跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許靜怡
研究生(外文):Ching-Yi Hsu
論文名稱:利用腔體震盪吸收光譜法偵測二氟二溴甲烷光分解後,溴分子的振動分佈
論文名稱(外文):Vibrational distribution of Br2 molecule following photodissociation of CF2Br2 by using cavity ring down absorption spectroscopy.
指導教授:林金全林金全引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:88
中文關鍵詞:腔體震盪吸收光譜法二氟二溴甲烷光分解
外文關鍵詞:cavity ring down absorption spectroscopyCF2Br2photodissociation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腔體振盪吸收光譜法(Cavity Ring-down Spectroscopy)技術是近年來發展迅速的一種測量吸收光譜的新方法,其振盪腔體(Ring-down Cavity)是由兩片在特定波段反射率很高的(通常反射率高達99.9%以上)的反射鏡所組成,雷射光進入腔體後會在腔體內來回的反射直到雷射光強度衰退至近乎零,雷射光強度對時間呈現一指數衰減(exponential decay) ,當雷射光頻率與待測分子之能階躍遷(transition)達共振(resonance)時,會使雷射光的衰變加速,以雷射頻率對雷射波長作圖,即能得到待測分子的吸收光譜。
我們著重於研究二氟二溴甲烷(CF2Br2)被248nm光分解後,光分解產物溴分子的量子產率及初生態的振動分布。二氟二溴甲烷(CF2Br2)有兩個主要的分解通道
CF2Br2 → CF2Br + Br ΔH=274 kJ/mol

CF2Br2 →CF2 + Br2 ΔH=231 kJ/mol
在過去的研究中,大部分的研究團隊都認為最主要的光分解通道為解離一個溴原子;但我們利用腔體振盪吸收光譜法,成功地偵測到了另一個光分解的通道; 溴分子的解離通道。我們得到溴分子的量子產率為0.038±0.009。另一方面我們發現在二氟二溴甲烷光分解後所得到的溴分子的初生態振動分布相較於三溴甲烷屬於冷振動的分布。我們認為這種光分解所得的溴分子,是來自於二氟二溴甲烷吸收248 nm後,從激發的電子能態(excited electronic states)經由內轉換(internal conversion)和高振動態的電子基態(highly vibrational levels of ground state),進而分解成產物。我們利用已知理論計算從能量的觀點去証實產生溴分子的這個解離通道確實可以發生。
Cavity ring-down Spectroscopy (CRDS) is a relatively new direct absorption technique and its applications are developed very quickly in recently years. The method is based on measurement of the decay rate of a pulse light trapped in an optical cavity which is formed by a pair of highly reflective(R>99.9%) mirrors. A plot of decay rate as a function of laser frequency gives the absorption spectrum.
As for photodissociation studies of CF2Br2, the major dissociation channels are found to be
CF2Br2 → CF2Br + Br ΔH=274 kJ/mol

CF2Br2 → CF2 + Br2 ΔH=231 kJ/mol
We used a cavity ring-down spectroscopy (CRDS) to study of nascent Br2 following photodissociation of CF2Br2. The quantum yield of Br2 is found to be 0.038±0.009 following photodissociation of CF2Br2 at 248nm. According to the absorption spectrum, the nascent vibrational distribution was obtained. A comparison with the CHBr3 case reveals that nascent vibrational distribution leads to vibrationally cool. The excited parent molecules (CF2Br2) may transfer into highly vibrational levels of their electronic ground state via internal conversion. The results agree with a given theoretical calculation.
Acknowledgments..........................................IVChinese Abstract…………………………………………………… VI
Abstract……………………………………………………………VIII
Figure Captions………………………………………………………IX
Table Captions………………………………………………………XII

Chapter 1 Introduction of Cavity Ring-down Spectroscopy (CRDS)…1
1-1 Sensitive Absorption Technique-CRDS………………………1 1-2 CRDS History and Development……………………………4
1-3 CRDS Applications……………………………………………8
1-3-1 Multiplex cavity ring-down spectroscopy………………8 A. HPLC- CRDS…………………………………………………8
B. Pulse-stacked CRDS…………………………………………10
C. RSP (Ring-down spectral photography)……………………10 1-3-2 Polarized light in CRDS…………………………………11 A. CRDP (Cavity Ring-Down Polarimetry)……………………12 B. PD-CRDS(Polarization-dependent Cavity Ring-Down Spectroscopy)…………………………………………………13
1-3-3 Cavity ring-down spectroscopy on Condensed Media…14
A. Surfaces………………………………………………… 14
B. Thin films…………………………………………………16
C. Liquid phase………………………………………………17
References…………………………………………………………19
Chapter 2 Principles of Cavity Ring-down Spectroscopy (CRDS)…21
2-1 Cavity Ring-down Apparatus………………………………21
2-1-1 Laser systems………………………………………………23 A. Nd:YAG laser………………………………………………23
B. Dye laser……………………………………………………24
C. Photolysis laser(KrF excimer laser)………………………24 2-1-2 Digital Oscilloscope………………………………………24 2-1-3 Control systems…………………………………………25
A. Delay generator (DG355)………………………………25
B. Pressure……………………………………………………26
2-1-4 Detection system (PMT)………………………………26
2-1-5 Dye (C503)………………………………………………27
2-2 Data Analysis for CRDS………………………………………28 2-3 Sensitivity of CRDS…………………………………………33 2-3-1 Theoretical Discussion…………………………………33
2-3-2 Factor which influence the sensitivity of CRDS……36 2-4 Cavity Stability……………………………………………42 References…………………………………………………………47 Chapter 3 Vibrational distribution of Br2 following photodissociation ofCF2Br2………………………………………49 3-1 Introduction……………………………………………………49 3-1-1 The transition of halogens in visible and near infrared region …………………………………………………53
3-2 Experimental Setup…………………………………………58
3-3 Results and Discussions…………………………………63
3-3-1 Nascent vibrational distribution of Br2 fragment…63
3-3-2 Quantum yield for Br2 elimination……………………71 3-3-3 Reaction mechanism of Br2 following the photodissociation of CF2Br2……………………………………76
3-4 Conclusions……………………………………………………82 3-5 Future works…………………………………………………83 References…………………………………………………………84
1.J.J. Scherer, J. B. Paul, A. O’Keefe,and R. J. Saykally, Chem. Rev. 97, 25 (1997).
2.G. Berden, R. Peeter, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
3.J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, Appl. Opt. 19, 144 (1980).
4.J. M. Herbelin, and J. A. Mckay, Appl. Opt. 20, 3341 (1980).
5.M. A. Kwok, J. M. Herbelin, and R. H. Ueunten, Opt. Eng.21, 979 (1982).
6.D. Z. Anderson, J.C. Frisch, and C.S. Masser, Appl. Opt. 23, 1238 (1984).
7.A. Kastler, Nouv. Rev. Optique. 5, 133 (1974).
8.A. O’Keefe, and D.A. G. Deacon, Rev. Sci. Instrum. 59,2544 (1988).
9.T. Yu, M. C. Lin, J. Am. Chem. Soc. 115, 4371 (1993).
10.K. L. Snyder, and R. N. Zare, Anal. Chem. 75, 3086 (2003).
11.K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, Anal. Chem. 77, 1177 (2005).
12.E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare Rev. Sci. Instrum. 70, 4 (1999).
13.J. J. Scherer, Chem. Phys. Lett. 192, 143 (1998).
14.J. J. Scherer, B. Joshua, J. B. Paul, H. Jiao, and O’Keefe, Appl. Opt. 40, 6725 (2001).
15.T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. A 104, 5959 (2000).
16.T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Opt. S. A. B-Opt. Phys. 19, 125 (2002).
17.T Muller, K. B. Wiberg, and P. H. Vaccaro, Rev. Sci. Instrum 73, 1340 (2002).
18.R. Engeln, G. Berden, E. vandenBerg, and G. Meijer, J. Chem. Phys. 107, 4459 (1997).
19.A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, Chem. Phys. Lett. 280, 104 (1997).
20.A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, Rev. Sci. Instrum. 68, 2978 (1997).
21.A. C. R. Pipino, Phys. Rev. Lett. 83, 3093 (1999).
22.A. C. R. Pipino, Appl. Opt. 39, 1449 (2000).
23.R. Engeln, G. von Helden, J. A. Andre, and G. Meijer, J. Chem. Phys. 110, 2732 (1999).
24.A. C. R. Pipino, and V. Silin, Chem. Phys Lett. 404, 361 (2005).
1. G. Berden, R. Peeter, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000).
2. D. Romanini, and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993).
3. A. O’Keefe, and O. Lee, Am. Lab. 21, 19 (1989).
4. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier,
R. J. Saykally, and A. O’Keefe, Chem. Phys. Lett. 245, 273 (1995).
5. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem.
Phys. Lett. 264, 316 (1997).
6. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc. Faraday Trans. 94(3), 337 (1998).
7. J. J. Scherer, J. B. Paul, A. O’keefe, and R. J. Saykally, Chem. Rev.
97, 25 (1997).
8. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, Rev. Sci. Instrum. 66, 2821 (1995).
9. W. M. Peter, and H.E. Joseph, Laser 1998.
10. J. T. Hodges, J. P. Looney, and R. D. v a n Zee, J. chem. Phys. 105, 10278 (1996).
11. P. Zalicki, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, and C. H. Kruger, Chem. Phys. Lett. 234, 269 (1995).
12. M. Zhao, E. H. Wahl, T. G. Owano, C. C. Largent, R. N. Zare, and C. H. Kruger, Chem. Phys. Lett. 318, 555 (2000).
13. W. Demtröder, Laser Spectroscopy (Springer Verlag: New York, 1981, p 163.)
14. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, Rev.
Sci. Instrum. 66, 2821 (1995).
15. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and
M. A. Wodtke, Chem. Phys. Lett. 217, 112 (1994).
16. P. Zalicki, and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).
17. J. T. Hodges, P. Looney, and R. D. van Zee, Appl. Opt. 35, 4112 (1995).
18. D. Romanini,and K. K. Lehmann, J. Chem. Phys. 102, 633 (1995).
19. A. Siegman, Lasers (University Science Books: Mill Valley, CA,
1986)
20. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, In Advances
in Metal and Semiconductor Clusters, 1995, VIII, 149-180.
21. J. Martin, B. A. Paldus, P. Zaliki, E. H. Wahl, T. G. Owano, J. S. Harris, C. H. Kruger, and R. N. Zare, Chem. Phys. Lett. 258, 63 (1996).
22. A. O’Keefe,and D. A. G. Deacon, Rev. scient. Instrum. 59, 2544 (1988).
23. W. M. Peter, and H. E. Joseph, Lasers (John Wiley & Sons, New York, 1988).
24. Yurii A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Adam Hilger press, New York, 1992), chapter 1~3.
25. R. W. F. Gross, and J. F. Bott, Handbook of Chemical Lasers (Wiley-Interscience Publication, New York, 1976), chapter 3.
1.R. R. Garcia, and S. Solomon, J. Geophy. Res. 99, 12937 (1994).
2.J. H. Butler, Geophys. Res. Lett. 21, 185 (1994).
3.J. M. Lobert, J. H. Butler, S. A. Montzke, L. S. Geller, R. C. Myers, and J. W. Elkins, Science 267, 1002 (1995).
4.H. Kuhn, Z. Phys 39, 77 (1926).
5.P. J. Fraser, D. E. Oram, C. E. Reeves, S. A. Penkett, and A. McCulloch, J. Geophys. Res. 104, 15985 (1999).
6.D. E. Mann, and B. A. Thrush, J. Chem. Phys. 33, 1732 (1960).
7.J. P. Simons, A. J. Yarwood, Trans. Faraday Soc. 57, 2167 (1961).
8.J. C. Walton, J. Chem. Soc., Faraday Trans. 68, 1559 (1972).
9.C. L. Sam, and J. T. Yardley, Chem. Phys. Lett. 61, 509 (1979).
10.F. B. Wampler, J. J. Tiee, W. W. Rice, and R. C. Oldenborg, J. Chem. Phys. 71, 3926 (1979).
11.D. Krajnovich, Z. Zhang, L. Butler, and Y. T. Lee, J. Phys. Chem. 88, 4561 (1984).
12.T. R. Gosnell, A. J. Taylor, J. L. Lyman, J. Chem. Phys. 94, 5949 (1991).
13.P. Felder, X. Yang, G. Baum, J. R. Huber, Israel J. Chem. 43, 33 (1993).
14.J. Hoeymissen, W. van Uten, and J. Peeters, Chem. Phys. Lett. 226, 159 (1994).
15.R. C. Melanie, and B. B. George J. Phys Chem. A 104, 11212 (2000).
16.L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).
17.L. A. Curtiss, K. Raghavachari, J. A. Pople, J. Chem. Phys. 98, 1293 (1993).
18.M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Montgomery, J. A. Peterson, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head- Gordon, C. Gonzales, and J. A. Pople, GAUSSIAN94, Revision E2; Gaussian, Inc.: Pittsburgh, PA, 1994.
19.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malik, A. D. Rabuk, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98 (Revision A.7); Gaussian, Inc.: Pittsburgh, PA, 1998.
20.DALTON Release 1.0 1997 is an ab initio electronic structure program, written by T.Helgaker, H. J. Å. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H. Ågren, T. Anderson, K. L. Bak, V. Bakken, O. Christiansen, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. Saue, P. R. Taylor, O. Vahtras.
21.J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
22.C. W. Jr. McCurdy, T. N. Rescigno, D. L. Yeager, and V. McKoy, In Methods of Electronic Structure Theory; Schaefer, H. F. III., Ed.; Plenum Press: New York, 1977; p 339.
23.R. Bauernschmitt, and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
24.R. Bauernschmitt, M. Haser, O. Trutler, and R. Ahlrichs, Chem. Phys. Lett. 264, 573 (1997).
25.R. E. Stratman, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998).
26.J. F. Stanton, and R. J. Bartlett, J. Chem. Phys. 98, 7029.
27.ACES II is a program product of the Quantum Theory Project, University of Florida. Authors: J. F. Stanton, J. Gauss, J. D. Watts, M. Nooijen, N. Oliphant, S. A. Perera, P. G. Szalay, W. J. Lauderdale, S. R. Gwaltney, S. Beck, A. Balkova´, D. E. Bernholdt, K. K. Baeck, P. Rozyczko, H. Sekino, C. Hober, R. J. Bartlett, Integral packages included are VMOL (Almlo¨f, J.; Taylor, P. R.); VPROPS (Taylor, P. R.); ABACUS (Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.; Taylor, P. R.).
28.R.S. Mulliken, Phys.Rev. 46, 549 (1934).
29.R.S. Mulliken, Phys.Rev. 57, 500 (1940).
30.R.S. Mulliken, J. Chem. Phys. 46, 549 (1934).
31.M. C. Heaven, Chem. Soc. Rev. 15, 405 (1986).
32.J. E. Smedley, H. K. Haugen, S. R. Leone, J. Chem. Phys. 87(5), 2700 (1987).
33.R. F. Barrow, T. C. Clark, J. A. Coxon, and K. K. Yee, J. Mol. Spectrosc. 51, 428 (1974).
34.J. A. Coxon, J. Quant. Spectrosc. Radiat. Transfer. 12, 639 (1972).
35.G. Herzberger, In Molecular Spectra and Molecular Structure; Ⅱ. Ed.; D. Van Nostrand Company: New York, 1951; p 208.
36.Hong-Yi Huang, Wan-Ting Chuang, R. C. Sharma, Ching-Yi Hsu, King-Chuen Lin, and Ching-Han Hu J. Chem. Phys. 121, 5253 (2004).
37.www.esf.edu/chemistry/dibble/fch511/cfcspectra.xls.
38.V. L. Orkin, and E. E. Kasimovskaya, J. Atmo. Chem. 21, 1 (1995).
39.Q. Zhang, U. Marvet, and M. Dantus, J. Chem. Phys. 109, 4428 (1998).
40.B. Abel, H, Hippler, N. Lange, J. Schuppe, and J. Troe, J. Chem. Phys. 101, 9681 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. [5]李弘暉、吳瓊治( 2003 ),「以六標準差組織文化打造競爭優勢-美商摩托羅拉 ( Motorola) 公司之個案分析」,品質月刊39卷3期,P73-77。
2. ◎王嘉州,「中國大陸中央與地方關係研究文獻之分析」,「東亞季刊」第32卷第4期
3. ◎王信賢,「當代西方『中國研究』之新制度典範分析」,中國大陸研究,第43卷第8期(2000年8月)
4. [4]朱慧德、王摒非(2002),「六標準差的威力」,品質月刊,11 月,P42-46。
5. ◎張雅君,「論中共的地方主義」,中國大陸研究,第36卷第10期(1993年10月)
6. 陳信木、林佳瑩(1996)。調查資料之遺漏值的處理-以熱卡插補法為例。調查研究,第3卷:75-106。
7. [8]林懿宏( 2001 ),「六個希格瑪在歐洲推行的成效」,管理雜誌,8 月號326 期。
8. [6]林偉( 2002 ),「二十一世紀之Business Management—六個標準差( 六標準差, 6σ)」,品質月刊38卷3期,P87-90。
9. ◎趙建民,「塊塊壓條條:中國大陸中央與地方新關係」,中國大陸研究,第38卷第6期(1995年6月)
10. [1]王丕承(2000),「超品質策略-6σ」,能力雜誌,9 月,P24-27。
11. ◎徐斯勤,「新制度主義與當代中國研究:理論與應用之間對話的初步觀察」,政治學報(台北),vol.32(2001年12月)
12. ◎夏樂生,「從大陸地方政府與企業之關係看地方主義的滋長」,共黨問題研究,第25卷第4期(1999年4月)
13. ◎張雅君,「論中共的地方主義」,中國大陸研究,第36卷第10期(1993年10月)
14. ◎趙穗生,「中共中央與地方關係的演變—從強制到協商」,中國大陸研究,第35卷第8期(1992年8月)
15. ◎夏樂生,「從大陸地方政府與企業之關係看地方主義的滋長」,共黨問題研究,第25卷第4期(1999年4月)