跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祥凱
研究生(外文):Hsiang-Kai Lin
論文名稱:固態核磁共振對生物活性玻璃表面羥基磷灰石生成機制之研究
論文名稱(外文):Mechanistic Study of Apatite Formation on Bioactive Glass Surface Using Solid-State NMR Spectroscopy
指導教授:陳振中陳振中引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:100
中文關鍵詞:羥基磷灰石生物活性玻璃固態核磁共振
外文關鍵詞:ApatiteBioactive GlassSolid-State NMR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物活性玻璃是一種70年代初期發現的材料,因為其在身體的環境中能夠與體內組織相連結的緣故而得名。此種材料的組成多為矽酸鹽與氧化鈣或是氧化鈉的非晶相混合物,在身體的環境中會在材料表面誘發羥基磷灰石的成長,而進一步與骨骼等組織相連結。目前已經成功的通過多種骨骼取代及骨骼缺陷填補的臨床測試。
文獻上對於羥基磷灰石在生物活性玻璃表面的生長機制有不同的意見:一種是先誘發非晶相礦物質層的沉積而進一步結晶,另一種是材料表面生成活化位置直接誘發晶體的成長。在本篇論文中,我們採用固態核磁共振來深入探討矽鈣玻璃生物活性的形成機制,因為技術上,許多不同的脈衝序列可以成功的測量系統中同核或是異核之空間環境。在生物活性玻璃的合成上,我們使用溶凝膠法合成出2-3微米的矽鈣玻璃系統,內含30%氧化鈣及70%氧化矽。將此系統浸泡在模擬體液中不同的時間,以觀測羥基磷灰石的成長。除了使用文獻中的一些常規技術做定性的測量外,我們採用許多先進的固態核磁共振技術,如雙共振、雙量子技術測量材料表面的化學環境。
實驗結果支持先誘發非晶相礦物質層的沉積而進一步結晶的反應機制。我們發現在晶體成長的過程中涉及到礦物質的脫水。實驗結果也顯示此結晶相與B類碳酸鹽磷灰石不同,但是與羥基磷灰石相似。我們相信,此論文所採用的固態核磁共振技術也可以有效地研究其他相類似的生物活性材料。
The molecular mechanism of apatite formation on bioactive glass surface is studied using the techniques of XRD, EDX, SEM, FT-IR, and solid-state NMR. Using the sol-gel method a bioactive glass system containing glass beads of 2 to 3 microns in size is prepared with the composition containing 30 % CaO – 70 % SiO2. Our experimental data support the apatite formation mechanism proposed by Hench concerning the precipitation and crystallization of calcium phosphate. The phosphate ions initially deposited on the glass surface are largely amorphous and have substantial amount of water molecules in the surrounding. As the soaking time in simulated body fluid increases, some of the water molecules diffuse out of the phosphate lattice, leading to the formation of a crystalline phase. Our data show that the structure of the crystalline phase is different from type B carbonate apatite but similar to hydroxyapatite.
第1章 緒論............................................1
1-1生物活性玻璃簡介...................................1
1-2生物活性簡介.......................................2
1-3研究動機與目的.....................................5
1-4參考文獻...........................................7

第2章 核磁共振.......................................11
2-1 核磁共振簡介.....................................11
2-2 核磁共振系統的量子力學敘述.......................12
2-2-1 核自旋(Nuclear spin)...........................12
2-2-2 塞曼交互作用(The Zeeman Interaction)...........13
2-2-3 密度矩陣(The density matrix)...................14
2-2-4 熱平衡下的密度矩陣.............................16
2-2-5 密度操作子之運動方程...........................17
2-3 簡單的核磁共振實驗...............................18
2-4 系統間相互作用力.................................21
2-4-1 化學遮蔽作用力.................................21
2-4-2 核間偶極-偶極直接交互作用......................22
2-4-2-1 異核偶極-偶極交互作用........................23
2-4-2-2 同核偶極-偶極交互作用........................23
2-5 魔角旋轉.........................................24
2-6 自旋空間平均化...................................25
2-6-1 相互作用座標...................................25
2-6-2 自旋去耦.......................................26
2-6-3 自旋鎖定(Spin Locking).........................27
2-6-4 Lee-Goldburg照射...............................28
2-7 極化傳遞.........................................29
2-7-1 同核自旋的極化傳遞.............................29
2-7-2 異核自旋的極化傳遞.............................29
2-7-3 在魔角旋轉下的Hartmann-Hahn配對................30
2-7-4 自旋溫度.......................................31
2-7-5 變接觸時間交叉極化魔角旋轉實驗.................32
2-8 雙量子相干.......................................33
2-8-1 雙量子訊號.....................................33
2-8-2 雙量子訊號的激發、演進和偵測...................34
2-8-3同核多量子技術..................................35
2-9 參考文獻.........................................36

第3章 合成與鑑定.....................................38
3-1 化學藥品.........................................38
3-2生物活性玻璃的製備................................39
3-2-1 膠體合成與老化(Aging)..........................39
3-2-2 膠體的乾燥.....................................40
3-2-3 矽鈣玻璃系統穩定化.............................41
3-3 玻璃的鑑定.......................................42
3-3-1 X光繞射分析(XRD)...............................42
3-3-2 傅利葉紅外光光譜(FT-IR)........................43
3-3-3 比表面積孔洞分析儀.............................43
3-3-4 感應耦合電漿質譜...............................46
3-3-5場發射掃描式電子顯微鏡及能量分散光譜儀…........47
3-3-6 熱重分析及低溫熱差分析儀.......................49
3-4 生物活性.........................................50
3-4-1 配製模擬體液...................................50
3-4-2 浸泡模擬體液...................................51
3-5 31P固態核磁共振光譜..............................51
3-5-1 31P魔角旋轉光譜................................52
3-5-2變接觸時間31P{1H}交叉極化魔角旋轉實驗….........52
3-5-3 31P{1H}Lee-Goldburg交叉極化雙共振關聯光譜......52
3-5-4 31P雙量子實驗..................................53
3-6 29Si魔角旋轉光譜.................................54
3-7 29Si{1H}交叉極化雙共振實驗.......................55
3-8 參考文獻.........................................55

第4章 實驗結果與討論.................................56
4-1 玻璃製備.........................................56
4-2 SEM、EDX和BET比表面積............................57
4-3 FT-IR和XRD.......................................59
4-4熱重分析和熱差分析................................61
4-5感應耦合電漿質譜..................................64
4-6 31P 魔角旋轉NMR..................................65
4-7 31P{1H}Lee-Goldburg交叉極化雙共振實驗............66
4-8 31P{1H}變化傳遞時間的交叉極化魔角旋轉實驗........71
4-9 31P雙量子NMR.....................................73
4-10 29Si魔角旋轉NMR.................................76
4-11 29Si{1H}交叉極化雙共振實驗......................77
4-12 討論............................................83
4-12-1 球狀生物活性玻璃..............................83
4-12-2 31P{1H}LG交叉極化雙共振光譜...................84
4-12-3 31P-31P二階偶極矩.............................85
4-12-4羥基磷灰石的成長...............................86
4-13 參考文獻........................................89

第5章 總結與未來展望.................................93
5-1 論文總結.........................................93
5-2 未來展望.........................................94
5-3 參考文獻.........................................95

第6章 附錄...........................................97
6-1 DSC結果討論......................................97
6-2 31P{1H}交叉極化實驗結果討論......................99
第1章 參考文獻

[1]LL Hench, RJ Splinter, WC Allen, TK Greenlee: Bonding Mechenisms at Interface of Ceramic Prosthetic Materials. J. Biomed. Mater. Res. Symp. 2 (1972) 117.
[2]J Gil-Albarova, R Garrido-Lahiguera, AJ Salinas, J Roman, A Bueno-Lozano, R Gil-Albarova, M Vallet-Regi: The in vivo performance of a sol-gel glass and a glass-ceramic in the treatment of limited bone defects. Biomaterials 25 (2004) 4639-45.
[3]K Ohura, T Nakamura, T Yamamuro, T Kokubo, Y Ebisawa, Y Kotoura, M Oka: Bone-Bonding Ability of P2o5-Free Cao.Sio2 Glasses. J. Biomed. Mater. Res. 25 (1991) 357-65.
[4]T Kitsugi, T Yamamuro, T Nakamura, T Kokubo: Bone Bonding Behavior of Mgo-Cao-Sio2-P2o5-Caf2 Glass (Mother Glass of A.W-Glass-Ceramics). J. Biomed. Mater. Res. 23 (1989) 631-48.
[5]K Ohura, M Ikenaga, T Nakamura, T Yamamuro, Y Ebisawa, T Kokubo, Y Kotoura, M Oka: A Heat-Generating Bioactive Glass Ceramic for Hyperthermia. J. Appl. Biomater. 2 (1991) 153-59.
[6]BA Blencke, P Alletsee, H Bromer, E Pfeil: Studies on Soft-Tissue Reactions to Implantation of Glass Ceramics. Arch. Orthop. Trauma Surg. 82 (1975) 135-46.
[7]KR Williams, AW Blayney: An Optical and Electron-Microscopy Study of Materials Implanted in the Rat Middle-Ear .1. Carbon. Biomaterials 7 (1986) 283-86.
[8]LL Hench: Bioceramics - from Concept to Clinic. J. Am. Ceram. Soc. 74 (1991) 1487-510.
[9]RWE Mellish, MW Fergusonpell, GVB Cochran, R Lindsay, DW Dempster: A New Manual Method for Assessing 2-Dimensional Cancellous Bone-Structure - Comparison between Iliac Crest and Lumbar Vertebra. J. Bone Miner. Res. 6 (1991) 689-96.
[10]T Yamamuro, J Shikata, H Okumura, T Kitsugi, Y Kakutani, T Matsui, T Kokubo: Replacement of the Lumbar Vertebrae of Sheep with Ceramic Prostheses. J. Bone Joint Surg.-Br. Vol. 72 (1990) 889-93.
[11]P Sepulveda, JR Jones, LL Hench: Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 59 (2002) 340-48.
[12]M Vallet-Regi, J Perez-Pariente, I Izquierdo-Barba, AJ Salinas: Compositional variations in time calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chem. Mat. 12 (2000) 3770-75.
[13]A Martinez, I Izquierdo-Barba, M Vallet-Regi: Bioactivity of a CaO-SiO2 binary glasses system. Chem. Mat. 12 (2000) 3080-88.
[14]I Izquierdo-Barba, AJ Salinas, M Vallet-Regi: In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO2 system. J. Biomed. Mater. Res. 47 (1999) 243-50.
[15]P Sepulveda, JR Jones, LL Hench: In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J. Biomed. Mater. Res. 61 (2002) 301-11.
[16]H Takadama, HM Kim, T Kokubo, T Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mat. 13 (2001) 1108-13.
[17]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19.
[18]H Eckert: Structural Characterization of Noncrystalline Solids and Glasses Using Solid-State Nmr. Prog. Nucl. Magn. Reson. Spectrosc. 24 (1992) 159-293.
[19]S Hayakawa, K Tsuru, C Ohtsuki, A Osaka: Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J. Am. Ceram. Soc. 82 (1999) 2155-60.
[20]S Hayakawa, S Tsuru, H Iida, C Ohtsuki, A Osaka: MAS NMR studies of apatite formation on 50CaO.50SiO(2) glass in a simulated body fluid. Phys. Chem. Glasses 37 (1996) 188-92.
[21]M Baldus: Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog. Nucl. Magn. Reson. Spectrosc. 41 (2002) 1-47.
[22]S Luca, H Heise, M Baldus: High-resolution solid-state NMR applied to polypeptides and membrane proteins. Accounts Chem. Res. 36 (2003) 858-65.
[23]I Schnell: Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 45 (2004) 145-207.
[24]WP Rothwell, JS Waugh, JP Yesinowski: High-Resolution Variable-Temperature P-31 Nmr of Solid Calcium Phosphates. J. Am. Chem. Soc. 102 (1980) 2637-43.
[25]WP Aue, AH Roufosse, MJ Glimcher, RG Griffin: Solid-State P-31 Nuclear Magnetic-Resonance Studies of Synthetic Solid-Phases of Calcium-Phosphate - Potential Models of Bone-Mineral. Biochemistry 23 (1984) 6110-14.
[26]RA Santos, RA Wind, CE Bronnimann: H-1 Cramps and H-1-P-31 Hetcor Experiments on Bone, Bone-Mineral, and Model Calcium-Phosphate Phases. J. Magn. Reson. Ser. B 105 (1994) 183-87.
[27]A Kaflak-Hachulska, A Samoson, W Kolodziejski: H-1 MAS and H-1 -> P-31 CP/MAS NMR study of human bone mineral. Calcif. Tissue Int. 73 (2003) 476-86.
[28]GY Cho, YT Wu, JL Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300 (2003) 1123-27.
[29]Y Wu, JL Ackerman, ES Strawich, C Rey, HM Kim, MJ Glimcher: Phosphate ions in bone: Identification of a calcium-organic phosphate complex by P-31 solid-state NMR spectroscopy at early stages of mineralization. Calcif. Tissue Int. 72 (2003) 610-26.
[30]T Isobe, S Nakamura, R Nemoto, M Senna, H Sfihi: Solid-state double nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J. Phys. Chem. B 106 (2002) 5169-76.
[31]JCC Chan, R Ohnsorge, K Meise-Gresch, H Eckert, W Holand, V Rheinberger: Apatite crystallization in an aluminosilicate glass matrix: Mechanistic studies by X-ray powder diffraction, thermal analysis, and multinuclear solid-state NMR spectroscopy. Chem. Mat. 13 (2001) 4198-206.
[32]BJ van Rossum, CP de Groot, V Ladizhansky, S Vega, HJM de Groot: A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J. Am. Chem. Soc. 122 (2000) 3465-72.
[33]V Ladizhansky, S Vega: Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. J. Chem. Phys. 112 (2000) 7158-68.
[34]J Gallardo, PG Galliano, JMP Lopez: Preparation and in vitro evaluation of porous silica gels. Biomaterials 23 (2002) 4277-84.

第2章 參考文獻
[1]F Bloch, WW Hansen, ME Packard: Phys. Rev 69 (1946) 127.
[2]EM Purcell, HC Torrey, RV Pound: Phys. Rev 69 (1946) 37.
[3]WC Dickinson: Phys. Rev 77 (1950) 736.
[4]WG Proctor, FC Yu: Phys. Rev 77 (1950) 717.
[5]E Hahn: Spin echoes. Phys. Rev 80 (1950) 580.
[6]E Andrew, A Bradbury, R Eades: Nature(London) 182 (1958) 1695.
[7]R Ernst, W Anderson: Rev. Sci. Instruments 37 (1966) 93.
[8]Stern: Z. Phys. D: At., Mol. Clusters 10 (1988) 114.
[9]ER Andrew, A Bradbury, RG Eades: NMR spectra from a crystal rotated at high speed. 182 (1958) 1659.
[10]IJ Lowe: Free induction decays in rotating solids. 2 (1959) 285.
[11]M Lee, Wl Goldburg: Nuclear magnetic resonance line narrowing by a rotating rf field. Phys. Rev 140 (1965) 1261.
[12]SR Hartmann, EL Hahn: Nuclear Double Resonance in the Rotating Frame. Phys. Rev. 128 (1962) 2042.
[13]A Pines, MG Gibby, JS Waugh: Proton-Enhanced NMR of Dilute Spins in Solids. J. Chem. Phys. 59 (1973) 569.
[14]M Munowitz: Coherence and NMR, Wiley, New York, 1988.
[15]M Feike, DE Demco, R Graf, J Gottwald, S Hafner, HW Spiess: Broadband multiple-quantum NMR spectroscopy. J. Magn. Reson. A 122 (1996) 214-21.
[16]A Brinkmann, MH Levitt: Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann-Hahn sequences. Journal of Chemical Physics 115 (2001) 357-84.
[17]NA Oyler, R Tycko: Multiple quantum C-13 NMR spectroscopy in solids under high- speed magic-angle spinning. Journal of Physical Chemistry B 106 (2002) 8382-89.
[18]YH Tseng, Y Mou, CY Mou, JCC Chan: Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27 (2005) 266-70.

第3章 參考文獻
[1]J Gallardo, PG Galliano, JMP Lopez: Preparation and in vitro evaluation of porous silica gels. Biomaterials 23 (2002) 4277-84.
[2]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19.
[3]G Metz, XL Wu, SO Smith: Ramped-Amplitude Cross-Polarization in Magic-Angle-Spinning Nmr. J. Magn. Reson. Ser. A 110 (1994) 219-27.
[4]NA Oyler, R Tycko: Multiple quantum C-13 NMR spectroscopy in solids under high-speed magic-angle spinning. J. Phys. Chem. B 106 (2002) 8382-89.
[5]YH Tseng, Y Mou, CY Mou, JCC Chan: Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27 (2005) 266-70.
[6]T Gullion, DB Baker, MS Conradi: New, Compensated Carr-Purcell Sequences. 89 (1990) 479-84.

第4章 參考文獻
[1]PJ Li, K Nakanishi, T Kokubo, K Degroot: Induction and Morphology of Hydroxyapatite, Precipitated from Metastable Simulated Body-Fluids on Sol-Gel Prepared Silica. Biomaterials 14 (1993) 963-68.
[2]PJ Li, C Ohtsuki, T Kokubo, K Nakanishi, N Soga, T Nakamura, T Yamamuro: Apatite Formation Induced by Silica-Gel in a Simulated Body-Fluid. J. Am. Ceram. Soc. 75 (1992) 2094-97.
[3]H Takadama, HM Kim, T Kokubo, T Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mat. 13 (2001) 1108-13.
[4]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19.
[5]HW Yan, K Zhang, CF Blanford, LF Francis, A Stein: In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure. Chem. Mat. 13 (2001) 1374-82.
[6]P Sepulveda, JR Jones, LL Hench: In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J. Biomed. Mater. Res. 61 (2002) 301-11.
[7]A Martinez, I Izquierdo-Barba, M Vallet-Regi: Bioactivity of a CaO-SiO2 binary glasses system. Chem. Mat. 12 (2000) 3080-88.
[8]M Vallet-Regi, AM Romero, CV Ragel, RZ LeGeros: XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J. Biomed. Mater. Res. 44 (1999) 416-21.
[9]YH Tseng, JH Zhan, KSK Lin, CY Mou, JCC Chan: High resolution P-31 NMR study of octacalcium phosphate. Solid State Nucl. Magn. Reson. 26 (2004) 99-104.
[10]YT Wu, MJ Glimcher, C Rey, JL Ackerman: A Unique Protonated Phosphate Croup in Bone-Mineral Not Present in Synthetic Calcium Phosphates - Identification by P-31 Solid-State Nmr-Spectroscopy. J. Mol. Biol. 244 (1994) 423-35.
[11]J Tropp, NC Blumenthal, JS Waugh: Phosphorus Nmr-Study of Solid Amorphous Calcium-Phosphate. J. Am. Chem. Soc. 105 (1983) 22-26.
[12]JP Yesinowski, H Eckert: Hydrogen Environments in Calcium Phosphates - H-1 Mas Nmr at High Spinning Speeds. J. Am. Chem. Soc. 109 (1987) 6274-82.
[13]GY Cho, YT Wu, JL Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300 (2003) 1123-27.
[14]WP Rothwell, JS Waugh, JP Yesinowski: High-Resolution Variable-Temperature P-31 Nmr of Solid Calcium Phosphates. J. Am. Chem. Soc. 102 (1980) 2637-43.
[15]M Vallet-Regi, J Perez-Pariente, I Izquierdo-Barba, AJ Salinas: Compositional variations in time calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chem. Mat. 12 (2000) 3770-75.
[16]A Abragam: Principles of Nuclear Magnetism. (1961).
[17]M Bertmer, H Eckert: Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl. Magn. Reson. 15 (1999) 139-52.
[18]YH Tseng, Y Mou, CY Mou, JCC Chan: Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27 (2005) 266-70.
[19]Engelsbe.M, RE Norberg: Nuclear Magnetic-Resonance and Nuclear-Spin Dynamics in Inp. 5 (1972) 3395-&.
[20]AJ VEGA, GW SCHERER: Study of Structural Evolution of Silica Gel Using 1H and 29Si NMR. J. Non-Cryst. Solids 111 (1989) 153.
[21]MM Pereira, AE Clark, LL Hench: Effect of Texture on the Rate of Hydroxyapatite Formation on Gel-Silica Surface. J. Am. Ceram. Soc. 78 (1995) 2463-68.
[22]J Gallardo, PG Galliano, JMP Lopez: Preparation and in vitro evaluation of porous silica gels. Biomaterials 23 (2002) 4277-84.
[23]RA Santos, RA Wind, CE Bronnimann: H-1 Cramps and H-1-P-31 Hetcor Experiments on Bone, Bone-Mineral, and Model Calcium-Phosphate Phases. J. Magn. Reson. Ser. B 105 (1994) 183-87.
[24]A Kaflak-Hachulska, A Samoson, W Kolodziejski: H-1 MAS and H-1 -> P-31 CP/MAS NMR study of human bone mineral. Calcif. Tissue Int. 73 (2003) 476-86.
[25]GY Cho, YT Wu, JL Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. 300 (2003) 1123-27.
[26]BJ van Rossum, CP de Groot, V Ladizhansky, S Vega, HJM de Groot: A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J. Am. Chem. Soc. 122 (2000) 3465-72.
[27]V Ladizhansky, S Vega: Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. J. Chem. Phys. 112 (2000) 7158-68.
[28]YT Wu, JL Ackerman, HM Kim, C Rey, A Barroug, MJ Glimcher: Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. 17 (2002) 472-80.
[29]K Onuma, A Ito: Cluster growth model for hydroxyapatite. Chem. Mat. 10 (1998) 3346-51.
[30]PX Zhu, Y Masuda, T Yonezawa, K Koumoto: Investigation of apatite deposition onto charged surfaces in aqueous solutions using a quartz-crystal microbalance. J. Am. Ceram. Soc. 86 (2003) 782-90.
[31]PX Zhu, Y Masuda, K Koumoto: The effect of surface charge on hydroxyapatite nucleation. Biomaterials 25 (2004) 3915-21.
[32]BJ Tarasevich, CC Chusuei, DL Allara: Nucleation and growth of calcium phosphate from physiological solutions onto self-assembled templates by a solution-formed nucleus mechanism. J. Phys. Chem. B 107 (2003) 10367-77.
[33]RM Wilson, JC Elliott, SEP Dowker: Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am. Miner. 84 (1999) 1406-14.
[34]LJ Skipper, FE Sowrey, DM Pickup, V Fitzgerald, R Rashid, KO Drake, ZJ Lin, P Saravanapavan, LL Hench, ME Smith, RJ Newport: Structural studies of bioactivity in sol-gel-derived glasses by X-ray spectroscopy. J. Biomed. Mater. Res. Part A 70A (2004) 354-60.
[35]ME Fleet, XY Liu: Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J. Solid State Chem. 177 (2004) 3174-82.
[36]KH Karlsson, K Froberg, T Ringbom: A Structural Approach to Bone Adhering of Bioactive Glasses. J. Non-Cryst. Solids 112 (1989) 69-72.
[37]S Hayakawa, K Tsuru, C Ohtsuki, A Osaka: Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J. Am. Ceram. Soc. 82 (1999) 2155-60.
[38]H Takadama, HM Kim, T Kokubo, T Nakamura: X-ray photoelectron spectroscopy study on the process of apatite formation on a sodium silicate glass in simulated body fluid. J. Am. Ceram. Soc. 85 (2002) 1933-36.

第5章 參考文獻
[1]H Takadama, HM Kim, T Kokubo, T Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mat. 13 (2001) 1108-13.
[2]S Hayakawa, K Tsuru, C Ohtsuki, A Osaka: Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J. Am. Ceram. Soc. 82 (1999) 2155-60.
[3]H Takadama, HM Kim, T Kokubo, T Nakamura: X-ray photoelectron spectroscopy study on the process of apatite formation on a sodium silicate glass in simulated body fluid. J. Am. Ceram. Soc. 85 (2002) 1933-36.
[4]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19.
[5]WJ Shaw, JR Long, JL Dindot, AA Campbell, PS Stayton, GP Drobny: Determination of statherin N-terminal peptide conformation on hydroxyapatite crystals. J. Am. Chem. Soc. 122 (2000) 1709-16.
[6]M Gilbert, WJ Shaw, JR Long, K Nelson, GP Drobny, CM Giachelli, PS Stayton: Chimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion. J. Biol. Chem. 275 (2000) 16213-18.
[7]WJ Shaw, JR Long, AA Campbell, PS Stayton, GP Drobny: A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. J. Am. Chem. Soc. 122 (2000) 7118-19.
[8]JR Long, WJ Shaw, PS Stayton, GP Drobny: Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 40 (2001) 15451-55.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王懿士(2001):親師合作,共創雙贏。特教園丁,16(3),9-13。
2. 江明曄(1997):教室中應用行為改變技術的增強物。特殊教育季刊,62,22-25。
3. 吳璧如(2000):家長參與學校教育的相關議題探討-德懷術之應用。彰化師大教育學報,1,257-290。
4. 張史如(1997):父母親和教師在特殊兒童生涯教育中所扮演的角色。國小特殊教育,23,19-23。
5. 張英熙、吳珍(2001):特殊兒童家長支持團體效果初探。特殊教育季刊,80,30-34。
6. 陳玉賢(1998):淺談特殊兒童親職教育。國教世紀,180,35-39。
7. 陳明聰(1997):身心障礙教育中父母參與的重要性及其相關因素之探討。特殊教育季刊,64,21-27。
8. 陳明聰、王天苗(1997):臺北市國小啟智班學生父母參與之研究。特殊教育研究學刊,15,215-235。
9. 陳宸如(2001):談資優孩子的親職教育。國小特殊教育,32,71-80。
10. 黃志雄(2003):特殊兒童家庭支持與家長參與。特教園丁,19(2),8-15。
11. 黃秋霞(2002):高高屏特殊兒童的家長對親職教育型態認識之探討。特教園丁,18(2),61-69。
12. 劉城晃、陳靜江(2002):國小啟智班親職教育方案的發展與成效研究。特殊教育學報,16,105-140。
13. 蔡文標(2000):智能障礙者之學習策略。特教園丁,15(3),10-15。
14. 蔡淑桂(2002):發展遲緩幼兒之家長親職教育。特殊教育季刊,82,23-27。
15. 韓福榮、林寶貴(2000):學前聽覺障礙兒童家長溝通訓練課程教學效果之研究。特殊教育研究學刊,18,79-103。