).
[68] M. Kakihana and M. Yoshimura, Bull. Chem. Soc. Jpn., 72, 1427 (1999).
[69] H. Zhang, X. Jia, Y. Yan, Z. Liu, D. Yang, and Z. Li, Mater. Res. Bull., 39, 839 (2004).
[70] A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum, New York (1977).
[71] J. McKittrick, L. E. Shea, C. F. Bacalski, and E. J. Bosze, Displays, 19, 169 (1999).
[72] J. Bang, B. Abrams, B. Wangner, and P. H. Holloway, J. Appl. Phys., 95, 7873 (2004).
[73] G. R. Villalobos, S. S. Bayya, J. S. Sanghera, R. E. Miklos, F. Kung, and I. D. Aggarwal, J. Am. Ceam. Soc., 85, 2128 (2002).
[74] J. H. Jean and S. M. Yang, J. Am. Ceam. Soc., 83, 1928 (2000).
[75] D. Grier and G. McCarthy, ICDD Grant-in-Aid (1991).
[76] A. Konrad, T. Fries, G. Gahn, F. Kummer, U. Herr, R. Tidecks, and K. Samwer, J. Appl. Phys., 86, 3129 (1999).
[77] G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, Adv. Mater., 13, 1557 (2001).
[78] R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, Li Xaomao, A. Benker, M. Winterer, and H. Hahn, J. Appl. Phys., 89, 1679 (2001).
[79] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, Prentice Hall (2001).
[80] Z. Qi, C. Shi, W. Zhang, W. Zhang, T. Hu, Appl. Phys. Lett., 81, 2857 (2002).
[81] M. G. Ko, J. C. Park, D. K. Kim, and S. H. Byeon, J. Lumin., 104, 215 (2003).
[82] S. H. Beyeon, M. G. Ko, J. C. Park, and D. K. Kim, Chem. Mater., 14, 603 (2002).
[83] J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, Appl. Phys. Lett., 77, 2162 (2000).
[84] T. Hatayama, S. Fukumoto, and S. Ibuski, Jpn. J. Appl. Phys., 31, 3383 (1992).
[85] L. Sun, C. Qian, C. Liao, X. Wang, and C. Yan, Solid State Commun., 119, 393 (2001).
[86] J. S. Bae, S. B. Kim, J. H. Jeong, J. C. Park, D. K. Kim, S. H. Byeon, S. S. Yi, Thin Solid Films, 471, 224 (2005).
[87] S. S. Yi, J. S. Bae, B. K. Moon, J. H. Jeong, J. C. Park, I. W. Kim, Appl. Phys. Lett., 81, 3344 (2002).
[88] A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, Acta Cryst., B53, 373 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳宇嘉、吳美玲(1984)。台灣地區老人休閒活動型態之研究與檢討。社區發展季刊,27,77-87。
2. 柯木興、林慧芬,〈談社會保險與自助餐(buffet)〉,《國家政策論壇》,2003年,10月,頁220-222。
3. 高俊雄(1996)。青少年休閒的自我管理。測驗與輔導,137,2823-2825。
4. 柯木興,〈談社會保險年金與退休金的一些概念〉,《保險實務與制度》,第一卷第一期,2002年月,頁1-9。
5. 邱稔壤,〈蛻變中的拉丁美洲之虎:智利〉,《問題與研究》,第三十六巻第一期,1997年1月,頁19-26。
6. 高俊雄(1993)。休閒參與體驗形成之分析。戶外遊憩研究,6(4),1-12。
7. 張鳳琴、洪美玟、吳聖良(1996)。日間照顧服務的成本及效果初探。台中:台灣省公共衛生研究所。
8. 張隆順(1982)。社區老人休閒活動之理論與實施。社區發展季刊,17,30-35。
9. 古允文,〈世代契約與凝聚-老人經濟安全政策走向的思考〉,《國家政策論壇》,第二巻第三期,2002年三月,頁13-21。
10. 施清發、陳武宗、范麗娟(2000)。高雄市老人休閒體驗與休閒參與程度之研究。社區發展季刊,92,346-358。
11. 林維言(2000)。從「加強老人安養服務方案」的執行談長期照互制度之建構。社區發展季刊,92,6-18。
12. 林佳蓉(2000)。老人的休閒參與對休閒滿意和生活滿意之影響。大專體育,51,156-162。
13. 林東泰(1994)。都會地區成人及青少年休閒認知和態度研究。民意研究季刊,188(4),41-67。
14. 王增勇(1998)。西方日間照顧的歷史與重要議題。社區發展季刊,83,168-190。
15. 陳聽安,〈論智利年金之民營化〉,《華信金融季刊》,第三期,1998年9月,頁7-30。