(3.237.20.246) 您好!臺灣時間:2021/04/17 15:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊明航
研究生(外文):Ming-Hang Yang
論文名稱:製備n型氧化鐵與p型氧化銅薄膜應用於雙重能隙太陽能電池之研究
論文名稱(外文):Study of n-Type Fe2O3 and p-Type CuO Thin Films for Two Energy Gap Tandem Solar Cell Application
指導教授:萬本儒
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:99
中文關鍵詞:多重能隙氧化鐵氧化銅光/暗電導率太陽能電池
外文關鍵詞:multi-bandgapFe2O3CuOphoto/dark conductivity ratiosolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:616
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為符合能源需求與經濟效益的觀點,設計出以矽為基底的多重能隙太陽能電池。由多重能隙、材料價格與穩定性等考量,n型氧化鐵(α-Fe2O3)與p型氧化銅(CuO)為特性符合的高能隙材料,因此,以製備出n-Fe2O3/p-CuO|n-Si/p-Si元件為目標,來增進光電轉換效率;且藉由製備氧化鐵與氧化銅薄膜,分析應用於太陽能電池材料的可行性。
以磁控射頻濺鍍法製備氧化鐵薄膜的實驗中,發現使用含氧氣的電漿氣體,造成薄膜內氧氣吸附,氧化鐵薄膜為p型,在經由高溫後處理後,回復為n型半導體。氧化鐵薄膜中摻雜鈦原子,高溫處理後,暗電導率以在氧氣電將氣體下製備0.2at%Ti-Fe2O3的6.38×10-7(ohm-1.cm-1)最高,且光/暗電導率比值達3.21。變換電漿氣體組成,經後處理之1at%Ti- Fe2O3 ,以Ar/O2(90/10)電漿氣體製備,有最高的光/暗電導率比。
在溶膠凝膠法旋轉塗佈製備氧化銅薄膜實驗裡,證實旋塗多層氧化銅薄膜,為可靠的厚膜製備程序。氧化銅薄膜在受光後,易將光能轉換成熱能,造成光/暗電導率比值僅1.1。變換前趨液溶劑組成,造成晶粒大小與排列緻密度變化,使用小分子的MEA較大分子DEA晶粒緻密,溶液裡添加水有幫助結成較大晶粒。摻雜鋰原子,晶粒隨摻雜濃度上升而下降,暗電導率由純氧化銅5.04×10-4上升2.4倍至2.05 at% Li-CuO 1.33×10-3(ohm-1.cm-1)。各種製程的氧化銅薄膜,光/暗電導率比皆僅約1.1。
由磁控射頻濺鍍法製備的氧化鐵薄膜,與溶膠凝膠法旋轉塗佈製備的氧化銅薄膜,能隙值分別為1.85eV與1.68eV,符合高能隙要求,但由於光/暗電導率比過低,電性仍不足以應用在太陽能電池材料。
In this study, we have designed a silicon based multi-junction solar cell to answer to energy requirements and economical benefits. To fit in the design parameters (multi-band gap、cost、stability), n type α-Fe2O3 and p type CuO were chosen as the suitable high energy gap materials. Therefore, the preparation of n-Fe2O3/p-CuO|n-Si/p-Si device was the expected ultimate goal; and the preparation of Fe2O3 and CuO thin films with high photoelectrical efficiency was the initial major target of this research.
From the preparation of Fe2O3 thin films by applying the method of RF magnetron sputter-deposition, it was found that p type samples were made in oxygen plasma gas. After post annealing in 600℃, the samples became n type. When these n-type Fe2O3 films were doped with different amounts of Ti, the one with 0.2at% Ti had the highest photo/dark conductivity ratio (i.e., 3.21) and the highest dark conductivity (i.e., 6.38×10-7 ohm-1.cm-1). Moreover, when the films were doped with 1at% Ti and prepared in different plasma gases (Ar, O2, or mixture of Ar and O2), the one from the plasma gas composition Ar/O2 (90/10) had the highest photo/dark conductivity ratio (i.e., 3.12).
CuO thin films were spin-coated on the substrates from the sol-gel prepared in this research. The thicker films can be from the multi-layers coating. However, it was found that CuO films were easier to convert photon energy to heat after illumination, which led low photo/dark ratio (i.e., about 1.1). Changing the composition of sol-gel solution would result in different grain sizes and crystal densities. When CuO films doped with Li, the grain size went down with increasing Li doping concentration. The dark conductivity was raised from 5.04×10-4 (of pure CuO) to 1.33×10-3 ohm-1cm-1 (of CuO doped with 2.05 at%Li). Nevertheless, the photo/dark ratios of all the CuO films prepared from this study were just around 1.1.
The energy gaps of α-Fe2O3 and CuO films prepared in this research were around 1.85eV and 1.68eV respectively, which met the high energy gap requirement expected from the design of silicon based multi-junction solar cell. However, all the photo/dark ratios were too low, which were not sufficient in application. Therefore, more efforts need to be put in the future, in order to achieve the ultimate goal of n-Fe2O3/p-CuO|n-Si/p-Si device.
目錄
摘要 I
Abstrate II
致謝 Ⅲ
目錄 IV
表索引 VII
圖索引 VIII

第一章 緒論 1
1.1 前言 1
1.2 太陽能電池 4
1.2.1 半導體 4
1.2.2 p-n接面太陽能電池 6
1.2.3 能量損失與多重能隙原理 9
1.3 研究動機 11

第二章 研究規劃與文獻回顧 12
2.1 研究規劃 12
2.1.1 元件設計與材料選擇條件 12
2.1.2 材料選擇 13
2.2 薄膜製備回顧 14
2.2.1 氧化鐵薄膜 14
2.1.2 氧化銅薄膜 14

第三章 實驗方法 16
3.1 實驗藥品 16
3.2 實驗儀器 17
3.3 實驗程序 17
3.3.1 基板處理 17
3.3.2 氧化鐵薄膜製備 19
3.3.3 氧化銅薄膜製備 21
3.4 儀器鑑定 23
3.4.1 紫外光、可見光、近紅外光分光光譜儀 23
3.4.2 X光繞射儀 24
3.4.3 掃描式電子顯微鏡 24
3.4.4 電流電壓量測 24
3.4.5 光電化學量測 27

第四章 結果與討論 29
4.1 氧化鐵薄膜 29
4.1.1 變換鈦摻雜濃度對氧化鐵薄膜的影響 29
4.1.2 以不同氣體濺鍍氧化鐵薄膜 40
4.1.3 高溫後處理對薄膜性質的影響 49
4.2 氧化銅薄膜 58
4.2.1 旋塗層數對氧化銅薄膜的影響 58
4.2.2 前趨液組成之影響 70
4.2.3 摻雜鋰原子對氧化銅薄膜性質的影響 82

第五章 結論 94

參考文獻 97
參考文獻

[1] 京都議定書, 台灣因應氣候變化綱要公約資訊網
http://www.tri.org.tw/unfccc/index.htm
[2] 經濟部能源局, 中華民國能源簡介http://www.moeaboe.gov.tw/10/02/energy%20situation_93/index.htm
[3] National Renewable Energy Laboratory (NREL)
http://www.nrel.gov/
[4] J. A. Turner, “A Realizable Renewable Energy Future”, Science 285 (1999) 687-689
[5] A. Goetzberger, C. Hebling, H. W. Hebling, “Photovoltaic Materials, History, Status and Outlook”, Materials Science and Engineering R40 (2003) 1–46
[6] J. Nelson, The Physics of Solar Cells, Imperial College Press, 1st, 2003, p43-66
[7] R. Memming, Semiconductor Electrochemistry, Wiley-VCH, 3rd, 2001 ,p11
[8] D. A. Neamen, Semiconductor Physics and Devices: Basic Principle, McGraw-Hill , 3rd, 2003, Chapter 7
[9] R. H. Bube, Photovoltaic Materials, Imperial College Press, 1st, 1998, Chapter 1
[10] 施敏, 半導體元件物理與製作技術, 初版, 施敏原著, 黃調元譯, 2002, 國立交通大學出版社, p433
[11] M. E. Nell, A. M. Barnett, “The Spectral P-N-Junction Model for Tandem Solar-Cell Design”, IEEE Transactions On Electron Devices 34 (1987) 257-266
[12] Y. Tsur, I. Riess, “Self-Compensation in Semiconductors”, Physical Review B 60 (1999) 8138-8146
[13] S. U. M. Khan and J. Akikusa, “Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 Thin-Film Electrodes”, Journal of Physical Chemistry B 103 (1999) 7184-7189
[14] C. J. Sartoretti, M. Ulmann, B. D. Alexander, J. Augustynski, A. Weidenkaff, “Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes”, Chemical Physics Letters 376 (2003) 194-200
[15] E. L. Miller, R. E. Rocheleau, S. Khan, “A Hybrid Multijunction Photoelectrode for Hydrogen Production Fabricated with Amorphous Silicon/Germanium and Iron Oxide Thin Flms”, International Journal of Hydrogen Energy 29 (2004) 907– 914
[16] E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Low-Temperature Reactively Sputtered Iron Oxide for Thin Film Devices“, Thin Solid Films 466 (2004) 307– 313
[17] T. Stenberg, P. Vuoristo, J. Keranen, et al., “Characterization of RF-sputtered Iron Oxide Films for Modeling Passive Films”, Thin Solid Films 312 (1998) 46-60
[18] D. V. Dimitrov, G. C. Hadjipanayis, V. Papaefthymiou, A. Simopoulos, “ Unusual Magnetic Behavior in Sputtered FeO and Alpha-Fe2O3 Thin Films”, Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films 15 (1997) 1473-1477
[19] N. Uekawa, M. Watanabe, K. Kaneko, F. Mizukami, “Mixed-Valence Formation in Highly Oriented Ti-Doped Iron-Oxide Film”, Journal of the Chemical Society-Faraday Transactions 91 (1995) 2161-2166
[20] A. Watanabe, H. Kozuka, “Photoanodic Properties of Sol-Gel-Derived Fe2O3 Thin Films Containing Dispersed Gold and Silver Particles”, Journal of Physical Chemistry B 107 (2003) 12713-12720
[21] 戴煜暐,光分解水產氫能之研究—含金鈦觸媒與Fe2O3/Si雙重能矽薄膜,國立台灣大學化學工程研究所博士學位論文,2005年
[22] S. Matsushima, S. Kunitsugu, K. Kobayashi, G. Okada, “Microstructure and NO2 Sensing Properties of Fe2O3 Thin Films”, Journal of the Ceramic Society of Japan, Int. Edition”, 102 (1994) 185-188
[22] K. Nakaoka, J. Ueyama, And K. Ogura, “Photoelectrochemical Behavior of Electrodeposited CuO and Cu2O Thin Films on Conducting Substrates”, Journal of the Electrochemical Society, 151 (2004) C661-C665
[23] K. Nakaoka and K. Ogura, “Electrochemical Preparation of p-Type Cupric and Cuprous Oxides on Platinum and Gold Substrates from Copper(II) Solutions with Various Amino Acids”, Journal of The Electrochemical Society, 149 (2002) C579-C585
[24] A. Y. Oral, E. Mensur, M. H. Aslan, E. Basaran, “The Preparation of Copper(II) Oxide Thin Films and the Study of their Microstructures and Optical Properties”, Materials Chemistry And Physics 83 (2004) 140-144
[25] S. C. Ray, “Preparation of Copper Oxide Thin Film by The Sol-Gel-Like Dip Technique and Study of Their Structural and Optical Properties”, Solar Energy Materials & Solar Cells 68 (2001) 307-312
[26] L. Armelao, D. Barreca, M. Bertapelle, G. Bottaro, C. Sada, “A Sol–Gel Approach to Nanophasic Copper Oxide Thin Films”, Thin Solid Films 442 (2003) 48–52
[27] Y. S. Chaudhary, A. Agrawal, R. Shrivastav, V. R. Satsangi, S. Dass, “A Study on The Photoelectrochemical Properties of Copper Oxide Thin Films”, International Journal of Hydrogen Energy 29 (2004) 131– 134
[28] N. Nancheva, P. Docheva, M. Misheva, “Defects in Cu and Cu–O Films Produced by Reactive Magnetron Sputtering”, Materials Letters 39 (1999) 81–85
[29] K. H. Yoon, W. J. Choi, D. H. Kang, “Photoelectrochemical Properties of Copper Oxide Thin Films Coated on An N-Si Substrate” Thin Solid Films 372 (2000) 250-256
[30] T. Maruyama, “Copper Oxide Thin Films Prepared by Chemical Vapor Deposition from Copper Dipivaloylmethanate”, Solar Energy Materials & Solar Cells 56 (1998) 85-92
[31] G. G. Condorelli, G. Malandrino, I. L. Fragala, “Kinetic Study of MOCVD Fabrication of Copper(I) and Copper(II) Oxide Films”, Chemical Vapor Deposition 5 (1999) 21-27
[32] S. Suda, S. Fujitsu, K. Loumoto, H. Yanagida, “The Effect of Atmosphere and Doping on Electrical Conductivity of CuO”, Journal of Applied Physics 31 (1992) 2488-2491
[33] F. P. Koffyberg, F. A. Benko, “A Photo-Electrochemical Determination of The Position of The Conduction and Valence Band Edges of p-Type CuO”, Journal of Applied Physics 53 (1982) 1173-1177
[34] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, 2nd, 1998, p595-596
[35] A. J. Bard, L. R. Faulkner, Electrochemical methods : fundamentals and applications, Wiley, 2nd, 2001, p745-755
[36] E. L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, “Low-Temperature Reactively Sputtered Iron Oxide for Thin Film Devices”, Thin Solid Films 466 (2004) 307-313
[37] A. Gurlo, N. Barsan, A. Oprea, M. Sahm, T. Sahm, U. Weimar, “An n- to p-Type Conductivity Transition Induced by Oxygen Adsorption on Alpha-Fe2O3”, Applied Physics Letters 85 (2004) 2280-2282
[38] Y. K. Jeong, G. M. Choi, “Nonstoichiometry and Electrical Conduction of CuO”, Journal of Physics and Chemistry of Solids 57 (1996) 81-84
[39] D. E. Carlson, C. R. Wronski, “Amorphous Silicon Solar-Cell”, Applied Physics Letters 28 (1976) 671-673
[40] J. Jang, C. Lee, “Temperature Dependent Light Induced Conductivity Change in Hydrogenated Amorphous Silicon”, Journal of Applied Physics 54 (1983) 3943-3950
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔