跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋文方
研究生(外文):Wen-Fang Sung
論文名稱:轉爐石吸收二氧化硫之研究
論文名稱(外文):Absorption of SO2 by Basic Oxygen Furnace Slag
指導教授:施信民施信民引用關係
指導教授(外文):Shin-Min Shih
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:102
中文關鍵詞:轉爐石二氧化硫吸收劑煙道氣除硫法鈣利用率二氧化硫捕捉率
外文關鍵詞:BOFSO2sorbentFGDCa utilizationSC
相關次數:
  • 被引用被引用:8
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
轉爐石為轉爐煉鋼的廢棄物,其組成中CaO約佔40 wt.%。本研究探討利用轉爐石吸收二氧化硫的可行性。轉爐石經過研磨與篩分之後,分別添加氫氧化鈣、廢玻璃粉末,以及鹽酸溶液,經過漿化和乾燥,製備出吸收劑,再以微分固定床反應器,在模擬乾式煙道氣除硫程序的條件下(60℃、70%RH、1000 ppm SO2),量測吸收劑對二氧化硫的反應性。
轉爐石與氫氧化鈣在漿化過程中(水/固比10/1)並未反應生成高比表面積的水合產物,所得吸收劑的比表面積,與重量配比(100/0-0/100)、漿化溫度(25-95℃)、漿化時間(0.42-32 hr)並無顯著的關係,約在11-19 m2/g之間。轉爐石/廢玻璃吸收劑(50/50)則在漿化過程中生成高比表面積的矽酸鈣水合物。轉爐石添加鹽酸可將部分鈣轉化為具潮解性的氯化鈣。研磨後的轉爐石原料,其反應一小時的鈣利用率可達0.14,但低於氫氧化鈣的鈣利用率(0.19)。轉爐石/氫氧化鈣吸收劑的鈣利用率在重量配比小於50/50時,高於氫氧化鈣,以40/60時為最佳,達0.31;重量配比為10/90時的二氧化硫捕捉率將最佳,約0.22 g SO2/g sorbent,略高於配比為40/60的吸收劑(0.21 g SO2/g sorbent)。轉爐石與鹽酸在室溫下漿化所得到的吸收劑,其鈣利用率隨鹽酸添加量變化,在0.1 mol HCl/100g BOF3時達到最大值0.35,此值略高於轉爐石/氫氧化鈣吸收劑的最佳鈣利用率;其二氧化硫捕捉率則為0.14 g SO2/g sorbent,低於轉爐石/氫氧化鈣吸收劑之最佳二氧化硫捕捉率。
Basic oxygen furnace slag (BOF slag), which contains about 40 wt.% CaO, is a waste in the steelmaking process. The feasibility of utilizing BOF slag for SO2 absorption was studied in this work. Ground BOF slag together with hydrated lime (HL), or recycled glass powder (FG3), or HCl solution were slurried and dried to obtain sorbents. The sorbents were reacted with SO2 in a differential fixed bed reactor under the conditions simulating the dry flue gas desulfurization (dry FGD) process (60℃, 70%RH, and 1000 ppm SO2) to measure their reactivities toward SO2 for sorbents were measured.
No hydration products with high specific surface area were produced during the process of slurrying BOF3 with HL (L/S=10/1). The sorbent specific surface areas (about 11-19 m2/g) was not closely correlated with BOF3/HL weight ratio (100/0-0/100), slurrying temperatures (25-95℃), and slurrying time (0.42-32 hr). However, calcium silica hydrates with high specific surface area were formed for BOF3/FG3 sorbents (50/50) during the slurrying process. Calcium content of BOF was partially converted to deliquescent CaCl2 by the addition of HCl. The one hour utilization of Ca for ground raw BOF3 was 0.14, lower than that of HL (0.19). The BOF3/HL sorbents had higher Ca utilization than HL when the weight ratio was smaller than 50/50, and the sorbent with a 40/60 ratio had the maximum value of 0.31. The sorbent with a 10/90 ratio had the maximum SO2 capture, 0.22 g SO2/g sorbent, which was slightly higher than that for the sorbent with a 40/60 ratio, 0.21 g SO2/g sorbent. The Ca utilization for the sorbents prepared by slurrying BOF3 with HCl solution at room temperature varied as the added amount of HCl changed, and reached a maximum value of 0.35 at 0.1 mol HCl/100g BOF3; the SO2 capture for this sorbent, 0.14 g SO2/g sorbent, however, was lower than the best SO2 capture for BOF3/HL sorbents.
中文摘要 I
Abstract II
符號說明 III
圖表索引 V
第一章 緒論 1
第二章 文獻回顧 3
2-1 二氧化硫污染防制技術 3
2-1-1 二氧化硫的污染 3
2-1-2 減少二氧化硫排放之技術 4
2-2 轉爐爐石 (Basic Oxygen Furnace Slag) 12
2-2-1 轉爐石之產生和用途 12
2-2-2 轉爐石相關研究 14
2-3 氫氧化鈣與二氧化硫反應 19
2-4 碳酸鈣與二氧化硫反應 21
2-5 含矽物質與氫氧化鈣製備之吸收劑與二氧化硫反應 24
2-5-1 飛灰/氫氧化鈣吸收劑 24
2-5-2 二氧化矽/氫氧化鈣吸收劑 29
2-5-3 爐石/氫氧化鈣吸收劑 31
2-5-4 玻璃/氫氧化鈣吸收劑 32
2-6 潮解鹽與潮解現象 33
2-7 臨界沾濕法 35
第三章 實驗與分析方法 37
3-1 試料來源及吸收劑製備過程 37
3-1-1 試料來源 37
3-1-2 轉爐石之成分 38
3-1-3 轉爐石之研磨 39
3-1-4 吸收劑製備程序 40
3-2 吸收劑之溶解及含鈣量之測定 46
3-2-1 溶解吸收劑之鹽酸濃度及溶解時間 46
3-2-2 溶液體積 46
3-2-3 吸收劑之M值的測定 47
3-3 反應實驗 51
3-3-1 反應實驗裝置 51
3-3-2 反應實驗步驟 60
3-3-3 吸收劑轉化率及二氧化硫捕捉率測定 61
3-4 試樣物性與化性分析方法與儀器 65
3-4-1 BET 比表面積測定 65
3-4-2 掃瞄式電子顯微鏡分析(SEM) 65
3-4-3 粒徑分析 66
3-4-4 X射線繞射分析(XRD) 66
第四章 結果與討論 67
4-1 漿化之吸收劑成分及結構性質 67
4-1-1 粒徑與比表面積測定 67
4-1-2 SEM觀察 74
4-1-3 X-Ray繞射分析 80
4-2 吸收劑對二氧化硫的反應性 83
4-2-1 轉爐石原料的反應性 83
4-2-2 轉爐石/氫氧化鈣與轉爐石/廢玻璃重量配比的影響 85
4-2-3 轉爐石添加鹽酸的影響 89
第五章 結論 92
參考文獻 94
Agency for Toxic Substance & Disease Registry (ASTDR), U.S., “Sulfur Dioxide”, http://www.atsdr.cdc.gov/tfacts116.html (2005)

Arthur, L. F. and G. T. Rochelle, “Preparation of Calcium Silica Absorbent from Recycled Glass”, Environmental Progress, vol.17, p.86 (1998)

Brodnax, L. F. and G. T. Rochelle, “Preparation of Calcium Silica Absorbent from Iron Blast Furnace Slag”, J. Air & Waste Management Association, vol. 50, 9, p.1655 (2000)

Chiang, S. T. “The Kinetic Study of the Reaction of Ca(OH)2/SiO2 Sorbent with SO2”, MS. Thesis, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (1994)

Chiu, C. S. “The Reactivity of Ca(OH)2/SiO2 Sorbent with SO2”, MS. Thesis, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (1989)

Corus Education Support Service, U.K., “The Chemistry of Steelmaking”, http://www.schoolscience.co.uk/content/4/chemistry/steel/msch4pg1.html, (2003)

Ingersoll, C. M., D. E. Roland, Jr., A. M. Kacuba, & et al., “Removal of Sulfur Oxides from Diesel Exhaust Gases”, Environmental Progress, vol.22, No. 3, p.199 (2003)

Chiou, C. S., C. F. Chang, C. Y. Chang, and et al., “Degradation of 2-Naphthalenesulfonate in Aqueous Solution by Hydrogen Peroxide in the Presence of Basic Oxygen Furnace Slag”, J. Chin. Inst. Engrs., vol. 35, No. 4, p. 417 (2004)

Harris, D. C., Quantitative Chemical Analysis, 5th ed., Freeman, New York, U.S. (1999)

Davini, P. “Investigation of Flue Gas Desulfurzation by Fly Ash and Calcium Hydroxide Mixtures”, Resources Conservation and Recycling, vol.15, p.193 (1995)

Fernandez, J., M. J. Renedo, A. Garea, J. R. Viguri, & J. A. Irabien, “Preparation and Characterization of Fly Ash/Hydrated Lime Sorbents for SO2 Removal”, Powder Technology, vol.94, p.133 (1997)

Garea, A., J. R. Viguri, I. Fernandez, J. R. Viguri, & A. Irabien, “Fly Ash/Calcium Hydroxide Mixtures for SO2 Removal: Structural Properties and Maximum Yield”, Chemical Engineering Journal, vol.66, p.171 (1997a)


Garea, A., J. R. Viguri, & A. Irabien, “Kinetics of the Flue Gas Desulfurization at Low Temperature: Fly/Calcium (3/1) Sorbent Behavior”, Chemical Engineering Science, vol.52, p.715 (1997b)

Hendrik G. van Oss, “Iron and Steel Slag”, U.S. Geological Survey, Mineral Commodity Summaries,p.90, http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag (2004)

Ho, C. S. “Reaction of Ca(OH)2 and fly ash/Ca(OH)2 slurry with SO2 ”, MS. Thesis, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (1987)

Ho, C. S., “Study on Ca(OH)2 Sorbents for Removal from the Coal-Fired Flue Gas”, Ph. D. Thesis. Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. (1992 a)

Ho, C. S. and S. M. Shih, “Ca(OH)2/Fly ash sorbents for SO2 Removal”, Ind. Eng. Chem. Res., vol.31, p.1130 (1992 b)

Ho, C. S. and S. M. Shih, “Characteristics and SO2 Capture Capacities of Sorbents Prepared from Products of Spray-drying Flue Gas Desulfurization”, Canadian Journal of Chemical Engineering, vol.71, p.934 (1993)

Ho, C. S., S. M. Shih, C. F. Liu, H. M. Chu, & C. D. Lee, “Kinetics of the Sulfation of Ca(OH)2 at Low Temperatures”, Ind. Eng. Chem. Res., vol.41, p.3357 (2002)

Jhon S. “The Basic Oxygen Steelmaking (BOS) Process”, American Iron and Steel Institute (AISI) Learning Center, http://www.steel.org/learning/howmade/bos_process.htm.(2004)

Emery J. J.,” Properties of flexible pavement materials “,American Society for Testing and Materials (ASTM) Special Technical Publicatoin, No. 807. (1981)

Jorgensen, C., J. C. S. Chang, & T. G. Brna, “Evaluation of Sorbents and Additives for Dry SO2 Removal”, Environmental progress, vol.5, p.26 (1987)

Jozewics, W., & G. T. Rochelle, “Fly Ash Recycle in Dry Scrubbing”, Environmental Progress, vol.5, p.219 (1986)

Jozewics, W., C. Jorgensen, J. C. S. Chang, C. B. Sedman, & T. Brna, “Development and Pilot Plant Evaluation of Silica-Enhanced Lime Sorbents for Dry Flue Gas Desulfurization”, Journal of Air Pollution Control Association, vol.38, p.796 (1988a)

Jozewics, W., J. C. S. Chang, C. B. Sedman, & T. Brna, “Silica- Enhanced Sorbents for Dry Injection Removal of SO2 from Flue Gas”, Journal of Air Pollution Control Association, 38, p.1027-1034 (1988b)

Klingspor, J., H. T. Karlsson, & I. A. Bjerle, “Kinetics Study of the Dry SO2 Limestone Reaction at Low Temperature.”, Chem. Eng. Commun., 22, p.81 (1983)

Klingspor, J., A. Stromberg, H. T. Karlsson, & I. Bjerle ,” Similarities between lime and limestone in wet-dry scrubbing”, Chemical Engineering Progress, 18, p.239 (1984)

Li, Y. S., C. S. Chiou, & Y. S. Shieh, “Adsorption of Acid Black 1 Wasterwater by Basic Oxygen Furnace Slag”, Bull. Environ. Contam. Toxicol., vol.64, p. 659 (2000)

Lin, R. B. “Preparation and Characterization of Ca(OH)2/Silica Fume and Ca(OH)2/Fly Ash Sorbents for Desulfurization”, MS. Thesis, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (1998)

Lin, R. B., S. M. Shih, & C. F. Liu, “Structural Prperties and Reactivities of Ca(OH)2/Fly Ash Sorbents for Flue Gas Desulfurization”, Ind. Eng. Chem. Res., 42, p.1350 (2003a)

Lin, R. B., S. M. Shih, & C. F. Liu, “Characteristics of Reactivities of Ca(OH)2/Silica Fume Sorbents for Low-Temperature Flue Gas Desulfurization”, Chemical Engineering Science, 58, p.3659 (2003b)

Liu, C.F., “Kinetics of the reactions of Ca(OH)2/Silica Fume and Ca(OH)2/Fly Ash Sorbents with SO2. MS. Thesis, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (1999)

Liu, C. F., & S. M. Shih, “Absorption of SO2 by Iron Blast Furnace Slag/Hydrated Lime Sorbents” Proceedings Symposium on Transport Phenomena and Its Applications, Taipei, Taiwan, p.703 (2001)

Liu, C. F., S. M. Shih, & R. B. Lin, “Kinetics of the Reaction of Ca(OH)2/Fly Ash Sorbent with SO2 at Low Temperature”, Chemical Engineering Science, vol. 57, p.93 (2002)

Liu, C. F., & S. M. Shih, “Iron Blast Furnace Slag/Hydrated Lime Sorbents for Flue Gas Desulfurization”, Environ. Sci. Technol., vol. 48, p. 4451 (2004)

Miller, M. J., “Retrofit SO2 and NOX Control Technologies for Coal-Fired Power Plants”, Environmental Progress, vol. 5, No.3, p.171 (1986)

Kawamura M., K. Torri, S. Hasaba, and et. al, “Application of Basic Oxygen Furnace Slag as a Concrete Affreate”, Fly Ash, Silica Fume, Slag & Other Mineral By-Products in Concrete , vol. 1, p.1123 (1983)

Ortiz, I., F. Cortabitarte, A. Garea, & A. Irabin, “Flue Gas Desulfurization at Low Temperature Characterization of the Structural Changes in the Solid Sorbents”, Powder Technology, vol. 75, p.167 (1993)

Ravi K. S., W. Jozewicz, & C. Singer, “SO2 Scrbbing Technologies: A Review”, Environmetal Progress., vol. 20, No. 4, p.219 (2001)

Reed, G. D., W. T. Davis, & R. E. Pudelek, “Analysis of Coal Fly Ash Properties of Importance to Sulfur Dioxide Reactivity Potential”, Environ. Sci. Technol., vol.18, p.548 (1984)

Renedo, M. J., J. Fernandez, A. Garea, A. Ayerbe, J. A. Irabien, “Microstructural Changes in the Desulfurization Reaction at Low Temperature” , Ind. Eng. Chem. Res., vol.38, p.1384. (1999)

Ruiz-Alsop, R. N., & G. T. Rochelle, “Effect of Deliquescent Salt Additives on the Reaction of SO2 with Ca(OH)2”, ACS. Symp. Ser., vol.319, p.208 (1986)

Ruiz-Alsop, R. N., “Effect of Relative Humidity and Additives on the Reaction of SO2 with Ca(OH)2”, Ph. D. Dissertation, Department of Chemical Engineering, The University of Texas at Austin. (1987)

Mikhail S. A. and A. M. Turcotte, “Thermal Behavior of Basic Oxygen Furnace Waste Slag”, Thermochimica Acta , vol. 263, p.87 (1995)

Shih, S. M., C. S. Ho, Y. S. Song, & J. P. Lin, “Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature”, Ind. Eng. Chem. Res., vol.38, p.1316 (1999)

Shih S. M., J. T. Huang, T. Y. Wang, & R. B. Lin, “Kinetic of the Reaction of Sulfur Dioxide with Calcium Oxide Powder”, J. Chin. Inst. Chem. Engrs., vol. 35, No. 4, p.447 (2004)

Tsuchiai, H., Ishizuka, T., Ueno, T., Hattori, H., & Kita, H. “Highly active absorbent for SO2 removal prepared from coal fly ash”, Ind. Eng. Chem. Res., vol.34, p.1404 (1995)

Tsuchiai, H., T. Ishizuka, H. Nakamura, T. Ueno, & H. Hattori, “Study of Flue Gas Desulfurization Absorbent Prepared from Coal Fly Ash: Effect of Composition of the Absorbent on the Activity”, Ind. Eng. Chem. Res., vol.35, p.2322 (1996)

Yuan, C. S., “The Hygroscopic Properties of Spray Dryer Sorbents with Select Additives”, presented at the 81st annual meeting of APCA dallas Texas June, 19-24 (1998).

大學分析化學實驗,國立台灣大學化學系(2003)

中華民國行政院環保署, http://www.epa.gov.tw/main/index.asp (2005)

台灣酸雨資訊網, http://acidrain.atm.ncu.edu.tw/index.htm (2005)

朱恆模,”氫氧化鈣與二氧化硫反應之動力學研究”,碩士論文,國立台灣大學,台北,台灣 (1994)

李忠達,”氫氧化鈣與二氧化碳反應之動力學研究”,碩士論文,國立台灣大學,台北,台灣 (1996)

李岳陽,”碳酸鉀負載於活性碳與矽酸鈣吸收二氧化碳之研究”,碩士論文,國立台灣大學,台北,台灣 (2002)

林東延,”二氧化碳與固體吸收劑低溫反應動力學研究”,碩士論文,國立台灣大學,台北,台灣 (2001)

邱裕閔,”鹼性物質負載於活性炭吸收二氧化碳之研究”,碩士論文,國立台灣大學,台北,台灣 (2002)

張泰元,“VOC在疏水性載體Pt的深度氧化反應”,碩士論文, 國立台灣大學,台北,台灣 (1997)

黃尊裕,“噴霧乾燥煙道氣除硫方法之研究:石灰石泥漿之除硫效果”,碩士論文,國立台灣大學,台北,台灣 (1998)

楊文德,”石灰石與二氧化硫低溫反應之動力學研究”,碩士論文,國立台灣大學,台北,台灣 (2000)

楊榮欣,”添加氯化鈣對石灰石與二氧化硫低溫反應之影響”,碩士論文,國立台灣大學,台北,台灣 (2003)

綠色生產力基金會, http://www.environet.org.tw (2005)

劉瓊芳,“氫氧化鈣/燻矽與氫氧化鈣/飛灰吸收劑與二氧化硫反應之動力學研究”,碩士論文,國立台灣大學,台北,台灣 (1999)

劉瓊芳,”以爐石/氫氧化鈣吸收劑去除煙道氣中二氧化硫之研究”,博士論文,國立台灣大學,台北,台灣 (2004)

戴建洲,”廢玻璃製備二氧化硫吸收劑之研究”,碩士論文,國立台灣大學,台北,台灣 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊