|
第1章 參考文獻
[1]LL Hench, RJ Splinter, WC Allen, TK Greenlee: Bonding Mechenisms at Interface of Ceramic Prosthetic Materials. J. Biomed. Mater. Res. Symp. 2 (1972) 117. [2]J Gil-Albarova, R Garrido-Lahiguera, AJ Salinas, J Roman, A Bueno-Lozano, R Gil-Albarova, M Vallet-Regi: The in vivo performance of a sol-gel glass and a glass-ceramic in the treatment of limited bone defects. Biomaterials 25 (2004) 4639-45. [3]K Ohura, T Nakamura, T Yamamuro, T Kokubo, Y Ebisawa, Y Kotoura, M Oka: Bone-Bonding Ability of P2o5-Free Cao.Sio2 Glasses. J. Biomed. Mater. Res. 25 (1991) 357-65. [4]T Kitsugi, T Yamamuro, T Nakamura, T Kokubo: Bone Bonding Behavior of Mgo-Cao-Sio2-P2o5-Caf2 Glass (Mother Glass of A.W-Glass-Ceramics). J. Biomed. Mater. Res. 23 (1989) 631-48. [5]K Ohura, M Ikenaga, T Nakamura, T Yamamuro, Y Ebisawa, T Kokubo, Y Kotoura, M Oka: A Heat-Generating Bioactive Glass Ceramic for Hyperthermia. J. Appl. Biomater. 2 (1991) 153-59. [6]BA Blencke, P Alletsee, H Bromer, E Pfeil: Studies on Soft-Tissue Reactions to Implantation of Glass Ceramics. Arch. Orthop. Trauma Surg. 82 (1975) 135-46. [7]KR Williams, AW Blayney: An Optical and Electron-Microscopy Study of Materials Implanted in the Rat Middle-Ear .1. Carbon. Biomaterials 7 (1986) 283-86. [8]LL Hench: Bioceramics - from Concept to Clinic. J. Am. Ceram. Soc. 74 (1991) 1487-510. [9]RWE Mellish, MW Fergusonpell, GVB Cochran, R Lindsay, DW Dempster: A New Manual Method for Assessing 2-Dimensional Cancellous Bone-Structure - Comparison between Iliac Crest and Lumbar Vertebra. J. Bone Miner. Res. 6 (1991) 689-96. [10]T Yamamuro, J Shikata, H Okumura, T Kitsugi, Y Kakutani, T Matsui, T Kokubo: Replacement of the Lumbar Vertebrae of Sheep with Ceramic Prostheses. J. Bone Joint Surg.-Br. Vol. 72 (1990) 889-93. [11]P Sepulveda, JR Jones, LL Hench: Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 59 (2002) 340-48. [12]M Vallet-Regi, J Perez-Pariente, I Izquierdo-Barba, AJ Salinas: Compositional variations in time calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chem. Mat. 12 (2000) 3770-75. [13]A Martinez, I Izquierdo-Barba, M Vallet-Regi: Bioactivity of a CaO-SiO2 binary glasses system. Chem. Mat. 12 (2000) 3080-88. [14]I Izquierdo-Barba, AJ Salinas, M Vallet-Regi: In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO2 system. J. Biomed. Mater. Res. 47 (1999) 243-50. [15]P Sepulveda, JR Jones, LL Hench: In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J. Biomed. Mater. Res. 61 (2002) 301-11. [16]H Takadama, HM Kim, T Kokubo, T Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mat. 13 (2001) 1108-13. [17]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19. [18]H Eckert: Structural Characterization of Noncrystalline Solids and Glasses Using Solid-State Nmr. Prog. Nucl. Magn. Reson. Spectrosc. 24 (1992) 159-293. [19]S Hayakawa, K Tsuru, C Ohtsuki, A Osaka: Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J. Am. Ceram. Soc. 82 (1999) 2155-60. [20]S Hayakawa, S Tsuru, H Iida, C Ohtsuki, A Osaka: MAS NMR studies of apatite formation on 50CaO.50SiO(2) glass in a simulated body fluid. Phys. Chem. Glasses 37 (1996) 188-92. [21]M Baldus: Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog. Nucl. Magn. Reson. Spectrosc. 41 (2002) 1-47. [22]S Luca, H Heise, M Baldus: High-resolution solid-state NMR applied to polypeptides and membrane proteins. Accounts Chem. Res. 36 (2003) 858-65. [23]I Schnell: Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 45 (2004) 145-207. [24]WP Rothwell, JS Waugh, JP Yesinowski: High-Resolution Variable-Temperature P-31 Nmr of Solid Calcium Phosphates. J. Am. Chem. Soc. 102 (1980) 2637-43. [25]WP Aue, AH Roufosse, MJ Glimcher, RG Griffin: Solid-State P-31 Nuclear Magnetic-Resonance Studies of Synthetic Solid-Phases of Calcium-Phosphate - Potential Models of Bone-Mineral. Biochemistry 23 (1984) 6110-14. [26]RA Santos, RA Wind, CE Bronnimann: H-1 Cramps and H-1-P-31 Hetcor Experiments on Bone, Bone-Mineral, and Model Calcium-Phosphate Phases. J. Magn. Reson. Ser. B 105 (1994) 183-87. [27]A Kaflak-Hachulska, A Samoson, W Kolodziejski: H-1 MAS and H-1 -> P-31 CP/MAS NMR study of human bone mineral. Calcif. Tissue Int. 73 (2003) 476-86. [28]GY Cho, YT Wu, JL Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300 (2003) 1123-27. [29]Y Wu, JL Ackerman, ES Strawich, C Rey, HM Kim, MJ Glimcher: Phosphate ions in bone: Identification of a calcium-organic phosphate complex by P-31 solid-state NMR spectroscopy at early stages of mineralization. Calcif. Tissue Int. 72 (2003) 610-26. [30]T Isobe, S Nakamura, R Nemoto, M Senna, H Sfihi: Solid-state double nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J. Phys. Chem. B 106 (2002) 5169-76. [31]JCC Chan, R Ohnsorge, K Meise-Gresch, H Eckert, W Holand, V Rheinberger: Apatite crystallization in an aluminosilicate glass matrix: Mechanistic studies by X-ray powder diffraction, thermal analysis, and multinuclear solid-state NMR spectroscopy. Chem. Mat. 13 (2001) 4198-206. [32]BJ van Rossum, CP de Groot, V Ladizhansky, S Vega, HJM de Groot: A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J. Am. Chem. Soc. 122 (2000) 3465-72. [33]V Ladizhansky, S Vega: Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. J. Chem. Phys. 112 (2000) 7158-68. [34]J Gallardo, PG Galliano, JMP Lopez: Preparation and in vitro evaluation of porous silica gels. Biomaterials 23 (2002) 4277-84.
第2章 參考文獻 [1]F Bloch, WW Hansen, ME Packard: Phys. Rev 69 (1946) 127. [2]EM Purcell, HC Torrey, RV Pound: Phys. Rev 69 (1946) 37. [3]WC Dickinson: Phys. Rev 77 (1950) 736. [4]WG Proctor, FC Yu: Phys. Rev 77 (1950) 717. [5]E Hahn: Spin echoes. Phys. Rev 80 (1950) 580. [6]E Andrew, A Bradbury, R Eades: Nature(London) 182 (1958) 1695. [7]R Ernst, W Anderson: Rev. Sci. Instruments 37 (1966) 93. [8]Stern: Z. Phys. D: At., Mol. Clusters 10 (1988) 114. [9]ER Andrew, A Bradbury, RG Eades: NMR spectra from a crystal rotated at high speed. 182 (1958) 1659. [10]IJ Lowe: Free induction decays in rotating solids. 2 (1959) 285. [11]M Lee, Wl Goldburg: Nuclear magnetic resonance line narrowing by a rotating rf field. Phys. Rev 140 (1965) 1261. [12]SR Hartmann, EL Hahn: Nuclear Double Resonance in the Rotating Frame. Phys. Rev. 128 (1962) 2042. [13]A Pines, MG Gibby, JS Waugh: Proton-Enhanced NMR of Dilute Spins in Solids. J. Chem. Phys. 59 (1973) 569. [14]M Munowitz: Coherence and NMR, Wiley, New York, 1988. [15]M Feike, DE Demco, R Graf, J Gottwald, S Hafner, HW Spiess: Broadband multiple-quantum NMR spectroscopy. J. Magn. Reson. A 122 (1996) 214-21. [16]A Brinkmann, MH Levitt: Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann-Hahn sequences. Journal of Chemical Physics 115 (2001) 357-84. [17]NA Oyler, R Tycko: Multiple quantum C-13 NMR spectroscopy in solids under high- speed magic-angle spinning. Journal of Physical Chemistry B 106 (2002) 8382-89. [18]YH Tseng, Y Mou, CY Mou, JCC Chan: Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27 (2005) 266-70.
第3章 參考文獻 [1]J Gallardo, PG Galliano, JMP Lopez: Preparation and in vitro evaluation of porous silica gels. Biomaterials 23 (2002) 4277-84. [2]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19. [3]G Metz, XL Wu, SO Smith: Ramped-Amplitude Cross-Polarization in Magic-Angle-Spinning Nmr. J. Magn. Reson. Ser. A 110 (1994) 219-27. [4]NA Oyler, R Tycko: Multiple quantum C-13 NMR spectroscopy in solids under high-speed magic-angle spinning. J. Phys. Chem. B 106 (2002) 8382-89. [5]YH Tseng, Y Mou, CY Mou, JCC Chan: Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27 (2005) 266-70. [6]T Gullion, DB Baker, MS Conradi: New, Compensated Carr-Purcell Sequences. 89 (1990) 479-84.
第4章 參考文獻 [1]PJ Li, K Nakanishi, T Kokubo, K Degroot: Induction and Morphology of Hydroxyapatite, Precipitated from Metastable Simulated Body-Fluids on Sol-Gel Prepared Silica. Biomaterials 14 (1993) 963-68. [2]PJ Li, C Ohtsuki, T Kokubo, K Nakanishi, N Soga, T Nakamura, T Yamamuro: Apatite Formation Induced by Silica-Gel in a Simulated Body-Fluid. J. Am. Ceram. Soc. 75 (1992) 2094-97. [3]H Takadama, HM Kim, T Kokubo, T Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mat. 13 (2001) 1108-13. [4]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19. [5]HW Yan, K Zhang, CF Blanford, LF Francis, A Stein: In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure. Chem. Mat. 13 (2001) 1374-82. [6]P Sepulveda, JR Jones, LL Hench: In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J. Biomed. Mater. Res. 61 (2002) 301-11. [7]A Martinez, I Izquierdo-Barba, M Vallet-Regi: Bioactivity of a CaO-SiO2 binary glasses system. Chem. Mat. 12 (2000) 3080-88. [8]M Vallet-Regi, AM Romero, CV Ragel, RZ LeGeros: XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J. Biomed. Mater. Res. 44 (1999) 416-21. [9]YH Tseng, JH Zhan, KSK Lin, CY Mou, JCC Chan: High resolution P-31 NMR study of octacalcium phosphate. Solid State Nucl. Magn. Reson. 26 (2004) 99-104. [10]YT Wu, MJ Glimcher, C Rey, JL Ackerman: A Unique Protonated Phosphate Croup in Bone-Mineral Not Present in Synthetic Calcium Phosphates - Identification by P-31 Solid-State Nmr-Spectroscopy. J. Mol. Biol. 244 (1994) 423-35. [11]J Tropp, NC Blumenthal, JS Waugh: Phosphorus Nmr-Study of Solid Amorphous Calcium-Phosphate. J. Am. Chem. Soc. 105 (1983) 22-26. [12]JP Yesinowski, H Eckert: Hydrogen Environments in Calcium Phosphates - H-1 Mas Nmr at High Spinning Speeds. J. Am. Chem. Soc. 109 (1987) 6274-82. [13]GY Cho, YT Wu, JL Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300 (2003) 1123-27. [14]WP Rothwell, JS Waugh, JP Yesinowski: High-Resolution Variable-Temperature P-31 Nmr of Solid Calcium Phosphates. J. Am. Chem. Soc. 102 (1980) 2637-43. [15]M Vallet-Regi, J Perez-Pariente, I Izquierdo-Barba, AJ Salinas: Compositional variations in time calcium phosphate layer growth on gel glasses soaked in a simulated body fluid. Chem. Mat. 12 (2000) 3770-75. [16]A Abragam: Principles of Nuclear Magnetism. (1961). [17]M Bertmer, H Eckert: Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl. Magn. Reson. 15 (1999) 139-52. [18]YH Tseng, Y Mou, CY Mou, JCC Chan: Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27 (2005) 266-70. [19]Engelsbe.M, RE Norberg: Nuclear Magnetic-Resonance and Nuclear-Spin Dynamics in Inp. 5 (1972) 3395-&. [20]AJ VEGA, GW SCHERER: Study of Structural Evolution of Silica Gel Using 1H and 29Si NMR. J. Non-Cryst. Solids 111 (1989) 153. [21]MM Pereira, AE Clark, LL Hench: Effect of Texture on the Rate of Hydroxyapatite Formation on Gel-Silica Surface. J. Am. Ceram. Soc. 78 (1995) 2463-68. [22]J Gallardo, PG Galliano, JMP Lopez: Preparation and in vitro evaluation of porous silica gels. Biomaterials 23 (2002) 4277-84. [23]RA Santos, RA Wind, CE Bronnimann: H-1 Cramps and H-1-P-31 Hetcor Experiments on Bone, Bone-Mineral, and Model Calcium-Phosphate Phases. J. Magn. Reson. Ser. B 105 (1994) 183-87. [24]A Kaflak-Hachulska, A Samoson, W Kolodziejski: H-1 MAS and H-1 -> P-31 CP/MAS NMR study of human bone mineral. Calcif. Tissue Int. 73 (2003) 476-86. [25]GY Cho, YT Wu, JL Ackerman: Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. 300 (2003) 1123-27. [26]BJ van Rossum, CP de Groot, V Ladizhansky, S Vega, HJM de Groot: A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J. Am. Chem. Soc. 122 (2000) 3465-72. [27]V Ladizhansky, S Vega: Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. J. Chem. Phys. 112 (2000) 7158-68. [28]YT Wu, JL Ackerman, HM Kim, C Rey, A Barroug, MJ Glimcher: Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. 17 (2002) 472-80. [29]K Onuma, A Ito: Cluster growth model for hydroxyapatite. Chem. Mat. 10 (1998) 3346-51. [30]PX Zhu, Y Masuda, T Yonezawa, K Koumoto: Investigation of apatite deposition onto charged surfaces in aqueous solutions using a quartz-crystal microbalance. J. Am. Ceram. Soc. 86 (2003) 782-90. [31]PX Zhu, Y Masuda, K Koumoto: The effect of surface charge on hydroxyapatite nucleation. Biomaterials 25 (2004) 3915-21. [32]BJ Tarasevich, CC Chusuei, DL Allara: Nucleation and growth of calcium phosphate from physiological solutions onto self-assembled templates by a solution-formed nucleus mechanism. J. Phys. Chem. B 107 (2003) 10367-77. [33]RM Wilson, JC Elliott, SEP Dowker: Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am. Miner. 84 (1999) 1406-14. [34]LJ Skipper, FE Sowrey, DM Pickup, V Fitzgerald, R Rashid, KO Drake, ZJ Lin, P Saravanapavan, LL Hench, ME Smith, RJ Newport: Structural studies of bioactivity in sol-gel-derived glasses by X-ray spectroscopy. J. Biomed. Mater. Res. Part A 70A (2004) 354-60. [35]ME Fleet, XY Liu: Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J. Solid State Chem. 177 (2004) 3174-82. [36]KH Karlsson, K Froberg, T Ringbom: A Structural Approach to Bone Adhering of Bioactive Glasses. J. Non-Cryst. Solids 112 (1989) 69-72. [37]S Hayakawa, K Tsuru, C Ohtsuki, A Osaka: Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J. Am. Ceram. Soc. 82 (1999) 2155-60. [38]H Takadama, HM Kim, T Kokubo, T Nakamura: X-ray photoelectron spectroscopy study on the process of apatite formation on a sodium silicate glass in simulated body fluid. J. Am. Ceram. Soc. 85 (2002) 1933-36.
第5章 參考文獻 [1]H Takadama, HM Kim, T Kokubo, T Nakamura: Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro. Chem. Mat. 13 (2001) 1108-13. [2]S Hayakawa, K Tsuru, C Ohtsuki, A Osaka: Mechanism of apatite formation on a sodium silicate class in a simulated body fluid. J. Am. Ceram. Soc. 82 (1999) 2155-60. [3]H Takadama, HM Kim, T Kokubo, T Nakamura: X-ray photoelectron spectroscopy study on the process of apatite formation on a sodium silicate glass in simulated body fluid. J. Am. Ceram. Soc. 85 (2002) 1933-36. [4]P Saravanapavan, JR Jones, RS Pryce, LL Hench: Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J. Biomed. Mater. Res. Part A 66A (2003) 110-19. [5]WJ Shaw, JR Long, JL Dindot, AA Campbell, PS Stayton, GP Drobny: Determination of statherin N-terminal peptide conformation on hydroxyapatite crystals. J. Am. Chem. Soc. 122 (2000) 1709-16. [6]M Gilbert, WJ Shaw, JR Long, K Nelson, GP Drobny, CM Giachelli, PS Stayton: Chimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion. J. Biol. Chem. 275 (2000) 16213-18. [7]WJ Shaw, JR Long, AA Campbell, PS Stayton, GP Drobny: A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. J. Am. Chem. Soc. 122 (2000) 7118-19. [8]JR Long, WJ Shaw, PS Stayton, GP Drobny: Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 40 (2001) 15451-55.
|