( 您好!臺灣時間:2024/07/20 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yin-Chieh Fu
論文名稱(外文):Modeling of Androgen Receptor Activated Gene Transcription in Nervous System
外文關鍵詞:androgen receptorPSASK-N-BE(2)nervous system
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雄性素除了對於男性泌尿生殖系統的生長發育、性行為上具有重要功能外,亦能影響其他組織的發育及生長,如:肌肉、神經、骨骼…等等。睪固酮(testosterone)及dihydrotesterone為兩種已知於人體中具生物活性之雄性素。雄性素與其受體(AR)結合後構型改變,AR與原先相結合的蛋白質脫離,改而結合另一群蛋白質形成新的蛋白質複合體。活化的AR進入細胞核,辨識DNA上特定序列稱為androgen response element (ARE),協同其他輔助因子調控基因表現。序列分析結果發現前列腺特異抗原(PSA)啟動子區域存在數個ARE,其基因表現受雄性素所活化。因此,利用PSA來研究AR調控基因表現機制是很廣泛被使用的模式。
將PSA啟動子上游加強子移除後,近端1.5 kb PSA啟動子能組織特異性地表現在斑馬魚的神經、骨骼、及肌肉系統。同時,近端1.5 kb PSA啟動子在神經系統衍生而來的細胞株,可經由雄性素刺激而有較強表現能力。基於上述實驗結果,我們利用近端1.5 kb PSA啟動子啟動報導基因表現,作為研究AR於神經系統調控基因表現的工具。一方面利用綠色螢光蛋白作為報導基因,建立in vivo 斑馬魚模式,研究環境荷爾蒙對神經系統發育的影響;另一方面利用螢火蟲螢光酵素(luciferase)作為報導基因,以SK-N-BE(2)細胞建立體外細胞模式,期望藉由報導基因表現的變化,來研究AR在神經系統上調控基因表現及神經分化過程的功能與機制。
首先將人類AR表現載體轉染到SK-N-BE(2)細胞,得到AR持續表現細胞株(SK-AR clones)。其中SK-AR62細胞表現高量AR、呈現雄性素依賴生長,但一般常用來抑制雄性素功能的抗雄性素卻無法拮抗此一雄性素促進細胞生長的的功能。進一步將近端1.5 kb PSA啟動子啟動報導基因表現載體轉染入SK-AR62細胞,或將AR與報導基因同時表現的載體轉染至SK-N-BE(2)細胞得到的報導細胞株:SK-AR-Luc及SK-PLAR 細胞株。然而,有報導基因表現的細胞株,其報導基因表現不受雄性素影響,呈現持續性表現。雖然在報導基因細胞株建立上並未得預期結果,但我們得到SK-AR62及SK-PLAR54兩株細胞,分別可藉由retinoic acid或血清去除的處理方式,誘導突觸伸長、進行神經分化,使細胞在型態上更趨近於神經細胞,提供作為研究AR在神經分化過程中所扮演的功能很好的材料。
Androgens are steroids critical for the development and maintenance of the male phenotype. Androgens are known to regulate functions of various tissues, including muscular tissue, nervous system, bone, and sexual behavior. Testosterone (T) and its metabolite dihydrotestosterone (DHT) are well-known androgens exert their effects through binding to the androgen receptor (AR), which is a transcription factor. Hormone binding promotes the nuclear translocation of the AR, where AR recognizes certain DNA sequence called androgen response element (ARE) and regulates gene expression. AR positively regulates the transcription of prostate specific antigen (PSA) mainly through binding to AREs in the proximal region and the PSA distal enhancer region of PSA promoter. To understand androgen functions in the nervous system, we introduced GFP, reporter gene, regulated by PSA promoter into zebrafish embryos. Examine GFP expression in zebrafish embryos by using fluorescent microscope, revealing that PSA1.5 promoter expresses significantly in notochord, muscle, and neuronal tissues. Androgens not only play an important role in reproductive tissues, but also in nervous system during neurogenesis. Indeed, neuronal expression of PSA promoter is further confirmed by using transient transfection in different human neuronal cell lines. We want to set up a model to study AR mediated genomic effect in nervous cells by using PSA1.5 promoter as a tool. Here we choose human neuroblastoma cell line SK-N-BE(2) as an in vitro model because it may differentiate into neuron-like phenotype and has been studied in estrogen receptor regulated neuron differentiation. Human AR are introduced into SK-N-BE(2) cells by stable transfection derived SK-AR62 line. Further characterization showed that SK-AR62 grows in an androgen-dependent manner. However, anti-androgen cannot inhibit DHT induced cell proliferation in SK-AR62. Stable transfection of PSA1.5-Luc into SK-AR62 results in constitutive expression of luciferase disregard of hormone treatment. Furthermore, introduction of plasmids harboring AR expression cassette and PSA1.5-Luc reporter into SK-N-BE(2) to derive SK-PLAR clones, results in constitutive expression of luciferase as aforementioned result. Among the SK-PLAR clones studied, SK-PLAR54 can differentiate neuron-like morphology upon 3 days culture in serum free medium. Overall, these results indicate PSA1.5-Luc expresses androgen-independently in the presence of AR in SK-N-BE(2) derived cells. The AR may activate the 1.5Kb PSA promoter ligand-independently in SK-N-BE(2) cells.
Contents I
Figures III
Abbreviation IV

中文摘要 1
Abstract 3
Introduction 4
Androgens and androgen receptor 4
Prostate-specific antigen (PSA) 7
Zebrafish as an animal model 8
Neuroblastoma 10
Specific aims 11
Materials and methods 12
Materials 12
Methods 12
PCR amplification 12
Plasmid constructs 12
Plasmid DNA preparation 13
Zebrafish 13
Microinjection of zebrafish embryos 13
Fluorescene microscopic observation 14
Cell culture 14
Cell subculture 15
Reporter gene transfection and luciferase assay 15
Stable transfection of cells 15
Protein extraction and quantification 16
Sodium dodecyl sulfate polyacrylamide gel electrophoreis
Western blotting 17
Immunofluorescene cell staining 17
Crystal violet staining 18
Results 19
Expression pattern of a GFP gene driven by the PSA promoter in zebrafish embryos 19
Zebrafisfh harboring 1.5kb-PSA-GFP transgene stable
line establishment 17
PSA promoter transcriptional activity in prostate and
breast cancer cell lines 20
PSA promoter transcriptional activity in neuronal
cancer cell lines 20
SK-AR stable line establishment 21
Androgen-dependent cell proliferation of SK-AR62 21
Introduction of PSA1.5-Luc reporter gene into SK-AR62 22
SK-PLAR stable line establishment 22
Serum free treatment induced SK-PLAR54 cells
differentiation 23
Retinoic acid treatment induced SK-AR62 cells
differentiation 23
Discussion 25
Reference 41
Anderson, J. (2003). The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int 91, 455-461.
Balk, S. P., Ko, Y. J., and Bubley, G. J. (2003). Biology of prostate-specific antigen. J Clin Oncol 21, 383-391.
Bender, J. (2004). DNA methylation and epigenetics. Annu Rev Plant Biol 55, 41-68.
Bialek, M., Zaremba, P., Borowicz, K. K., and Czuczwar, S. J. (2004). Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol 56, 509-518.
Brawer, M. K., Chetner, M. P., Beatie, J., Buchner, D. M., Vessella, R. L., and Lange, P. H. (1992). Screening for prostatic carcinoma with prostate specific antigen. J Urol 147, 841-845.
Brennan, C., and Henderson, L. P. (1995). Androgen regulation of neuromuscular junction structure and function in a sexually dimorphic muscle of the frog Xenopus laevis. J Neurobiol 27, 172-188.
Brinkmann, A. O. (2001). Molecular basis of androgen insensitivity. Mol Cell Endocrinol 179, 105-109.
Bross, R., Casaburi, R., Storer, T. W., and Bhasin, S. (1998). Androgen effects on body composition and muscle function: implications for the use of androgens as anabolic agents in sarcopenic states. Baillieres Clin Endocrinol Metab 12, 365-378.
Brown, C. J., Goss, S. J., Lubahn, D. B., Joseph, D. R., Wilson, E. M., French, F. S., and Willard, H. F. (1989). Androgen receptor locus on the human X chromosome: regional localization to Xq11-12 and description of a DNA polymorphism. Am J Hum Genet 44, 264-269.
Candi, E., Knight, R. A., Spinedi, A., Guerrieri, P., and Melino, G. (1997). A possible growth factor role of IL-6 in neuroectodermal tumours. J Neurooncol 31, 115-122.
Carvan, M. J., 3rd, Dalton, T. P., Stuart, G. W., and Nebert, D. W. (2000). Transgenic zebrafish as sentinels for aquatic pollution. Ann N Y Acad Sci 919, 133-147.
Catalona, W. J., Smith, D. S., Ratliff, T. L., Dodds, K. M., Coplen, D. E., Yuan, J. J., Petros, J. A., and Andriole, G. L. (1991). Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 324, 1156-1161.
Chang, C., Saltzman, A., Yeh, S., Young, W., Keller, E., Lee, H. J., Wang, C., and Mizokami, A. (1995). Androgen receptor: an overview. Crit Rev Eukaryot Gene Expr 5, 97-125.
Ciana, P., Ghisletti, S., Mussi, P., Eberini, I., Vegeto, E., and Maggi, A. (2003). Estrogen receptor alpha, a molecular switch converting transforming growth factor-alpha-mediated proliferation into differentiation in neuroblastoma cells. J Biol Chem 278, 31737-31744.
Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L., and Ross, R. A. (1989). Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49, 219-225.
Cleutjens, K. B., van der Korput, H. A., van Eekelen, C. C., van Rooij, H. C., Faber, P. W., and Trapman, J. (1997). An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 11, 148-161.
Cleutjens, K. B., van Eekelen, C. C., van der Korput, H. A., Brinkmann, A. O., and Trapman, J. (1996). Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271, 6379-6388.
Cooke, B. M., and Woolley, C. S. (2005). Gonadal hormone modulation of dendrites in the mammalian CNS. J Neurobiol 64, 34-46.
Drengler, S. M., Handa, R. J., and Jones, K. J. (1997). Effects of axotomy and testosterone on androgen receptor mRNA expression in hamster facial motoneurons. Exp Neurol 146, 374-379.
Gibbs, P. D., Peek, A., and Thorgaard, G. (1994). An in vivo screen for the luciferase transgene in zebrafish. Mol Mar Biol Biotechnol 3, 307-316.
Gilmore, D. P. (2002). Sexual dimorphism in the central nervous system of marsupials. Int Rev Cytol 214, 193-224.
Goldstein, L. A., Kurz, E. M., and Sengelaub, D. R. (1990). Androgen regulation of dendritic growth and retraction in the development of a sexually dimorphic spinal nucleus. J Neurosci 10, 935-946.
Grynspan, F., Griffin, W. B., Mohan, P. S., Shea, T. B., and Nixon, R. A. (1997). Calpains and calpastatin in SH-SY5Y neuroblastoma cells during retinoic acid-induced differentiation and neurite outgrowth: comparison with the human brain calpain system. J Neurosci Res 48, 181-191.
Haendler, B., Schuttke, I., and Schleuning, W. D. (2001). Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3eta. Mol Cell Endocrinol 173, 63-73.
Huang, Z. Q., Li, J., and Wong, J. (2002). AR possesses an intrinsic hormone-independent transcriptional activity. Mol Endocrinol 16, 924-937.
Huppenbauer, C. B., Tanzer, L., DonCarlos, L. L., and Jones, K. J. (2005). Gonadal steroid attenuation of developing hamster facial motoneuron loss by axotomy: equal efficacy of testosterone, dihydrotestosterone, and 17-beta estradiol. J Neurosci 25, 4004-4013.
Johnson, M. A., Hernandez, I., Wei, Y., and Greenberg, N. (2000). Isolation and characterization of mouse probasin: An androgen-regulated protein specifically expressed in the differentiated prostate. Prostate 43, 255-262.
Joubert, Y., and Tobin, C. (1995). Testosterone treatment results in quiescent satellite cells being activated and recruited into cell cycle in rat levator ani muscle. Dev Biol 169, 286-294.
Kasperk, C., Fitzsimmons, R., Strong, D., Mohan, S., Jennings, J., Wergedal, J., and Baylink, D. (1990). Studies of the mechanism by which androgens enhance mitogenesis and differentiation in bone cells. J Clin Endocrinol Metab 71, 1322-1329.
Kay, J. N., Hannigan, P., and Kelley, D. B. (1999). Trophic effects of androgen: development and hormonal regulation of neuron number in a sexually dimorphic vocal motor nucleus. J Neurobiol 40, 375-385.
Keller, E. T., Ershler, W. B., and Chang, C. (1996). The androgen receptor: a mediator of diverse responses. Front Biosci 1, d59-71.
Labrie, F., Dupont, A., Suburu, R., Cusan, L., Tremblay, M., Gomez, J. L., and Emond, J. (1992). Serum prostate specific antigen as pre-screening test for prostate cancer. J Urol 147, 846-851; discussion 851-842.
Lustig, R. H. (1994). Sex hormone modulation of neural development in vitro. Horm Behav 28, 383-395.
Ma, Z. Q., Spreafico, E., Pollio, G., Santagati, S., Conti, E., Cattaneo, E., and Maggi, A. (1993). Activated estrogen receptor mediates growth arrest and differentiation of a neuroblastoma cell line. Proc Natl Acad Sci U S A 90, 3740-3744.
Maclean, N. (1998). Regulation and exploitation of transgenes in fish. Mutat Res 399, 255-266.
Maggi, R., Poletti, A., Casulari, L. A., Pimpinelli, F., Piva, F., Zanisi, M. R., and Martini, L. (1998). Effects and metabolism of steroid hormones in human neuroblastoma cells. Steroids 63, 257-262.
Marron, T. U., Guerini, V., Rusmini, P., Sau, D., Brevini, T. A., Martini, L., and Poletti, A. (2005). Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J Neurochem 92, 10-20.
McPhaul, M. J. (2002). Androgen receptor mutations and androgen insensitivity. Mol Cell Endocrinol 198, 61-67.
Melino, G., Knight, R. A., and Thiele, C. J. (1993). New insight on the biology of neuroectodermal tumors. Workshop report from the University of Rome Tor Vergata and the IDI-IRCCS on the genetics and control of growth, differentiation, and programmed cell death. Cancer Res 53, 926-928.
Melino, G., Thiele, C. J., Knight, R. A., and Piacentini, M. (1997). Retinoids and the control of growth/death decisions in human neuroblastoma cell lines. J Neurooncol 31, 65-83.
Nazareth, L. V., and Weigel, N. L. (1996). Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 271, 19900-19907.
Nebert, D. W., Stuart, G. W., Solis, W. A., and Carvan, M. J., 3rd (2002). Use of reporter genes and vertebrate DNA motifs in transgenic zebrafish as sentinels for assessing aquatic pollution. Environ Health Perspect 110, A15.
Pahlman, S., Mamaeva, S., Meyerson, G., Mattsson, M. E., Bjelfman, C., Ortoft, E., and Hammerling, U. (1990). Human neuroblastoma cells in culture: a model for neuronal cell differentiation and function. Acta Physiol Scand Suppl 592, 25-37.
Plouffe, L., Jr., and Simon, J. A. (1998). Androgen effects on the central nervous system in the postmenopausal woman. Semin Reprod Endocrinol 16, 135-143.
Poletti, A. (2004). The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Front Neuroendocrinol 25, 1-26.
Riegman, P. H., Vlietstra, R. J., van der Korput, J. A., Brinkmann, A. O., and Trapman, J. (1991). The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol 5, 1921-1930.
Rundlett, S. E., Wu, X. P., and Miesfeld, R. L. (1990). Functional characterizations of the androgen receptor confirm that the molecular basis of androgen action is transcriptional regulation. Mol Endocrinol 4, 708-714.
Santner, S. J., Albertson, B., Zhang, G. Y., Zhang, G. H., Santulli, M., Wang, C., Demers, L. M., Shackleton, C., and Santen, R. J. (1998). Comparative rates of androgen production and metabolism in Caucasian and Chinese subjects. J Clin Endocrinol Metab 83, 2104-2109.
Schuur, E. R., Henderson, G. A., Kmetec, L. A., Miller, J. D., Lamparski, H. G., and Henderson, D. R. (1996). Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem 271, 7043-7051.
Scott, C. J., Clarke, I. J., Rao, A., and Tilbrook, A. J. (2004). Sex differences in the distribution and abundance of androgen receptor mRNA-containing cells in the preoptic area and hypothalamus of the ram and ewe. J Neuroendocrinol 16, 956-963.
Sengelaub, D. R., Jordan, C. L., Kurz, E. M., and Arnold, A. P. (1989). Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat: II. Development of the spinal nucleus of the bulbocavernosus in androgen-insensitive (Tfm) rats. J Comp Neurol 280, 630-636.
Stern, H. M., and Zon, L. I. (2003). Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3, 533-539.
Tilley, W. D., Marcelli, M., Wilson, J. D., and McPhaul, M. J. (1989). Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci U S A 86, 327-331.
Trapman, J., Ris-Stalpers, C., van der Korput, J. A., Kuiper, G. G., Faber, P. W., Romijn, J. C., Mulder, E., and Brinkmann, A. O. (1990). The androgen receptor: functional structure and expression in transplanted human prostate tumors and prostate tumor cell lines. J Steroid Biochem Mol Biol 37, 837-842.
Wang, Z., Tufts, R., Haleem, R., and Cai, X. (1997). Genes regulated by androgen in the rat ventral prostate. Proc Natl Acad Sci U S A 94, 12999-13004.
Wilson, J. D., Griffin, J. E., George, F. W., and Leshin, M. (1983). The endocrine control of male phenotypic development. Aust J Biol Sci 36, 101-128.
Winn, R. N. (2001). Trangenic fish as models in environmental toxicology. Ilar J 42, 322-329.
Wolf, D. A., Schulz, P., and Fittler, F. (1992). Transcriptional regulation of prostate kallikrein-like genes by androgen. Mol Endocrinol 6, 753-762.
Yong, E. L., Lim, J., Qi, W., Ong, V., and Mifsud, A. (2000). Molecular basis of androgen receptor diseases. Ann Med 32, 15-22.
Yousef, G. M., and Diamandis, E. P. (2001). The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 22, 184-204.
第一頁 上一頁 下一頁 最後一頁 top