跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李子農
研究生(外文):Tzu-Nung Li
論文名稱:以數學規劃法作反應性蒸餾塔最適化設計
論文名稱(外文):Synthesis of Reactive Distillation Column Design by MINLP Optimization
指導教授:陳誠亮陳誠亮引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:79
中文關鍵詞:數學規劃法反應性蒸餾
外文關鍵詞:MINLPreactive distillation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一個以逐層式模式為基礎之完整反應蒸餾系統設計。
一般在研究反應蒸餾設計時,部分的結構變數往往需要靠經驗或直覺來決定、
而操作變數則由標準的最適化技術來求得。
本文將以價格考量所有變數,建立以低廉價格為取向之目標函數,
將所有變數納入目標函數中。
因此,本研究提出一個針對反應性蒸餾塔設計方法,能對所有結構變數及操作變數
作同時最適化的階層式模式。

將處理反應性蒸餾問題的階層式模式整合成一個混合整數非線性最適化問題,
其中同時考慮原物料成本、操作成本、投資成本,
並討論多重進料對系統造成可能的影響。

本文在假設不考慮液液分相之異相系統的前提下,熱力學模式可以選擇系統適合
之模式代入超結構中,如:理想模式,Willson模式等;而對於液氣平衡的情形
使用莫菲板效率表示塔板之分離效率,使模式能夠更真實的描述反應蒸餾之行為。
並將原本只能處理均相反應系統的模式,增加考慮固相觸媒的影響,使超結構能
延伸到異相反應系統。

最後,參考文獻所提供生產乙二醇和乙酸甲酯之模擬範例,由模擬的結果可得知,
以MINLP來處理均相及異相反應之反應性蒸餾系統最適化的可行性。
A complete mathematical programming formulation based on a tray-by-tray model
is presented for optimal design of homogeneous reactive distillation processes.
Most of the researches on reactive distillation, some the structural details of the
process are found by empiricism or intuition, and the operational variables
can be determined by standard optimization techniques.
An optimal model which minimize total costs with all priced structural variables
and priced operational variables was set up.
A tray-by-tray model was proposed for reactive distillation column design
that could simultaneous optimize all structural variables and operational variables.

The synthesis of reactive distillation problems can be formulated as a mixed-integer
nonlinear programming (MINLP), where raw material cost, the operating costs and the investment
costs are considered simultaneously and the possible benefits of multiple
feed locations is emphasized.

This study is supposed not considering the liquid-liquid equilibria system,
the suitable thermodynamics model can be applied to the superstructure,
such as: ideal model, the Willson model and so on; as for the liquid-vapor equilibria
phenomena, the Murphree plate efficiency is indicated the separating efficiency of plate,
and model could have the more real description of behavior reactive distillation.
Apply the effect of catalyst to the model that only can handle homogeneous reaction system,
make the superstructure could be extended to heterogeneous reactive distillation system.
Production ethylene glycol and methyl acetate processes
from literature is supplied to demonstrate the
proposed simultaneous optimization approach on the
homogeneous and heterogeneous reactive distillation column design
by MINLP technique.
1. 緒論 1
1.1. 前言 1
1.2. 反應蒸餾之簡介 2
1.3. 文獻回顧 3
1.4. 研究動機與目的 5
1.5. 組織章節 7
2. 反應性蒸餾塔逐層式超結構模式建構 9
2.1. 模式建立之背景說明 9
2.2. 模式建立之基本假設條件 10
2.3. 逐層式超結構模式 12
2.4. 模式之符號、系統參數與系統變數 14
2.4.1 符號說明 14
2.4.2 系統參數 15
2.4.3 系統變數 16
2.5. 目標函數與限制式 18
2.5.1 0,1變數決定塔板數限制式 18
2.5.2 質量平衡限制式 18
2.5.3 能量平衡限制式 21
2.5.4 動力關系式 22
2.5.5 熱力關系式 23
2.5.6 邏輯限制式 24
2.5.7 進料物流數目限制式 25
2.5.8 塔結構限制式 25
2.5.9 莫菲板效率限制式 26
2.5.10目標函數 26
2.5.11 反應性蒸餾塔逐層式超結構模式整合 28
3. 均相反應系統模式情境模擬結果分析與討論 31
3.1. 最適化軟體 31
3.2. 模式之情境模擬 32
3.3. 結果與討論 35
3.3.1 例一:多重進料及理想板假設 35
3.3.2 例一:單一及理想板假設 38
3.4. 非理想板模式之情境模擬 41
3.4.1 例一:多重進料及板效率E=75% 41
3.4.2 例二:單一進料及板效率E=75% 45
3.4.3 例三:多重進料及板效率E=50% 45
3.4.4 例四:單一進料及板效率E=50% 48
4. 異相反應系統模式情境模擬結果分析與討論 57
4.1. 異相反應階層式超結構模式 57
4.1.1 模式建立之基本假設條件 58
4.1.2 異相反應系統新增之符號 58
4.2. 異相反應系統之限制式 59
4.2.1 0,1變數決定反應板限制式 59
4.2.2 異相反應動力關系式 59
4.2.3 目標函數 60
4.2.4 反應性蒸餾塔逐層式超結構模式整合 61
4.3. 模式之情境模擬 63
4.4. 結果與討論 65
5. 結論與未來展望 71
5.1. 結論 71
5.2. 未來展望 72
參考文獻 75
作者簡歷 79
[1] Aggarwal, A., and Floudas, C. A. “Synthesis of general distillation sequences nonsharp
separations,” Comp. Chem. Eng., vol. 14, pp. 631, 1990.
[2] Agreda, V. H., Partin, L. R., and Heise, W. H. “High purty methyl acetate via reactive
distillation,” Chem. Eng. Prog., vol. 86, pp. 40, 1990.
[3] Alejski, K. “Computation of the reacting distillation dolumn using a liquid mixing model on
the plates,” Comp. Chem. Eng., vol. 15, pp. 313, 1991.
[4] Barbosa, D., and Doherty, M. F. “The influence of equilibrium chemical reactions on vapor
liquid phase diagrams,” Chem. Eng. Sci., vol. 43, pp. 529, 1988.
[5] Barbosa, D., and Doherty, M. F. “The simple distillation of homogeneous reactive mixture,”
Chem. Eng. Sci., vol. 43, pp. 541, 1988.
[6] Barbosa, D., and Doherty, M. F. “Design and minimum reflux calculations for single-feed
multicomponent reactive distillation column,” Chem. Eng. Sci., vol. 43, pp. 1523, 1988.
[7] Barbosa, D., and Doherty, M. F. “Design and minimum reflux calculations for double-feed
multicomponent reactive distillation column,” Chem. Eng. Sci., vol. 43, pp. 2377, 1988.
[8] Barttfeld, M., Aguirre, P. A., and Grossmann, I. E. “Alternative reperesentations and formulations
for the economic optimization of multicomponent distillation columns,” Comp.
Chem. Eng., vol. 27, pp. 363, 2003.
[9] Brooke, A., Kendrick. D., Meeraus, A., Raman, R., and Rosenthal, R. E. GMAS : A user’s
guide, GAMS Development Corporation, 1988.
[10] Buzad, G., and Doherty, M. F. “New tools for the design of kinetically controlled reactive
distillation columns for ternary mixtures,” Comp. Chem. Eng., vol. 19, pp. 395, 1995.
[11] Cardoso, M. F., Salcedo, R. L., and de Azevedo, S. F. “Nonequilibrium simulated annealing:
A faster approach to combinatorial minimization,” Ind. Eng. Che. Res., vol. 33, pp. 1908,
1994.
[12] Cardoso, M. F., Salcedo, R. L., and de Azevedo, S. F. “The simplex-simulated annealing
approach to continuous nonlinear optimization,” Com. Che. Eng., vol. 20, pp. 1065, 1996.
[13] Cardoso, M. F., Salcedo, R. L., de Azevedo, S. F., and Barbosa, D. “A simulated annealing
approach to the solution of MINLP problems,” Com. Che. Eng., vol. 21, pp. 1349, 1997.
[14] Cardoso, M. F., Salcedo, R. L., de Azevedo, S. F., and Barbosa, D. “Optimization of reactive
distillation processes with simulated annealing,” Chem. Eng. Sci., vol. 55, pp. 5059, 2000.
[15] Chang, Y. A., and Seader, J. D. “Simulation of continuous reactive distillation by a
homotopy-continuation method,” Com. Che. Eng., vol. 12, pp. 1243, 1988.
[16] Ciric, A. R., and Gu, D. “Synthesis of nonequilibrium reactive distillation processes by
MINLP optimization,” AIChE Journal, vol. 40, pp. 1479, 1994.
[17] Doherty,M.F., and Buzad, G. “Reactive distillation by design,” Trans Inst. Chem. Eng., Part
A,vol. 70, pp. 448, 1992.
[18] Doherty, M.F., and Malone M.F. “Conceptual design of distillation system,” McGraw-Hill
Chemical Engineering Series. New York. 2001.
[19] Douglas, J. M. “Conceptual design of chemical processes,” McGraw-Hill, New York. 1988.
[20] Frey T., and Stichlmair J. “Thermodynamic fundamentals of reactive distillation,” Chem.
Eng. Tech., vol. 22, pp. 11, 1999.
[21] Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N., and Gani, R. “The interactions of
design, control and operability in reactive distillation systems,” Comp. Chem. Eng., vol. 26,
pp. 735, 2002.
[22] Gumus, Z. H., and Ciric, A. R. “Reactive distillation column design with vapor/liquid/liquid
equilibria,” Comp. Chem. Eng., vol. 21, pp. s983, 1997.
[23] Huss, R. S., Chen, F., Malone, M. F., and Doherty, M. F. “Reactive distillation for methyl
acetate production” Comp. Chem. Eng., vol. 27, pp. 1855, 2003.
[24] Noeres, C., Kenig, E. Y., andGorak, A. “Modeling of reactive separation processes: Reactive
absorption and reactive distillation,” Chem. Eng. Proc., vol. 42, pp. 157, 2003.
[25] Sakizlis, V., Perkins, J. D., and E. N. Pistikopoulos. “Parametric controllers in simultaneous
process and control design optimization,” Ind. Eng. Chem. Res., vol. 42, pp. 4545, 2003.
[26] Stichlmair, B. J., and Frey, T. “Reactive distillation processes,” Chem. Eng. Technol., vol. 22,
pp. 95, 1999.
[27] Stichlmair, J., and Frey, T. “Mixed-integer nonlinear programming optimization of reactive
distillation processes,” Ind. Eng. Chem. Res., vol. 40, pp. 5978, 2001.
[28] Stein, E., Kienle, A., Esparta, A. R. J., Mohl, K. D., and Gilles, E. D. “Optimization of
a reactor network for ethylene glycol synthesis-an algorithm approach,” Com. Che. Eng.
(suppl.), vol. 23, pp. S903, 1999.
[29] Stock, J. R. and Lambert, D. M. Strategic logistics management,, 4 ed. McGraw-Hill Companies,
Inc., 2001.
[30] Popken, T., Gotze, L., and Gmehling, L. “Reaction kinetics and chemical equilibrium of
homogeneously and heterogeneously catalyzed acetic acid esterfication with methanol and
methyl acetate hydrolysis” Ind. Eng. Chem. Res., vol. 39, pp. 2601, 2000.
[31] Twigg, G. H., and Lichtenstein H. J. “Calculation methods for distillation systems with
reaction, ” Chem. Eng. Comm., vol. 16, pp. 91, 1982.
[32] Viswanathan, J., and Grossmann, I. E. “A combined penalty function and outer approximation
method for MINLP optimization,” Comp. Chem. Eng., vol. 14, pp. 769, 1990.
[33] Viswanathan, J., and Grossmann, I. E. “An alternative MINLP model for finding the number
of trays required for a specified separation objective,” Comp. Chem. Eng., vol. 17, pp. 949,
1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top