跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳育霖
研究生(外文):Yu-Lin Wu
論文名稱:利用自組裝之團連共聚合物製作有序排列之奈米金顆粒薄膜
論文名稱(外文):Fabrication of two-dimensional ordered structure of self-assembled block copolymer containing gold nanoparticles
指導教授:戴子安戴子安引用關係
指導教授(外文):Chi-An Dai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:62
中文關鍵詞:團聯共聚合物反應離子蝕刻微胞原位還原表面電將共振
外文關鍵詞:amphiphilic block copolymerps-b-pmmaps-b-p2vpself-assemblymicellein-situnucleatoin and growth mechanismnanodotsurface plasmon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功的研製出條紋狀以及球狀排列的奈米金顆粒薄膜,利用團聯共聚合物可自我組裝成各種結構的特性,不僅可規則地排列,也可輕易的控制排列的間距,顆粒的大小,實驗材料亦由本實驗室所合成,包括PS-b-PMMA (polystyrene-b-polymethylmethacrylate)以及PS-b-P2VP (polystyrene-b-poly2-vinylpyridine),其中條紋狀金顆粒薄膜是利用PS-b-PMMA共聚合物本身自組裝的機制,控制比例使其產生一柱狀排列的微結構,並簡易地在任何一種基材上旋轉塗佈,加熱處理使其達到熱力學上平衡的狀態後,利用反應離子蝕刻技術(RIE)進而製作出具有序微結構之條紋狀高分子模板,使其裸露於空氣界面,再使用蒸鍍的方式將金選擇性地排列於PS相;球狀結構之金顆粒薄膜則是利用PS-b-P2VP在溶液狀態下所產生的微胞結構,並利用浸漬塗佈的方式,製作出一具六角狀堆積的球狀金鹽顆粒薄膜,此方法的關鍵是在還原的步驟,不同於一般文獻的還原方式,為使還原後的金顆粒仍具有大範圍的排列性,本研究先將薄膜製作,再利用聯胺蒸氣進行原位(in-situ)還原。
在結構鑑定部分,利用AFM可觀察到在條紋狀高分子模版上蒸鍍金前後的變化,利用TEM的量測,可觀察到在球狀結構的單層膜上進行聯胺蒸氣還原前後,金顆粒的產生與聚集的現象,亦觀察到隨著還原時間更長或是P2VP鏈段長度更長時,將會導致微胞之間金顆粒的聚集以及原本有序二維結構的破壞。在光學性質的量測部分,利用紫外/可見光光譜確實觀察到條紋狀結構的金顆粒吸收將隨著所蒸鍍的膜厚,而有增加的趨勢;球狀結構的薄膜在還原後亦有金顆粒表面電漿共振之吸收訊號,更直接地印證金顆粒的存在。
The aim of this study was focusing on making a two-dimensional ordered structure with gold nanoparticles. Traditional top-down patterning methods like photolithography and e-beam lithography had shown to be time-consuming and expensive processes. In this study, a bottom-up method to fabricate an ordered nanodot with gold nanoparticles was proposed by using an amphiphilic block copolymer self-assembled into well-defined two/three dimensional structures.
A stripe-like and a spherical nano-structure containing gold nanoparticles can be made by using block copolymer such as PS-PMMA and PS-P2VP that were also synthesized in our Lab. The fabrication process of stripe-like structure involved two steps. The first step involves spin coating the copolymer on a substrate, then thermal annealing it into ordered structure by self-assembly. The second step was to apply gold nanoparticles selectively on PS domain to form highly ordered gold nanoparticles array. The fabrication process of a spherical structure was made by PS-P2VP which formed micelles in toluene. The nanodot array of micelle monolayer containing gold salts was made by dip-coating. The block copolymer micelles containing gold salts were used as nanoscale reactors for the in-situ synthesis of gold by chemical treatment of the film sample with hydrazine vapor.
A stripe-like and a spherical nanostructure containing gold nanoparticles were both observed either by AFM or by TEM. AFM was used successfully to evaluate the uniformity of stripe-like nanostructure coated on a silicon wafer before and after gold evaporation. TEM measurement of a spherical nanostructure showed that a monolayer of gold salts was reduced to one or a couple of gold nanoparticles inside the core volume of P2VP domain by nucleation and growth mechanism upon hydrazine vapor exposure. UV-vis spectrometer also show a characteristic surface plasmon absortion peak which demonstrate the effectiveness of the method in reducing gold salts.
目錄

中文摘要……………………………………………………………………I
英文摘要…………………………………………………………………III
目錄………………………………………………………………………V
圖目錄……………………………………………………………………VII
第一章 前言………………………………………………………………1
第二章 文獻回顧…………………………………………………………3
2.1 高分子團聯共聚合物………………………………………3
2.1.1 高分子團聯共聚合物之相分離形態………………3
2.1.2 薄膜結構與塊材之差異……………………………4
2.1.3 高分子團聯共聚物微胞……………………………5
2.2 有機-無機混成材料…………………………………………5
2.3利用團聯共聚合物製備混成系統……………………………6
2.3.1聚環氧乙烷(poly ethylene oxide,PEO)…………6
2.3.2 聚丙烯酸(poly acrylic acid,PAA)………………7
2.3.3 聚乙烯啶(poly vinyl pridine)……………………7
2.3.4 團聯共聚合物與金之混成材料還原方式…………7
2.3.4.1 電子束(e-beam)還原法…………………8
2.3.4.2 UV光還原法………………………………8
2.3.4.3 電漿還原法………………………………9
2.3.4.4 化學還原劑還原…………………………9
2.4 團聯共聚合物製備混成系統之應用………………………10
第三章 實驗方法與試片製備……………………………………………17
3.1 實驗材料……………………………………………………17
3.2 實驗儀器…………………………………………………19
3.3 實驗方法……………………………………………………21
3.3.1 實驗流程……………………………………………21
3.3.2 矽晶片清洗…………………………………………22
3.3.3 條紋狀排列之奈米金顆粒薄膜製備………………22
3.3.4 球狀排列之奈米金顆粒薄膜製備…………………23
3.3.5 還原方法……………………………………………23
3.3.6 原子力顯微鏡………………………………………24
3.3.7穿透式電子顯微鏡…………………………………25
3.3.8 反應離子蝕刻機……………………………………25
3.3.9 真空蒸鍍機…………………………………………26
3.3.10 紫外/可見光光譜儀………………………………26
第四章 實驗結果與討論-條紋狀結構…………………………………31
4.1 高分子模板之結構鑑定……………………………………31
4.2 大面積規則排列之薄膜製作………………………………32
4.3 條紋狀排列金顆粒之結構鑑定……………………………33
4.4 條紋狀排列之金顆粒薄膜光譜……………………………33第五章 實驗結果與討論-球狀結構……………………………………44
5.1 球狀排列之金顆粒薄膜……………………………………44
5.2 金鹽微胞結構之鑑定………………………………………44
5.3 金鹽薄膜之原位(in-situ)還原…………………………45
5.4 不同溶劑下的比較…………………………………………46
5.5 球狀金顆粒薄膜之UV光譜…………………………………47
第六章 結論………………………………………………………………57
第七章 參考文獻…………………………………………………………59

圖目錄

圖2-1 高分子團聯共聚合物χN對鏈段體積分率fs之影響…………11
圖2-2 厚度效應所帶來薄膜巨觀上的影響……………………………12
圖2-3 團聯共聚合物溶液中,微胞與凝膠的形成與濃度之關係………12
圖2-4 利用PS-PEO團聯共聚合物:(a)微胞形成示意圖(b)以穿透式電
子顯微鏡觀察其量子點分布情形………………………………13
圖2-5 PS-PAA 團聯共聚合物之微胞結構(a);經氫氧化鈉水溶液處理,
微胞成破裂之型態(b)……………………………………………14
圖2-6 (a)假設高分子鏈與金屬鍵結機制,一共有四種,而(b)圖是以AFM觀察之結果,推測其機制為(a)圖中的d機制……………15
圖2-7 以氧氣電漿處理過後的金顆粒薄膜(a)PS(800)-P﹝2VP(HAuCl4)0.5(860)﹞(b)PS(325)-P﹝2VP(HAuCl4)0.5(75)﹞(c)PS(1700)-P﹝2VP(HAuCl4)0.1(450)﹞……………………16
圖3-1 實驗流程圖………………………………………………………21
圖3-2 條紋狀排列之金顆粒薄膜製作示意圖…………………………27
圖3-3 球狀微胞結構之形成與金鹽之鍵結……………………………27
圖3-4 球狀結構之金顆粒薄膜製作示意圖……………………………28
圖3-5 聯胺蒸氣還原……………………………………………………28
圖3-6 原子力顯微鏡之運作原理………………………………………29
圖3-7 針尖與試片之間距離與凡得瓦力之間的關係…………………29
圖3-8 原子力顯微鏡相圖之量測原理…………………………………30
圖4-1 加熱處理後的PS-PMMA薄膜側視示意圖………………………35
圖4-2 PS33KPMMA15K薄膜在蝕刻時間40s後,呈現一無序結構,此後膜厚
約為35nm…………………………………………………………35
圖4-3 PS33KPMMA15K薄膜在蝕刻時間20s後,移除PS層並將規則排列之
條紋狀結構裸露於空氣表面,此時膜厚約58nm………………36
圖4-4 PS33KPMMA15K之柱狀微結構3D圖……………………………………36
圖4-5 PS-PMMA薄膜受到表面能量的影響,導致膜厚趨向一穩定厚度 (n+0.5)L0…………………………………………………………37
圖4-6 (a)旋轉塗佈固定轉速為2500rpm,不同PS33KPMMA15K濃度下,所
測得膜厚與濃度之關係圖 (b)不同濃度下的膜厚以及所預期的巨觀結構…………………………………………………………38
圖4-7 不同薄膜厚度下,所造成薄膜表面高低起伏的變化:圖(a)(b)(c)分別為濃度2%、2.2%、2.4%的薄膜,隨厚度的不同將造成薄膜表面依序呈現凹洞、平坦、凸起之變化…………………………39
圖4-8 濃度2.6%的薄膜,依箭頭方向逐漸的縮小掃圖範圍:(a)OM 200X
(b)AFM scan size 30μm (c)AFM scan size 5μm (d)AFM scan size 1μm…………………………………………………………40
圖4-9 濃度2.8%的薄膜,依箭頭方向逐漸的縮小掃圖範圍:(a)OM 200X (b)AFM scan size 30μm (c)AFM scan size 5μm (d)AFM scan size 1μm…………………………………………………………41
圖4-10 高分子模板在蒸鍍金前的高低圖(a)與蒸鍍後的高低圖(b) 42
圖4-11 條紋狀金顆粒薄膜在不同蒸鍍厚度下的UV光譜……………43
圖5-1 PS81P2VP14 (L=0.3)之金鹽微胞薄膜-Scan size:1μm…………48
圖5-2 PS81P2VP14 (L=0.3)之金鹽微胞薄膜-Scan size:3μm…………48
圖5-3 PS57P2VP57 (L=0.3)之金鹽微胞薄膜-Scan size:1μm………49
圖5-4 PS57P2VP57 (L=0.3)之金鹽微胞薄膜-Scan size:3μm………49
圖5-5 PS81P2VP14 (L=1)之金鹽微胞薄膜-Scan size:1μm……………50
圖5-6 PS57P2VP57 (L=1)之金鹽微胞薄膜-Scan size:1μm……………50
圖5-7 PS29P2VP9 (L=0.5)在溶液下以硼氫化鈉還原再成膜……………51
圖5-8 PS29P2VP9 (L=0.5)在溶液下以聯胺還原再成膜…………………51
圖5-9 TEM放大倍率10萬倍:PS81P2VP14 (L=0.3)之薄膜以聯胺蒸氣還原
一分鐘 (a)還原前(b)還原後……………………………………52
圖5-10 TEM放大倍率10萬倍:PS57P2VP57 (L=0.3)之薄膜以聯胺蒸氣還
原一分鐘 (a)還原前(b)還原後………………………………53
圖5-11 TEM 放大倍率20萬倍:PS81P2VP14 (L=0.3)之薄膜以聯胺蒸氣在
不同時間下的情形 (a)一分鐘(b)五分鐘(c)20分鐘…………54
圖5-12 PS29P2VP9 (L=0.5)之THF溶液,所形成之金鹽微胞薄膜,Scan size分別為(a)2μm(b)5μm…………………………………55
圖5-13 利用聯胺蒸氣還原之厚膜UV光譜……………………………56


表目錄

表3-1 實驗所使用的共聚合物…………………………………………30
1.Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, (23), 6922-6935.
2.Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, (26), 8796-8806.
3.Pochan, D. J.; Gido, S. P.; Pispas, S.; Mays, J. W.; Ryan, A. J.; Fairclough, J. P. A.; Hamley, I. W.; Terrill, N. J. Macromolecules 1996, 29, (15), 5091-5098.
4.Schulz, M. F.; Khandpur, A. K.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M. Macromolecules 1996, 29, (8), 2857-2867.
5.Cuenya, B. R.; Baeck, S. H.; Jaramillo, T. F.; McFarland, E. W. Journal of the American Chemical Society 2003, 125, (42), 12928-12934.
6.Lambooy, P.; Russell, T. P.; Kellogg, G. J.; Mayes, A. M.; Gallagher, P. D.; Satija, S. K. Physical Review Letters 1994, 72, (18), 2899-2902.
7.Mansky, P.; Russell, T. P.; Hawker, C. J.; Pitsikalis, M.; Mays, J. Macromolecules 1997, 30, (22), 6810-6813.
8.Hashimoto, T.; Ogawa, T.; Sakamoto, N.; Ichimiya, M.; Kim, J. K.; Han, C. D. Polymer 1998, 39, (8-9), 1573-1581.
9.Honeker, C. C.; Thomas, E. L. Macromolecules 2000, 33, (25), 9407-9417.
10.Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, (15), 4891-4898.
11.Rockford, L.; Mochrie, S. G. J.; Russell, T. P. Macromolecules 2001, 34, (5), 1487-1492.
12.Yang, X. M.; Peters, R. D.; Nealey, P. F.; Solak, H. H.; Cerrina, F. Macromolecules 2000, 33, (26), 9575-9582.
13.Mansky, P.; DeRouchey, J.; Russell, T. P.; Mays, J.; Pitsikalis, M.; Morkved, T.; Jaeger, H. Macromolecules 1998, 31, (13), 4399-4401.
14.Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, (5277), 931-933.
15.Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, (3), 952-954.
16.Huang, E.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Macromolecules 1998, 31, (22), 7641-7650.
17.Park, C.; De Rosa, C.; Thomas, E. L. Macromolecules 2001, 34, (8), 2602-2606.
18.Wittmann, J. C.; Smith, P. Nature 1991, 352, (6334), 414-417.
19.Hamley, I. W. The Physics of Block Copolymers 1998.
20.Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. Macromolecules 2002, 35, (18), 7007-7017.
21.Bronstein, L. M.; Chernyshov, D. M.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Obolonkova, E. S.; Khokhlov, A. R. Langmuir 2000, 16, (8), 3626-3632.
22.Spatz, J. P.; Roescher, A.; Moller, M. Advanced Materials 1996, 8, (4), 337-340.
23.Templin, M.; Franck, A.; DuChesne, A.; Leist, H.; Zhang, Y. M.; Ulrich, R.; Schadler, V.; Wiesner, U. Science 1997, 278, (5344), 1795-1798.
24.Boontongkong, Y.; Cohen, R. E. Macromolecules 2002, 35, (9), 3647-3652.
25.Burke, S. E.; Eisenberg, A. Langmuir 2001, 17, (26), 8341-8347.
26.Hu, Q. S.; Vitharana, D.; Liu, G. Y.; Jain, V.; Wagaman, M. W.; Zhang, L.; Lee, T. R.; Pu, L. Macromolecules 1996, 29, (3), 1082-1084.
27.Djalali, R.; Li, S. Y.; Schmidt, M. Macromolecules 2002, 35, (11), 4282-4288.
28.Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W. Macromolecules 2000, 33, (13), 4791-4798.
29.Sohn, B. H.; Seo, B. H. Chemistry of Materials 2001, 13, (5), 1752-1757.
30.Kuo, S. W.; Wu, C. H.; Chang, F. C. Macromolecules 2004, 37, (1), 192-200.
31.Ribbe, A. E.; Okumura, A.; Matsushige, K.; Hashimoto, T. Macromolecules 2001, 34, (23), 8239-8245.
32.Hashimoto, T.; Okamura, A.; Tanabe, D. Macromolecules 2003, 36, (19), 7324-7330.
33.Abes, J. I.; Cohen, R. E.; Ross, C. A. Chemistry of Materials 2003, 15, (5), 1125-1131.
34.Glass, R.; Moller, M.; Spatz, J. P. Nanotechnology 2003, 14, (10), 1153-1160.
35.Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S. Langmuir 1999, 15, (1), 83-91.
36.Torigoe, K.; Esumi, K. Langmuir 1993, 9, (7), 1664-1667.
37.Kastle, G.; Boyen, H. G.; Weigl, F.; Lengl, G.; Herzog, T.; Ziemann, P.; Riethmuller, S.; Mayer, O.; Hartmann, C.; Spatz, J. P.; Moller, M.; Ozawa, M.; Banhart, F.; Garnier, M. G.; Oelhafen, P. Advanced Functional Materials 2003, 13, (11), 853-861.
38.Spatz, J. P.; Mossmer, S.; Hartmann, C.; Moller, M.; Herzog, T.; Krieger, M.; Boyen, H. G.; Ziemann, P.; Kabius, B. Langmuir 2000, 16, (2), 407-415.
39.Li, Y. D.; Li, C. W.; Wang, H. R.; Li, L. Q.; Qian, Y. T. Materials Chemistry and Physics 1999, 59, (1), 88-90.
40.Youk, J. H.; Park, M. K.; Locklin, J.; Advincula, R.; Yang, J.; Mays, J. Langmuir 2002, 18, (7), 2455-2458.
41.Kurihara, K.; Kizling, J.; Stenius, P.; Fendler, J. H. Journal of the American Chemical Society 1983, 105, (9), 2574-2579.
42.Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, (5383), 1647-1650.
43.Hattori, H. Advanced Materials 2001, 13, (1), 51.
44.Straub, M.; Ventura, M.; Gu, M. Thin Solid Films 2004, 453-54, 522-526.
45.Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U. Science 1999, 283, (5401), 520-522.
46.Knoll, A.; Magerle, R.; Krausch, G. Macromolecules 2001, 34, (12), 4159-4165.
47.Magonov, S. N.; Reneker, D. H. Annual Review of Materials Science 1997, 27, 175-222.
48.Antonietti, M.; Wenz, E.; Bronstein, L.; Seregina, M. Advanced Materials 1995, 7, (12), 1000.
49.Lopes, W. A. Physical Review E 2002, 65, (3), -.
50.Lopes, W. A.; Jaeger, H. M. Nature 2001, 414, (6865), 735-738.
51.J. P. Spatz, A. R., M. Moller. Advanced Materials 1996, 8, 337.
52.J. P. Spatz, S. M., M. Moller. Chem. Eur. J. 1996, 2, 1552.
53.Forster, S.; Antonietti, M. Advanced Materials 1998, 10, (3), 195.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 丘昌泰、陳欽春(2001)。台灣實踐社區主義的陷阱與願景:從「抗爭型」到「自覺型」社區。行政暨政策學報,3,1—43。
2. 林新沛、蔡英媛(1997)。環境觀念與環境行為。應用心理學報,6,1—22。
3. 車參賢、葉國樑(1996)。臺北市國中生資源回收的知識、態度、行為相關研究。學校衛生,29,62—73。
4. 王麗容(1991)。民間環保組織在社區環保運動中的角色跟功能。社區發展季刊,56,127—129。
5. 王鴻濬(2001)。環境影響評估制度中公眾參與之設計與分析。中華林學季刊,34(1),73—84。
6. 李永展、翁久惠(1995)。鄰避設施對主觀環境生活品質影響之探討:以居民對垃圾化廠之認知與態度為例。經社法制論叢,16,89—117。
7. 李永展、何紀芳(1999)。環境正義與鄰避設施選址之探討,規劃學報,26,91—107。
8. 李永展(1994)。鄰避設施與社區關係。人與地,132,46—53。
9. 呂昌明、郭秀珠、楊昭慧 (2002)。臺北市某國小學生家長節約用水意圖之研究。衛生教育學報,18,110-123。
10. 吳英明(1993)。公共行政的民主原則與效率原則。中國行政評論,2(2),137—150。
11. 王國川(1997)。計劃行為理論各成份量表之信、效度評估— 以青少年搭機車帶安全帽之研究為例。國立中正大學學報,8(1),95—121。
12. 王怡文、蕭新煌(2004)。環境爭議性公共設施的回饋制度:對核一廠、核二廠及臺中火力發電廠的分析。都市與計劃,31(1),65—90。
13. 唐孝蘭、葉國樑(2001)。探討價值澄清法在資源回收教學上之應用。衛生教育學報,16,103—132。
14. 陳金貴(1992)。公民參與的研究。行政學報,24,95—128。
15. 彭國棟(1999)。淺談環境正義。自然保育季刊,28,6—13。
 
1. 新穎性氧化鋅奈米柱/導電高分子之奈米複合材料:合成,特性及應用於壓電奈米元件之研究
2. 氫氣在燃料電池白金觸媒上氧化反應之動力學研究
3. 聚電解質/奈米碳管複合材料應用於電致動器之研究
4. 己烷噻吩-己烷氧噻吩共聚物(P3HT-P3HOT)之合成機制探討與性質鑑定
5. 複合樹脂以相同能量密度聚合所得之物理特性研究
6. 利用格林納置換鏈成長聚合法合成均一分子量分布之主鏈液晶型聚對位苯及其性質研究
7. 硬桿-梳狀團聯共聚高分子之超分子錯合物其自組裝階級性多重結構研究
8. 利用偶合反應法合成聚對苯乙烯-聚2乙烯之硬桿-柔曲塊狀共聚高分子及其自組裝特性研究
9. 利用Stille連結聚合法合成含咔唑側鏈之低能隙電子施體/受體導電高分子及其特性研究與應用
10. 新型無機/高分子奈米複合材料之合成與性質(一)異質凝聚法合成TiO2/Poly(AA-co-MMA)奈米粒子及應用PET混摻之研究(二)高導電PEDOT薄膜及ZnOnanorods/PEDOT薄膜之研究
11. 新穎性交聯聚乙烯醇質子交換膜在甲醇燃料電池上之應用
12. 利用速配接合反應合成兩性之剛硬/柔軟雙嵌段式共聚物DEH-PPV-b-PEO及其特性研究
13. 自組裝團聯共聚物/奈米無機顆粒超結構之製備與其相轉換研究
14. 合成尾端官能基化導電高分子及利用偶合反應合成導電/絕緣之嵌段共聚高分子
15. 利用尾端官能基化之導電高分子合成硬桿-柔曲雙團鏈共聚高分子及其性質研究